蒸发条件下夹砂层土壤水盐运移实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于涉及水资源、农业、环境等诸多方面的问题,土壤中水和溶质运移的研究
    历来为人们所重视。本文针对我国西北地区土壤剖面多呈层状和春季强烈返盐季节
    土壤多处于裸露状态的特点,以室内土柱模拟实验为主,研究同一潜水位和矿化度
    (3g/l)条件下不同大气蒸发能力时夹砂层强化盐渍土壤的水盐运动规律及其迁移
    机制。实验分毛管水上升和水分蒸发两个阶段进行,主要分析了砂土层厚度、层位、
    质地等因素对水盐运动的影响及作用机制,所得主要结论如下:
    1. 均质土毛管水上升速度和地下水补给速率均与时间呈非线性幂函数关系,
    二者之间可近似为线性关系,其斜率表示此期间土壤剖面含水量:变化量。入渗条件下
    的Green-Ampt模型也可用于模拟地下水埋深较浅时均质土壤毛管水分运动特性。
    2. 与均质土相比,砂层对毛管水的上升既有促进也有抑制作用。具体情况取
    决于砂层的层位。在本实验条件下,砂层的层位大于5cm(相对层位为0. 1) 时,
    砂层会抑制水分运动。经分析认为,砂层层位对水分蒸发由促进到抑制的转折点为
    砂土和壤土导水率的相对大小发生变化之时。此外,砂层的抑制作用随砂层层位的
    升高、厚度的增加以及级配的变差而增大。
    3. 夹砂层土壤毛管水最大上升高度以及各层土壤含水量的分布是否会受到影
    响主要取决于砂层的质地、层位、厚度及其相互间的关系,同时还与同剖面中其它
    土壤的质地有关。其它土壤质地一定时,若砂层的有效粒径或不均匀系数满足
    
    西安理工大学博士学位论文
    Dlo之1 4.0632一1462
    尸三0 .06821261
    则毛管水的最大上升高度以及各层土壤含水量的分布均会被抑制。
     4.对于盐渍土的蒸发来说,由于盐壳形成后对水分蒸发的抑制,不同大气蒸
    发能力条件下地下水埋深为50cm时,短历时(<15d)的潜水蒸发为稳定蒸发,而
    长历时(>15d)则为非稳定蒸发。对于盐渍土潜水稳定蒸发强度的计算,阿维里杨
    诺夫公式不再适用,而清华大学雷志栋公式较好。同时也可估算不同大气蒸发能力条
    件卜的非稳定蒸发强度,但两种情况下公式中系数刀的下限值均比规定值小,需要做
    近一步调整。
     5.砂层对潜水蒸发强度、土表返盐量以及盐溶液浓度的影响与砂层对毛管水
    上升速度的影响规律基本相同,当砂层层位大于35cm(相对层位为0.7)时,砂层
    对水盐的抑制作用可达70一80%。同时盐分在土砂上下界面均有滞留现象,且砂层
    层位越高或有效粒径越大,其滞留量越大。因而砂层对盐分的抑制率大于对水分的
    抑制率。这对于盐碱地的改良和作物的生长非常有利。
     6.以均质土壤潜水稳定蒸发强度计算模型为基础,建立了适用于不同蒸发能
    力条件下各层位夹砂层土壤以及同层位不同质地夹砂层十壤稳定蒸发强度计算的
    雷志栋公式,并提出其非稳定蒸发强度计算的方法及条件。砂层的相对层位和相对
    有效粒径可分别作为预测不同层位和质地夹砂层稳定蒸发强度的重要参数。
     7.不同大气蒸发能力时各层位夹砂层土壤以及不同质地夹砂层土壤土表Zcm
    和10cm的累积蒸发量与全盐量呈明显的线性关系,但层位人于35cm(相对层位
    为0.7)的夹砂层土壤应与小于35cm的夹砂层土壤分别进行处理。
     8.砂层对不同离子运动的影响不同。对地下水和土壤中均存在的Na+和Cl一而
    言,其表聚情况最为强烈,同时受砂层的影响也最人,且在蒸发后期砂层对Na+
    的抑制作用大于cl一。对于仅土壤中存在的50户、ca2+和HcO3一三种离子来说,随
    水分向上迁移的主要是5042一和ca2+,且砂层层位的变化对ca2+的影响更大一些;
    而HCO3一则不随水分而运动,即砂层对HC03一无明显影响,但不同处理在接近地卜
    水位处出现了次生碱化的现象(即HC03一含量明显增大),且随蒸发历时的延长以
    及大气蒸发能力的增加而加重。外界大气蒸发强度越大,砂层对离子的抑制作用越
    大。
     9.均质土壤剖面Cl一和全盐量之间呈线性关系,而Na+与全盐量则旱_对数函数
    
    摘要
    关系,且离子与全盐量的关系不受大气蒸发能力影响;不同层位夹砂层土壤剖面全
    盐量和两种离子的关系与均质土相同;不同质地夹砂层土壤剖面全盐量与Cl’呈指
    数型关系曲线,而与Na+呈直线关系。同一大气蒸发能力条件下离子与全盐量的关
    系不受砂层层位以及砂层质地的影响。
     10.敏感性分析结果表明,忽略参数b将使理论计算的潜水极限蒸发强度比实
    测值大,且土壤质地越轻,忽略参数b时所计算的潜水极限蒸发强度越大;同一质
    地时,则参数b的大小对潜水极限蒸发强度的影响与潜水理深有关。对于盐渍土来
    说,由于盐壳的影响,理论计算的潜水极限蒸发强度均比实测值大。
     11.将层状土壤各土层以均质土来看待,并以此为基础来计算层状土壤的稳定
    蒸发强度,对于层位较低的夹砂层土壤较为适用,但对于层位较高的夹砂层土壤还
    必须考虑砂层对水分的“阻抗作用”,否则会产生较大的偏差。
     以上研究结果对于预测层状土壤稳定蒸发强度、防止次生盐碱化,以及灌溉和
    排水的设计均有重要作用。
     关键词:夹砂层土壤;毛管水分运动特性;蒸发强度;返盐量;盐分分布:离
    子运动特性;理论计算。
     本研究得到国家自然科学基金项目《黄土区土壤溶质迁移机制及祸合模型研
    究))(59879022)和《西北地区城市雨水利用及其生态环境效应》(40271022)?
Owing to the problems involved in water resources, agriculture, environment and so on, the study on the transport of water and solute in soil is always pay attention to. In addition, considering the fact that most soil profiles assume layered structure in the field and that most bare soils are exposed to the atmosphere when salt accumulation in the surface soil is very rapid in spring, a laboratory investigation was conducted for capillary water rise in, and evaporation from different sand-layered soil columns under different atmospheric evaporation powers in the presence of shallow water table. The groundwater fluid was mineral water containing 3g/l NaCl. The effect of the thickness, the position, the particle size and its distribution of the sand layer on transport of water and salt and the estimated method of evaporation rate were studied, its mechanism was further examined. And the theory evaporation rate was calculated and its results were discussed. The main results are as follows:1. The results showed that there was linear function relationship between the capillary water rise velocity and the capillary water supply rate for the uniform soil and an non-linear power function relationship between them and the time, Green-Ampt model can be applied in simulating capillary water movement for the uniform soil in the presence of the shallow water table.2. The sand-layered soil had an important effect on the upward capillary water movement compared to the uniform soil column. The movement can be not only restrained but speeded as well. This is mainly related to the relationship of the hydraulic conductivity of the two soils in the profile i.e. whose conductivity will be larger. In the paper, the rate of the capillary water rise were limited by the sand layer when the distance between the low boundary of the sand layer and the water table is
    
    more than 5cm, and the effect was intensified not only by the thicker sand layer and the higher sand layer position, but also by the worse sand particle size distribution. The change of the capillary water rise velocity and the capillary water supply rate for the layered soil were behaved by the relative position (i. e. the ratio of the position to the buried depth of water table), the effective particle diameter (i. e. D10, particle diameter with 10%) and the no uniform coefficient (i. e. , the ratio of the particle diameter with 60 % to the particle diameter with 10%) respectively.3. Whether the maximum height of the capillary water rise and water content of each layer soil for layered soil were changed or not were mainly determined by the sand soil texture, position, thickness, and their mutual relationship, and they also were closer connected with other soil texture in the profile. When the soil profile was certain, they will decrease when the sand layer meets with the conditions, i.e. 4. As far as evaporation from the high-salt soil with 50cm depth of water table was concerned, the evaporation rate remained steady with less than the 15d evaporation duration, and tended to be no steady with more than 15d duration under different atmospheric evaporation power, this was related to the formation of salt crust which in turn restricted water evaporation.5. The calculated steady rates by the empirical equation presented by Averiyanov had a large difference with the measured ones, and the calculated ones by the equation proposed by Lei et al (1988) had a well agree with the measured data, but the low limited value of the coefficient P for later equation needed further modify. In addition, the equation proposed by Lei et al was also proved to be suitable for calculating the no steady phreatic evaporation rate when coefficient was less than the stated value.6. The phreatic evaporation rate, the accumulative salt amount and salt concentration in the topsoil from the layered soils were smaller significantly than that from uniform soils except for the treatment whose distance of the sand layer to the water table was 0, this was
引文
[1] Ellsworth T.R.Solute transport in unsaturated soil:experimental design,parameter estimation and model discrimination[J].Soil Sci.Soc.Am.J,1996,60:397-407.
    [2] Nielsen D.B.,Nielsen M.,Genuchten T.V.and et al.Water flow and solute transport processes in the unsaturated zone[J].Water Resour.Res.,1986,22(9) :122-130.
    [3] 王雄师.疏勒河项目区土壤结构分类及对盐碱地改良的影响[J].甘肃水利水电技术.1998,3:66-69.
    [4] Yang M.D.and Ernest K.Y.Water balance during evaporation and drainage in cover soils under different water table conditions[J].Advances in Environmental Research,2002,6:505-521.
    [5] 赵风岩.土层排列组合与作物产量差异[J].土壤通报,1997,28(3) :105-106.
    [6] Alfnes E.,Kinzelbach W.and Aagaard P.Investigation of hydrogeologic processes in a dippinglayer structure:1. The flow barrier effect.Journal of Contaminant Hydrology,2004,69:157-172.
    [7] M.Fernandez-perez,E.Gonzalez-Pradas,M.Villafranca-Sanchez.et al.Mobility of atrazine from alginate-bentonite controlled release formulations in layered soil[J].Chmosphere,2001,43:347-353.
    [8] Ernest K.Y.,Mousavi S.M.and Yang M.D.Modeling and measurement of evaporation in moisture-retaining soil covers[J].Advances in Environmental Research,2003,7:783-801.
    [9] Kampf M.,Holfelder T.and Montenegro H.Identification and parameterization of flow processes in artificial capillary barriers[J].Water Resour.Res.,2003,39(10) :1276-1285.
    [10] 李韵珠.蒸发条件下粘土层与土壤水盐运移[C].国际盐渍土改良学术讨论会论文集,1985.
    [11] 刘福汉,王遵亲.潜水蒸发条件下不同质地剖面的土壤水盐运动[J].土壤学报,1993,30(2) :173-180.
    [12] 王文焰,王全九,沈冰等.甘肃秦王川地区双层土壤结构的入渗特性[J].土壤侵蚀与水土保持学报,1998,4(2) :35-40.
    [13] А.А.роде著(袁剑舫译).土壤与土质的水分性质[M].科学出版社.1958,66-68,47-48. 47-50.
    [14] Lemon E.R.The potentialities for decreasing soil moisture evaporation loss[J].Soil Sci.Amer.Proc,1956,20:120-125.
    
    [15] Paul R.D.and James N.L.Pressure distribution in layered soils during continuous water flow[J].Soil Sci.Amer.Proc.,1953,17:87-91.
    [16] 李进法,王希恩,高广瑞等.河北平原不同土壤结构水分分布和运行规律及灌水模式[J].干旱地区农业研究,1996,14(1) :3-9.
    [17] 张蕾娜,冯永军,张红.滨海盐渍土水盐运移影响因素研究[J].山东农业大学学报(自然科学版),2001,32(1) :55-58.
    [18] Selim H.M.Transport of reactive solutes during transient,unsaturated water flows in multilayered soils[J].J of Soil Science,1978,126(3) :127-135.
    [19] 王超.非饱和分层土壤中污染物迁移转化规律研究[J].河海大学学报,1998,26(1) :59-65.
    [20] Hillel D.E.and Parlange J.Y.Wetting front instability in layered soil[J].Science Society American Proceeding,1972,36(5) :697-702.
    [21] Hillel D.and Baker R.S.A descriptive theory off fingering during infiltration into layered soils[J].Soil Science,1988,146(1) :51-55.
    [22] Rnsema C.J.,Dekker L.W.and Hendricrx J.M.H.Preferential flow mechanism in a water repellent sandy soil[J].Water Resources Research,1993,29(7) :2183-2193.
    [23] Walter M.T.,Kim J.S,Steenhuis T.S.and et al.Funneled flow mechanisms in a sloping layered soil:Laboratory investigations[J].Water Resour.Res,2000,36(8) :841-849.
    [24] Kanchanasut P.D.,Scotter R.and Tillman R.W.Preferential solute movement through layer soil voids:Ⅱ.Experiments with saturated soil[J].Aust.J.Soil Res,1978,18:363-368.
    [25] 史文娟,汪志荣,沈冰等.黄土地区非饱和土壤中指流研究进展[J].西北农林科技大学学报(自然科学版),2004,32(7) :128-132.
    [26] 王文焰,张建丰.窑洞民居防渗减灾对策研究[J].灾害学.1992,7(2) :64-66.
    [27] 王全九,邵明安,汪志荣等.Green-Ampt式在层状土入渗模拟计算中的应用[J].土壤侵蚀与水土保持学报,1999,5(4) :66-70.
    [28] 汪志荣,王文焰.砂土夹层的阻水减渗机制及合理埋深[J].西安理工大学学报,2000,16(2) :170-174.
    [29] 杨志威.黄土窑洞构造防水技术的工程实验研究[J].灾害学,1997,12(2) :77-81.
    [30] APPENDIX Ⅲ.Estimates of infiltration rates (water flux) through conceptual cover design alternatives.For the commercial low-level radioactive waste disposal site Richland,Wadhington.Maxine Dunkelman.July 22,2003.
    [31] Council.Interstate Technology & Regulatory Council Alternative Landfill Technologies Team.Technology Overview Using Case Studies of Alternative Landfill Technologies and Associated Regulatory Topics[R].2003,3.
    [3
    
    [32] Singh P.K.,Singh O.P.,Jaiswal C.S.and et al.Subsurface drainage of a three layered soil with slowly permeable top layer[J].Agricultural Water Management,1999,42:97-109.
    [33] Starr J.L.,DeRoo H.C.,Frink C.R.and et al.Leaching characteristics of a layered field soil[J].Soil Sci.Soc.Am.J.,1978,42:376-391.
    [34] 张新民.上土下砂双层结构土壤的洗盐定额[J].西北水资源与水工程,1997,8(1) :48-51.
    [35] Vassilios K.and Jean C.Estimation of cleanup time in layered soils by vapor extraction[J].Journal of Contaminant Hydrology,1999,36:105-129.
    [36] Vassilios K.Influence of rate-limited sorption on the cleanup of layered soils by vapor extraction[J].Journal of Contaminant Hydrology,2002,55:1-27.
    [37] Walser G.S.,Illangasekare T.H.and Corey A.T.Retention of liquid contaminants in layered soils[J].Journal of Contaminant Hydrology,1999,39:91-108.
    [38] Stephen.W.W.and James M.P.Effect of soil layering on NAPL removal behavior in soil-heated vapor extraction[J].Journal of Contaminant Hydrology,1997,27:285-308.
    [39] Mohamed A.M.,Shooshpasha I.and Yong R.N.Diffusion of metal ions in frozen capillary barriers[J].Engineering Geology,1997,47:1-15.
    [40] 雷志栋,杨诗秀等著.土壤水动力学[M].北京:清华大学出版社.1988. 220-263.
    [41] 张凤荣,黄勤,张迪。黄淮海平原粘土层在土系划分中的意义,分类指标和土系初建[J].土壤通报,2001,32(5) :197-200.
    [42] Tayor S.A.著(华孟等译).物理的土壤学-灌溉与非灌溉土壤的物理等[M].农业出版社.1983. 142-145.
    [43] 冯永军,陈为峰,张蕾娜等.滨海盐渍土水盐运动室内实验研究及治理对策[J].农业工程学报2000,16(3) :38-42.
    [44] 顾志杰,周洪贵,郭择德.野外试验场场址土壤蒸发量的计算[J].辐射防护,2000,12(1-2) :110-113.
    [45] 宋炳煜.对典型草原群落蒸发蒸腾进行实验观测[J].植物生态学报,1996,20(6) :485-493.
    [46] 沈晋,王文焰,沈冰等著.动力水文实验研究[M].陕西:陕西科学技术出版社.1990. 89-106.
    [47] 张蔚榛,张瑜芳.“包气带水分运移问题讲座(四)”“蒸发条件下土壤水分运动(上)”[J].水文地质工程地质,1981,4.
    [48] Gardner W.R.and Fireman M.Laboratory study of evaporation from soil column in the presence of a water table[J].Soil.Sci.,1958,85(5) :244-249.
    [4
    
    [49] 阿维里扬诺夫СФ.防治灌溉土地盐渍化的水平排水设施[M].北京:中国工业出版社.1985.
    [50] 叶水庭,施鑫源,苗晓芳.用潜水蒸发经验公式计算给水度问题的分析[J].水文地质工程地质,1981,4.
    [51] 沈立昌.利用长期观测资料分析地下水资源的几个问题[J].水文(水资源专集),1982(增刊).
    [52] 唐海行,苏逸深,张和平.潜水蒸发的实验研究及其经验公式的改进[J].水利学报,1989,(10) :37-44
    [53] 雷志栋,杨诗秀,谢森传.潜水稳定蒸发的分析与经验公式[J].水利学报,1984,8:60-64.
    [54] 王文焰,李智录,沈冰.对考虑蒸发影响下农田排水沟(管)间距计算的探讨[J].水利学报,1992,7.
    [55] 赵成义,胡顺军,刘国庆等.潜水蒸发经验公式分段拟合研究[J].水土保持学报,2000,14(5) :122-126.
    [56] 田町正誉.土 水 关系特 毛管现象及 渗透 就 (其 一其 三)[J].农业土木研究,1931,3(1) :1-29.
    [57] 1961,10:59-69.
    [58] 罗焕炎.层状土中毛管水上升的实验研究[J].土壤学报,1965,13(3) :312-324.
    [59] 刘思义,魏由庆.马颊河流域影响土壤盐渍化的几个因素的研究[J].土壤学报,1988,25(2) :110-118.
    [60] Miller D.E.and Bunger W.C.Moisture retention by soil with coarse layers in the profile[J].Soil Sci Soc Amer Proc.1963,27:586-590.
    [61] Willis W.O.Evaporation from layered soils in the presence of a water table[J].Soi Sci.Soc.Am.J.,1960,24(4) :239-242.
    [62] 同延安,尉庆丰,王全九.土壤-植物-大气连续体系中水运移理论与方法[M].陕西:陕西科学技术出版社.1998. 26-50. 134-137.
    [63] Hillel D.and Talpaz H.Simulation of soil water dynamics in layered soils[J].Soil Sci.,1977,123:54-62.
    [64] 金子良.土壤水分 分布及移动 地下水 关系[J].农业土木研究,1949,16:34-40.
    [65] 袁剑舫,周月华.粘土夹层对地下水上升运行的影响[J].土壤学报,1980,17(1) :94-99.
    
    [66] 刘福汉,王遵亲.潜水蒸发条件下不同质地剖面的土壤水盐运动[J].土壤学报,1993,30(2) :173-180.
    [67] 刘思义,梁国庆,邢文刚等.粘土夹层土壤结构水盐运动的实验研究[J].土壤学报,1992,29(1) :109-112.
    [68] 王金平.蒸发条件下层状土壤水分运动的数值模拟[J].水利学报,1989,5:49-54.
    [69] Taylor S.T.and Ashcroft G.L.Physical Edaphology:the physics of irrigated and nonirrigated soils[M].San Francisco.1972.
    [70] 余开德.中国农业科学院农田灌溉研究所.1963年资料.
    [71] 娄福礼.中国农业科学院农田灌溉研究所.1962年资料.
    [72] 刘有昌.鲁北平原地下水临界深度的探讨[J].土壤通报,1962,24:13-22.
    [73] 石元春,辛德惠等著.黄淮海平原的水盐运动和旱涝碱的综合治理[M].石家庄:河北人民出版社.1983. 115.
    [74] 王宏,叶常明,尹澄清.人工粘土层在枯水期对小清河氧化塘底质水盐运动的抑制模拟研究[J].环境科学,1994,15(3) :18-21.
    [75] Li Y.Z.,Lu J.W.and Huang J.Claylayer and transfer of soil water and salt under evaporation[A].Proceedings of the international symposium on the reclamation of salt-affected soils[C].Jinan,China,1985,268-2891.
    [76] 唐淑英,张丽君.土壤耕作层熟化程度对水盐动态的影响[J].土壤学报,1978,8:39-51.
    [77] 邱胜彬,张江辉.浅析土壤质地和结构对潜水蒸发的影响[J].水土保持学报,1996,3(3) :30-41.
    [78] 乔云峰.黄土中水盐运移研究[D].西安理工大学硕士学位论文.2001.
    [79] Zayani K.,Bousnina H.,Mhiri A.and et al.Evaporation in layered soils under different rates of clay amendment[J].Agricultural Water Management.1996,30:143-154.
    [80] Fox Y.S.One-dimensional infiltration into layered soils[J].J Irr and Drain,1970,43:121-129.
    [81] 周维博.降雨入渗和蒸发条件下野外层状土壤水分运动的数值模拟[J].水利学报,1991,9:32-36.
    [82] Nunzio R.,Bruno B.and Alessandro S.Numerical Analysis of one-dimensional unsaturated flow in layered soils[J].Advances in Water Resources,1998,21:315-324.
    [83] 李卫东,李保国,石元春.应用Markov链理论定量描述区域冲积土壤质地层次的垂向变化特征[J].土壤学报,1999,36(1) :15-24.
    [84] Porro I.,Wierenga P.J.and Hills R.G.Solute transport trough large uniform and layered soil columns[J].Water Resour.Res.,1993,29(4) :1321-1330.
    [8
    
    [85] 许迪.采用田间表层结壳稳定流法确定土壤非饱和导水率[J].水利水电技术,1 996,7:33-36.
    [86] 黄冠华,沈荣开.层状土壤中一维非饱和水分运动的随机模拟[J].中国农业大学学报,1997,2(4) :37-43.
    [87] 黄冠华,沈荣开.非均质土壤中二维非饱和水分运动的随机模拟[J].水科学进展,1997,8(2) :117-122.
    [88] 任理,王济,秦耀东.非均质土壤饱和稳定流中盐分迁移的传递函数模拟[J].水科学进展,2000,11(4) :392-400.
    [89] 任理,李春友,李韵珠.层状粘性土壤水分动态新模型的应用[J].中国农业大学学报,1998,1:57-62.
    [90] Baker R.S.and Hillel D.Laboratory tests of theory of fingering during infiltration into layered soils[J].Soil Sci.Soc.Am.J,1990,54(1) :20-30.
    [91] Wang Q.J.,Horton R.and Shao M.A.Algebraic models for one-dimension infiltration and soil water distribution[J].Soil Sci.,2003,168(10) :671-676.
    [92] Lu Z.M.and Zhang D.X.Analytical solutions to steady state unsaturated flow in layered,randomly heterogeneous soils via Kirchhoff.Transformation[J].Advances in Water Resources,2004,27:775-784.
    [93] 李保国,李韵珠,石元春.水盐运动研究30年(1973-2003) [J].中国农业大学学报,2003,8(增刊):5-19.
    [94] 张江辉.干旱地区考虑蒸发影响下的排水计算[D].西安理工大学硕士学位论文.1996.
    [95] 孙鸿烈,刘光菘等编.土壤理化分析与剖面描述[M].北京:中国标准出版社.1996.
    [96] 王文焰,张建丰,汪志荣等.砂层在黄土中的阻水性及减渗性的研究[J].农业工程学报,1995,11(1) :104-109.
    [97] 冯宝平.入渗条件下温度对土壤水分运动及参数影响的实验研究[D].西安理工大学硕士学位论文.2001.
    [98] 王全九.非饱和土壤水与溶质迁移规律研究[D].西安理工大学博士后出站报告.1999.
    [99] Kulte A.Some theoretical aspects of the flow of water in unsaturated soils[J].Soil.Sci.Soc.Amer.Proc.,1952,16:144-148.
    [100] 张建丰.黄土区层状土入渗特性及其指流的实验研究[D].西北农林科技大学博士学位论文.2004.
    [101] 姚贤良,程之生等著.土壤物理学[M].北京:农业出版社.1986. 290-295.
    
    [102] Muhammad A.Q.and Kemper W.D.Salt-concentration gradients in soils and their effects on moisture movement and evaporation[J].Soil Sci.,1962,93:333-342.
    [103] Liu L.C.Characteristics of soil salinization in north Tarim Basin.Chinese[J].Journal of Soil Science,1986,17(5) :196-200.
    [104] Rose E.J.Agricultural Physics[M].Oxford:Pergamon.1996.
    [105] Gardner W.R.and Hillel D.The relation of a extern evaporation conditions to the drying of soils[J].J.Gepphys.Res.,1962,67:4319-4325.
    [106] 左强,李保国,杨小路.蒸发条件下地下水对1m土体水分补给的数值模拟[J].中国农业大学学报,1999,4(1) :37-42.
    [107] Stephen W.W.and James M.P.Effect of soil layering on NAPL removal behavior in soil-heated vapor extraction[J].Journal of Contaminant Hydrology,1997,27(3-4. ):285-308.
    [108] 李韵珠,李保国著.土壤溶质运移[M].北京:科学出版社.1988.
    [109] Fanhua M.and Wenrui Y.Salt-water dynamics in soils:Ⅳ.Changes of ionic composition in soil profiles during water evaporation and infiltration[J].Pedophere,1994,4(4) :347-356.
    [110] Rael R.M.and Frankenberger W.T.Influence of ph,salinity,and selenium on the growth of aeromonas veronii in evaporation agricultural drainage water[J].Water Res.,1996,30(2) :422-430.
    [111] Corderoa S.,Rojasa F.,Kornhausera I.and at el.Pore-blocking and pore-assisting factors during capillary condensation and evaporation[J].Applied Surface Science,2002,(196) 224-238.
    [112] 袁剑舫.土壤水分的蒸发及其影响因素[J].土壤学报,1964,12(4) :474-481.
    [113] D,希莱尔著,尉庆丰译.土壤物理学概论[M].1985.
    [114] Ramacharlu P.T.Evaporation of water from soil[J].Journal of the Indian society of soil science,1957,5,116-121.
    [115] 华孟,王坚主编.土壤物理学[M].北京:北京农业大学出版社.1992.
    [116] Nassar I.N.,Robert Horton and Globus A.M.Thermally induced water transfer in salinized,unsaturated soil[J].Soil Sci.Soc.Am.J,1997,61:1293-1299.
    [117] 张富仓.温度对土壤水分运动和保持的影响[D].西北农业大学硕士学位论文.1993.
    [118] Sebb S.W.and Phelan J.M.Effect of soil layering on NAPL removal behavior in soil-heated vapor extraction[J].Journal contaminant hydrology,1997,27:285-308.
    
    [119] 鲁学仁.华北暨胶东地区水资源研究[M].北京:中国科学技术出版社.1992. 151-159.
    [120] 张蔚榛主编.地下水非稳定流计算和地下水资源评价[M].北京:科学出版社.1983.
    [121] 沈振荣,张瑜芳,杨诗秀等编著.水资源科学实验与研究--大气水、地表水、土壤水、地下水相互转化关系[M].北京:中国科学技术出版社.1992.
    [122] Gardner W.R.Some steady state solutions of the unsaturated moisture flow equation with application to evaporation from a water table[J].Soil Sic.,1985(85) :228-232
    [123] 张学英.潜水蒸发与土质及地下水埋深关系[J].地下水,2002,14(1) :8-9.
    [124] 薛明霞,王立琴.潜水蒸发系数及影响因素分析[J].地下水,2002,24(4) :206-207.
    [125] Zarei G.M.,Homaee A.M.and Liaghat.An analytical solution of nonsteady evaporation from bare soils with shallow ground water table[J].Computational Methods in water Resources,2002,1(6) :23-28.
    [126] Shammiri M.A.Evaporation rate as a function of water salinity[J].Desalination, 2002,150(2) :189-203.
    [127] Richards L.A.Capillary conduction of liquids through porous mediums[J]. Physics,1931,1:318-333.
    [128] Wind G.P.A field experiments concerning capillary rise of moisture in a heavy clay soil[J].Neth.J.Agr.Sci.,1955,3:60-69.
    [129] Remson I.and Fox G.S.Capillary losses from ground water[J].Trans.Am. Geophys.Union,1955,36:304-310.
    [130] Haddas A.and Hillel D.Steady state evaporation through non-homogeneous soils from a shallow water table[J].Soil Sci.,1972,113:65-73.
    [131] Hassan F.A.and Ghaibeh A.S.Evaporation and salt movement in soils in the presence of water table[J].Soil Sci.Soc.Am.J.,1977,41:469-478.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700