溴化锂水溶液微观特性的分子动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
溴化锂吸收式制冷机具有广阔的市场前景。在吸收式制冷系统中,发生在吸收器中的溴化锂浓溶液吸收水蒸气的过程是系统功能实现的关键阶段,而提高吸收速率一直被认为是提高系统效率和减少交换面积的重点。在溴化锂水溶液中加入少量的异辛醇等表面活性剂后,可以极大地提高吸收过程的传热传质能力。表面活性剂具有显著的强化吸收作用,国内外的学者也在这方面做了许多研究,但尚未得到清晰的和公认的解释。本文采用分子动力学模拟与实验研究相结合的方法,从微观角度研究表面活性剂的吸收促进机理,以求丰富和改进现有的表面活性剂强化吸收的理论。主要研究成果归纳如下:
     采用分子动力学方法研究了温度对水的气液界面微观结构的影响。发现:液相密度是温度的减函数,界面厚度是温度的增函数;界面的存在对水分子局部结构几乎没有影响,但对水分子的取向有影响:界面处水分子的偶极方向平行于界面,但随着温度的升高,界面对水分子取向的影响越来越小;温度几乎不改变水分子的局部结构;液相处,平均每个水分子形成氢键的数目几乎稳定于某一数值,并且是温度的减函数,随着水分子到达界面处,氢键的数目单调减少。
     采用分子动力学方法研究了温度和浓度对溴化锂水溶液气液界面微观结构的影响。发现:溴化锂水溶液的液相密度是浓度的增函数,界面厚度是浓度的减函数,而温度对液相密度和界面厚度的影响与浓度对其的影响相反;界面的存在并未影响离子周围水分子的局部结构和取向有序性;随着温度的升高,离子周围水分子取向的有序性不再那么明显;溴化锂水溶液浓度的改变对离子周围水分子取向分布的影响不大;温度和浓度的改变对离子周围水分子局部结构的影响不大。
     采用分子动力学方法研究了醇类添加剂的数目对醇-水的混合物气液界面微观结构的影响。模拟结果表明:醇分子吸附在气液界面处,并在界面处优势取向;短链醇具有较强的溶解性;当正辛醇、异辛醇或正癸醇的数目较少时,醇分子在气液界面处形成单层,随着醇分子数目的增加,在气液界面处形成双层;界面厚度是醇分子数目的增函数。
     采用分子动力学方法研究了醇类添加剂的种类、数目及溴化锂水溶液的质量分数对醇-溴化锂水溶液混合物气液界面微观结构的影响。模拟结果表明:正烷醇分子吸附在气液界面处,并在界面处优势取向,并且这种优势取向随着正烷醇数目的增加而更加显著;界面厚度是正烷醇数目和烃基链长度的增函数;随着正烷醇数目的增加,烃基链垂直于界面的方向有序性更加明显;离子与正烷醇中羟基存在着相互作用;正丁醇或异辛醇关于溴化锂水溶液的溶解性是溴化锂水溶液质量分数的减函数,符合盐析效应理论。
     采用Daiguji等提出的模型,将醇分子置于吸收端溴化锂水溶液的两个气液界面处,采用分子动力学方法研究非平衡条件下,醇类添加剂对溴化锂水溶液吸收水蒸气的影响。模拟结果表明:正丁醇、正已醇、正辛醇、异辛醇、正癸醇均在溴化锂水溶液吸收水分子的过程中表现出强化作用,与实验趋势是吻合的。
     对表面张力进行了实验和分子动力学研究。采用表面张力仪测量了常温下水、质量分数为60%的溴化锂水溶液的表面张力,与文献中的测量值接近。测量了单独添加正已醇、正辛醇、异辛醇、仲辛醇以及两两混合前述物质后的溴化锂水溶液的表面张力,发现添加两种添加剂后溶液的表面张力与单独添加时较低的张力值接近。采用分子动力学方法研究了温度、浓度对水及溴化锂水溶液表面张力的影响。计算结果表明:水和溴化锂水溶液表面张力的计算值小于实验值,但随着温度、浓度的变化趋势与实验趋势是一致的。采用分子动力学方法计算了分别加有正丁醇、正已醇、异辛醇的质量分数为60%的溴化锂水溶液的表面张力,发现添加剂都能一定程度地降低溶液的表面张力;同时计算了加有不同数目正辛醇的溴化锂水溶液的表面张力,发现溴化锂水溶液的表面张力是正辛醇数目的减函数,与实验趋势一致。
Absorption chillers using the working pair water-lithium bromide (LiBr) have obtained broad market prospects.In absorption refrigeration system, the water vapor absorption into LiBr aqueous solution in absorption vessel is the key stage of systematic function. Improving the absorption speed is thought to be important in advancing system efficiency and reducing the exchange area. Adding a little amount of surfactant such as 2-ethyl-l-hexanol into LiBr aqueous solution can enhance the heat and mass transfer greatly. Due to its great application value, this effect has been the subject of numerous investigations in recent years, while the working mechanism is not fully understood. The present dissertation mainly focuses on molecular dynamics simulation methods as well as experimental research to study the absorption enhancement mechanism of surfactant in microscopic view, willing to enrich and ameliorate existing theories.
     Molecular dynamics simulation methods are carried out to investigate the temperature effect on the microstructure of liquid-vapor interface of water. Simulation results show that the density of bulk liquid decreases with the increase of temperature; however, interface thickness increases with the increase of temperature. The local structure of water molecules is not affected by the presence of interface. Water molecules are observed to show preferred orientational order at the liquid-vapor interface:water permanent dipoles prefer to lie parallel to the interface; however, with the increase of temperature the interface has little influence on the orientationl order of water molecules. In bulk liquid region, the number of hydrogen bonds per water molecule is roughly constant, and decreases when temperature increasing. As water molecules approach the interface, the number of hydrogen bonds per water molecule decreases monotonically.
     Molecular dynamics simulation methods are used to study the microstructure of the liquid-vapor interface of lithium bromide aqueous solution with various concentration at different temperature. The simulation results demonstrate that liquid density increases with the increasing concentration of the electrolyte solution, meanwhile, interface thickness decreases gradually; however, the temperature has contradict effect on liquid density and interface thickness. The presence of interface cannot affect the orientation order and local structure of water surrounding by ions. The orientation order of water molecules neighbored by ions becomes not clear with the increase of temperature. The concentration of electrolyte solution has little effect on the orientation profile of water surrounding by ions. The variation of temperature or concentration has little influence on the local structure of water molecules around ions.
     Molecular dynamics simulation methods are adopted to study the effect of the amounts of alcohols on the microstructure of the liquid-vapor interface of the mixture of water and alcohols. The simulation results indicate that alcohol molecules tend to adsorb at the interface and show their dominant orientation with the hydrophobic hydrocarbyl pointing into the vapor phase and hydrophilic hydroxyl pointing into the liquid phase, while the hydroxyl groups forming a hydrogen bonding network with water which makes the alcohol molecules seek more hydrophilic interactions with water molecules. Alcohols with short hydrocarbon chains have intensive solubility. When the concentration of n-octanol,2-ethyl-l-hexanol or n-hexanol is slightly lower, the alcohols can form monolayer at the interface, and graduate into bilayers with the increase of the amounts of alcohols. The interface thickness increases with the increase of the amounts of alcohols.
     Molecular dynamics simulation is introduced to study the impact of the types, the amounts of alcohols and the concentration of LiBr aqueous solution on microscopic structure of the liquid-vapor interface of the mixture of alcohols and electrolyte solution. The computed results reveal that n-alcohol molecules tend to adsorb at the interface with preferred orientation, meanwhile, the tendency of this kind of preferred orientation becomes distinct with the increase of the amounts of n-alcohol molecules. The interface thickness increases with the increase of the amounts of n-alcohol molecules or the length of hydrocarbon chains. The hydrocarbon chains of n-alcohol molecules are inclined to be close to stay upright near the interface while the amounts of n-alcohol molecules is more, meanwhile, this orientational ordering becomes significant with the increase of the amounts of n-alcohols. The direct interactions between hydroxyl hydrogen of n-alcohols and anion exist, and moreover, there are much stronger electrostatic interactions between oxygen of n-alcohols and cation. The dissolvability of n-butanol or 2-ethyl-l-hexanol related to LiBr aqueous solution decreases with the increase of the concentration of LiBr aqueous solution, which is consistent with the salting-out effect theory.
     The dynamic process of water vapor absorption into electrolyte solution with or without alcohol surfactants is explored by molecular dynamics simulation under non equilibrium conditions. Taking the model proposed by Daiguji et al., this dissertation puts alcohols on the two interfaces of LiBr aqueous solution in absorption side. The simulation results suggest that in comparison to lithium bromide aqueous solution without surfactants, the electrolyte solution with surfactants can absorb more water molecules distinctly for 100 ps, which conforms to the experimental tendency.
     The experimental and molecular dynamics methods are used to study the surface tension. Tensiometer is used to measure the surface tension of water and LiBr aqueous solution at room temperature. The experimental value of surface tension is close to the value from literatures. N-hexanol, n-octanol,2-ethyl-l-hexanol and 2-octanol are added into LiBr aqueous solution by two ways:alone or two of them. The experimental results signify that the surface tension of LiBr aqueous solution with compound surfactants is near to the one which makes surface tension smaller. The computed value of surface tension of water and LiBr aqueous solution is smaller than the experimental value. But the variation tendency with the temperature or concentration of LiBr aqueous solution accords with the experimental results. The simulation results show that n-butanol, n-hexanol or 2-ethyl-l-hexanol can reduce the surface tension of LiBr aqueous solution, meanwhile, the surface tension decreases with the increase of the amounts of n-octanol, which meets the experimental results.
引文
[1]Zogg R A, Feng M Y, Westphalen D. Guide to Developing Air-Cooled LiBr Absorption for Combined Heat and Power Applications.2005, http://www.eere.energy.gov/de/publications. html.
    [2]王如竹,丁国良,吴静怡,连之伟,谷波编.制冷原理与技术.北京:科学出版社,2003.
    [3]戴永庆等著.溴化锂吸收式制冷技术及应用.北京:机械工业出版社,1996.
    [4]Berg J C, Boudart M, Acrivos A. Natural convection in pools of evaporating liquids. J Fluid Mech,1996,24:721-735.
    [5]Grossman G. Heat and mass transfer in film absorption. Handbook of Heat and Mass Transfer Chap.6, Gulf Publishing, Houston, TX (1986):211-257.
    [6]Ziegler F, Grossman G. Heat-transfer enhancement by additives. Int J Refrig,1996,19(5): 301-309.
    [7]Vliet G, Consenza F B. Absorption phenomena in water-LiBr films. Proc Int Absorption Heat Pump Conf Tokyo, Japan,1991:53-61.
    [8]Nordgren M, Setterwall F. An experimental study of the effects of surfactant on a falling liquid film. Int J Refrig,1996,19(5):310-316.
    [9]Chi C W. Effect of additives on properties of LiBr solutions Symp Absorption Air Conditioning, American Gas Association, Chicago, IL, February,1968.
    [10]Kashiwagi T, Kurosaki Y, Shishido H. Enhancement of vapor absorption into a solution using the Marangoni effect. Trans JSME,1985(B),51:1002-1009.
    [11]Knoche K F, Moller R. Surfactants with NH3-H2O. Int J Refrig,1996,19(5):317-321.
    [12]Wung T C, Lu H H, Yang Y M, Maa J R. Absorption enhancement by the Marangoni-Effect-Pool Absorption of steam by aqueous LiBr solution with n-octanol additive. J Chin Inst Chem Eng,1994,25(5):271-282.
    [13]Orell A, Westwater W. Spontaneous interfacial cellular convection accompanying mass transfer. AIChE J,1962,8,350.
    [14]Setterwall F, et al. Heat transfer additives in absorption heat pumps. Proc of the Environment-Friendly Tech for the 21st Century, JAR, Tokyo,1991.
    [15]Del Cul W, et al. Experimental study of the effect of additives on mass transfer to an aqueous solution of lithium bromide. The National heat Transfer Conference, Minneapolis, MN-July 28-31, 1991.
    [16]Kim J S, Lee H, Yu S H. Absorption of water vapour into lithium bromide based solutions with additives using a simple stagnant pool absorber. Int J Refrig,1999,22:188-193.
    [17]Jung S H, et al. An experimental study of the effect of some additives on falling film absorption. International Absorption Heat Pump Conference ASME,1993:49.
    [18]Persson I A, Holmberg P A. Heat transfer by falling film desorption of concentrated LiBr aqueous solutions with surfactant octanol addition. Proc Int Absorption Heat Pump Conf New Orieans,LA,1994:57-63.
    [19]Jung S H, Sgambofi C, Perez-Blaneo H. An experimental study of the effect of some additives on falling film absorption. Proc Int. Absorption Heat Pump Conf New Orleans, LA (1994):49-55.
    [20]Kim K J, Berman N S, Wood B D. The interfacial turbulence in falling film absorption:the effect of additives. Int J Refrig,1996,19(5):322-330.
    [21]Hoffmann L, Greiter I, Wagner A et al. Experimental investigation of heat and mass transfer in a horizontal-tube falling-film absorber with aqueous solutions of LiBr with and without surfactants. Int J Refrig,1996,19(5):331-341.
    [22]Glebov D, Gustafsson M, Setterwall F. Marangoni instability analysis in LiBr/H2O-additive system for water vapor absorption. Chemistry and Computational Simulation. Butlerov Communications.2002,2(6):61-66.
    [23]Ji W, Setterwall F. Effects of surfactants on the stability of falling liquid films. Proc Int Absorption Heat Pump Conf New Orleans, LA,1994,33-40.
    [24]Beutler A, Greiter I, Wagner A, Hoffmann L, Schreier S, Alefeld G. Surfactants and fluid properties. Int J Refig,1996,19(5):342-346.
    [25]德鲁·迈尔斯著,吴大诚等译.表面、界面和胶体——原理及应用.北京:化学工业出版社,2004.
    [26]Kashiwagi T. The activity of surfactant in high-performance absorber and absorption enhancement. Report on Research and Survey of Heat Pump Technology. Japanese Assoc Refrig, Tokyo,1987:281-293.
    [27]Kashiwagi T. Basic mechanism of absorption heat and mass transfer enhancement by the Marangoni effect. Newsletter IEA Heat Pump Center,1988,6(4):2-6.
    [28]Hozawa M, Inoue M, Sao J et al. Marangoni convection during steam absorption into aqueous LiBr solution with surfactant. J Chem Eng Jpn,1991,24(2):209-214.
    [29]Kang Y T, Akisawa A, Kashiwagi T. Experimental Investigation of Marangoni Convection in Aqueous LiBr Solution With Additives. Trans JSME.1999,121:1088-1091.
    [30]Hihara E, Saito T. Effect of surfactant on falling film absorption. Int J Refrig,1993,16(5): 339-345.
    [31]Kulankara S, Verma S, Herold K E. Theory of heat/mass transfer additives in absorption chillers. Proceedings of IMECE:International Mechanical Engineering Conference and Exhibit. November 1999, Nashville TN.
    [32]Yuan Z, Herold K E. Surface tension of pure water and aqueous lithium bromide with 2-ethyl-hexanol. Appl Therm Eng,2001,21:881-897.
    [33]Kulankara S, Herold K E. Surface tension of aqueous lithium bromide with heat/mass transfer enhancement additives:the effect of additive vapor transport. Int J Refrig,2002,25:383-389.
    [34]高洪涛,飞原英治.气相界面活性剂对溴化锂水溶液吸收水蒸气的影响.工程热物理学报,2005,26(3):391-393.
    [35]高洪涛.添加剂不同气相添加方式对溴化锂水溶液吸收水蒸气的影响.工程热物理学报,2008,29(4):549-552.
    [36]程文龙,陈则韶.添加剂对LiBr溶液吸收蒸汽过程中的强化机理.化学物理学报,2004,17(2):179-185.
    [37]郎群英,申江,邹同华.表面活性剂对溴化锂吸收式制冷机吸收过程强化机理的研究概况.制冷与空调,2003,3(3):20-24.
    [38]Sheehan D S, Perez-Blanco H, Prescott P J. Investigation of additive effectiveness with infrared sensor and dynamic surface tension measurements. In:International Absorption Heat Pump Conference, Montreal,1996,1:75-82.
    [39]Rush W F. Field testing of additives Symp Absorption Air Conditioning, American Gas Association, Chicago, IL, February,1968.
    [40]Rush W F, Wurm J, Perez-Blanco H, Sheehan D S. On the uses and effects of additives for absorption enhancement. Munchen Discussion Meeting on Heat Transfer Enhancement by Additives Germany, October,1994.
    [41]程文龙,陈则韶,秋则淳,胡芃,柏木孝夫.添加剂对溴化锂溶液及水表面张力影响的理论和实验研究.中国科学E辑,2002,32(6),771-781.
    [42]周雪漪.计算水力学.北京:清华大学出版社,1995.
    [43]陶文铨.数值传热学(第二版).西安:西安交通大学出版社,2001.
    [44]郭鸿志.传输过程数值模拟.北京:冶金工业出版社,1998.
    [45]王福军编著.计算流体动力学分析——CFD软件原理与应用.北京:清华大学出版社,2004.
    [46]Koenig M S, Grossman G, Gommed K. Additive induced enhancement of heat and mass transfer in a static absorber:a numerical study. ISHPC'99, Proceeding of the International Sorption Heat Pump Conference, Germany, March:1999,359-365.
    [47]Koenig M S, Grossman G, Gommed K. The role of surfactant adsorption rate in heat and mass transfer enhancement in absorption heat pumps. Int J Refrig,2003,26:129-139.
    [48]Gustafsson M, Ternstrom G, Setterwall F. Surface tension of aqueous lithium bromide and sodium hydroxide solutions with surfactants. International absorption heat pump conference, Montreal,1996,1:61-65.
    [49]Daiguji H, Hihaha E, Saito T.Mechanism of absorption enhancement by surfactant. Int J Heat Mass Tran,1997,140(8):1743-1752.
    [50]Qiao R, Yuan Z, Herold, K E. Surface tension driven film flow due to condensation with a vapor borne surfactant. Proceedings of IMECE 2000, International Mechanical Engineering Congress & Exhibition, Orlando, Florida,2000:169-174.
    [51]刘静编著.微米/纳米尺度传热学.北京:科学出版社,2001.
    [52]Heyes D M. The liquid state-applications of molecular simulations. John Wiley & Sons,1998.
    [53]Shigeo M. Molecular Dynamics Method for Microscale Heat Transfer, Advances in Numerical Heat Transfer 2, Minkowycz W J, Sparrow E M, ed., Talor & Francis,2000(2):189-226.
    [54]Poulikakos D, Arcidiacono S, Maruyama S. Molecular dynamics simulation in nanoscale heat transfer:a review. Microscale Therm Eng,2003,7:181-206.
    [55]Alder B J, Wainwright T E. Phase transition of a hard sphere system. J Chem Phys,1957,27: 1208-1209.
    [56]Rahman A. Correlations in the motion of atoms in liquid argon. Phys Rev A,1964,136:A405.
    [57]Rao M, Levesque D. Surface structure of a liquid film. J Chem Phys,1976,65(8):3233-3236.
    [58]Nijmeijer M J P, Bakker A F, Bruin C, Sikkenk J H. A molecular dynamics simulation of the Lennard-Jones liquid-vapor interface. J Chem Phys,1988,89(6):3789-3792.
    [59]Matsumoto M, Kataoka Y. Study on liquid-vapor interface of water. Ⅰ. Simulational results of thermodynamic properties and orientational structure. J Chem Phys,1988,88(5):3233-3245.
    [60]Carravetta V, Clementi E. Water-water interaction potential:An approximation of the electron correlation contribution by a functional of the SCF density matrix. J Chem Phys,1984,81: 2646-2651.
    [61]Townsend R M, Rice S A. Molecular dynamics studies of the liquid-vapor interface of water. J Chem Phys,1991,94(3):2207-2218.
    [62]Townsend R M, Gryko J, Rice S A. Structure of the liquid-vapor interface of water. J Chem Phys,1985,82:4391-4392.
    [63]Alejandre J, Tildesley D J, Chapela G A. Molecular dynamics simulation of the orthobaric densities and surface tension of water. J Chem Phys,1995,102(11):4574-4583.
    [64]Taylor R S, Dang L X, Garrett B C. Molecular dynamics simulation of the liquid/vapor interface of SPC/E water. J Phys Chem,1996,100(28):11720-11725.
    [65]Dang L X, Chang T M. Molecular dynamics study of water clusters, liquid, and liquid-vapor interface of water with many-body potentials. J Chem Phys,1997,106(19):8149-8159.
    [66]Wang Z J, Chem M, Guo Z Y, Yang C. Molecular dynamics study on the liquid-vapor interfacial profiles. Fluid Phase Equilibr,2001,183-184:321-329.
    [67]Ismail A E, Grest G S, Stevens M J. Capillary wave at the liquid-vapor interface and the surface tension of water. J Chem Phys,2006,125:014702-1-014702-9.
    [68]Chen F, Smith P E. Simulated surface tensions of common water models. J Chem Phys,2007, 126:221101-1-221101-3.
    [69]刘朝,曾丹苓.汽液界面表面张力模拟中的影响因素.重庆大学学报(自然科学版),2002,25(4):76-78.
    [70]张新铭,刘朝,曾丹苓.汽液界面热毛细波的分子动力学模拟.工程热物理学报,2003,24(6):914-916.
    [71]吕勇军,魏炳波.过冷态水表面性质的分子动力学研究.中国科学G辑.2006,36(6):606-615.
    [72]李以圭,陆九芳著.电解质溶液理论.北京:清华大学出版社,2005.
    [73]Pettitt B M, Rossky P J. Alkali halides in water:Ion-solvent correlations and ion-ion potentials of mean force at infinite dilution. J Chem Phys,1986,84(10):5836-5844.
    [74]Wilson M A, Pohorille A. Interaction of monovalent ions with the water liquid-vapor interface: A molecular dynamics study. J Chem Phys,1991,95(8):6005-6013.
    [75]Chandrasekhar J, Spellmeyer D C, Jorgensen W L. Energy component analysis for dilute aqueous solutions of lithium(1+), sodium(1+), fluoride(1-), and chloride(1-) ions. J Am Chem Soc, 1987,106:903-910.
    [76]Benjamin I. Theoretical study of ion solvation at the water liquid-vapor interface. J Chem Phys, 1991,95(5):3698-3709.
    [77]Paul S, Chandra A. Dynamics of water molecules at liquid-vapor interfaces of aqueous ionic solutions:effects of ion concentration. Chem Phys Lett,2003,373:87-93.
    [78]Dang L X, Smith D E. Comment on "Mean force potential for the calcium-chloride ion pair in water". J Chem Phys,1995,102:3483-3784.
    [79]Bhatt D, Chee R, Newman J, Radke C J. Molecular simulation of the surface tension of simple aqueous electrolytes and the Gibbs adsorption equation. Curr Opin Colloid and In,2004,9:145-148.
    [80]Heinzinger K, Bopp P, Jancso G. Molecular-dynamics simulation of ionic hydration. Acta Chimica Hungarica,1985,121:27-53.
    [81]Bhatt D, Newman J, Radke C J. Molecular dynamics simulations of surface tensions of aqueous electrolytic solutions. J Phys Chem B,2004,108:9077-9084.
    [82]Jungwirth P, Tobias D J. Molecular structure of salt solutions:A new view of the interface with implications for heterogeneous atmospheric chemistry. J Phys Chem B,2001,105:10468-10472.
    [83]Dang L X, Chang T M. Molecular mechanism of ion binding to the liquid/vapor interface of water. J Phys Chem B,2002,106:235-238.
    [84]Dang L X. Computational study of ion binding to the liquid interface of water. J Phys Chem B, 2002,106:10388-10394.
    [85]Jungwirth P, Tobias D J. Ions at the air/water interface. J Phys Chem B,2002,106:6361-6373.
    [86]Salvador P, Curtis J E, Tobias D J, Jungwirth P. Polarizability of the nitrate anion and its solvation at the air/water interface. Phys Chem Chem Phys,2003,5:3752-3757.
    [87]Yang X, Kiran B, Wang X B, Wang LS, Mucha M, Jungwirth P. Solvation of the azide anion (N3-) in water clusters and aqueous interfaces:A combined investigation by photoelectron spectroscopy, density functional calculations, and molecular dynamics simulations. J Phys Chem A, 2004,108:7820-7826.
    [88]Vrbka L, Mucha M, Minofar B, Jungwirth P, Brown E C, Tobias D J. Propensity of soft ions for the air/water interface. Curr Opin Colloid In,2004,9:67-73.
    [89]Mucha M, Frigato T, Levering L M, Allen H C, Tobias D J, et al. Unified molecular picture of the surfaces of aqueous acid, base, and salt solutions. J Phys Chem B,2005,109:7617-7623.
    [90]Petersen P B, Saykally R J, Mucha M, Jungwirth P. Enhanced concentration of polarizable anions at the liquid water surface:SHG spectroscopy and MD simulations of sodium thiocyanate. J Phys Chem B,2005,109:10915-10921.
    [91]Tuma L, Jenicek D, Jungwirth P. Propensity of heavier halides for the water/vapor interface revisited using the Amoeba force field. Chem Phys Lett,2005,411:70-74.
    [92]Petersen P B, Saykally R J. On the nature of ions at the liquid water surface. Annu Rev Phys Chem,2006,57:333-364.
    [93]Ciccotti G, Frenkel D, McDonald I R. Simulations of liquids and solids. Molecular Dynamics and Monte Carlo methods in statistical mechanics. North Holland, Netherlands,1987.
    [94]Frenkel D, Smit B. Understanding molecular simulation. From algorithms to applications. Academic Press, London,1996.
    [95]Tarek M, Bandyopadhyay S, Klein M L. Molecular dynamics studies of aqueous surfactants systems. J Mol Liq,1998,78:1-6.
    [96]Li Z X, Lu J R, Styrkas D A, Thomas R K, Rennie A R, Penfold J. The structure of the surface of ethanol/water mixtures. Mol Phys,1993,80(4):925-939.
    [97]Tarek M, Tobias D J, Klein M L. Molecular dynamics investigation of the surface/bulk equilibrium in an ethanol-water solution. J Chem Soc Faraday Trans,1996,92(4):559-563.
    [98]Matsumoto M, Takaoka Y, Kataoka Y. Liquid-vapor interface of water-methanol mixture. I. Computer simulation. J Chem Phys,98(2):1464-1472.
    [99]Ferrario M, Haughney M, McDonald I R, Klein M L. Molecular-dynamics simulation of aqueous mixtures:methanol, acetone, and ammonia. J Chem Phys,1990,93:5156-5166.
    [100]Laaksonen A, Kusalik P G, Svishchev I M. Three-Dimensional Structure in Water-Methanol Mixtures. J Phys Chem A,1997,101:5910-5918.
    [101]Chang T M, Dang L X. Liquid-vapor interface of methanol-water mixtures:a molecular dynamics study. J Phys Chem B,2005,109:5759-5765.
    [102]Dang L X, Chang T M. Many-body interactions in liquid methanol and its liquid/vapor interface:a molecular dynamics study. J Chem Phys,119(18):9851-9857.
    [103]Taylor R S, Garrett B C. Accommodation of alcohols by the liquid/vapor interface of water: molecular dynamics study. J Phys Chem B,1999,103:844-851.
    [104]Taylor R S, Shields R L. Molecular-dynamics simulation of the ethanol liquid-vapor interface. J Chem Phys,119(23):12569-12576.
    [105]Jorgensen W L. Optimized intermolecular potential functions for liquid alcohols. J Phys Chem, 1986,90 (7):1276-1284.
    [106]Jorgensen W L, Maxwell D S, Tirado-Rives J. Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids. J Am Chem Soc,1996,118 (45):11225-11236.
    [107]Canneaux S, Soetens J C, Henon E, Bohr F. Accommodation of ethanol, acetone and benzaldehyde by the liquid-vapor interface of water:a molecular dynamics study. Chem Phys,2006, 327(2-3):512-517.
    [108]Kikugawa G, Takagi S, Matsumoto Y. A novel definition of the local and instantaneous liquid-vapor interface. Balachandar S, Prosperetti A. Proceedings of the IUTAM Symposium on Computational Multiphase Flow,2006:131-140, Springer. Printed in the Netherlands.
    [109]Kikugawa G, Takagi S, Matsumoto Y. A molecular dynamics study on liquid-vapor interface adsorbed by impurities. Comput Fluids,2007,36:69-76.
    [110]Wilson M A, Pohorille A. Adsorption and salvation of ethanol at the water liquid-vapor interface:a molecular dynamics study. J Phys Chem B,1997,101:3130-3135.
    [111]Morita A. Molecular dynamics study of mass accommodation of methanol at liquid-vapor interfaces of methanol/water binary solutions of various concentrations. Chem Phys Lett,2003,375: 1-8.
    [112]Daiguji H., Molecular dynamics study of n-alcohols adsorbed on an aqueous electrolyte solution, J Chem Phys,2001,115(4):1538-1549.
    [113]Daiguji H., Molecular dynamics study of n-alcohols adsorbed on water, Microscale Therm Eng,2002,6:223-234.
    [114]Daiguji H, Hihara E. Molecular dynamics study of water vapor absorption into an aqueous electrolyte solution. Microscale Therm Eng,1999,3:151-165.
    [115]Daiguji H, Hihara E. Molecular dynamics study of the liquid-vapor interface of lithium bromide aqueous solutions. Heat Mass Transfer,1999,35(3):213-219.
    [116]Krisch M J, D'Auria R, Brown M A, Tobias D J, Hemminger J C. The effect of an organic surfactant on the liquid-vapor interface of an electrolyte solution. J Phys Chem C,2007,111: 13497-13509.
    [117]Case D A, Darden T A, Cheatham T E, Ⅲ, Simmerling C L, Wang J, Duke R E, Luo R, Merz K M, Wang B, Pearlman D A, Crowley M, Brozell S, Tsui V, Gohlke H, Mongan J, Hornak V, Cui G, Beroza P, Schafmeister C, Caldwell J W, Ross W S, Kollman P A. AMBER 8. University of California:San Francisco, CA,2004.
    [118]Caldwell J W, Kollman P A. Structure and Properties of Neat Liquids Using Nonadditive Molecular Dynamics:Water, Methanol, and N-Methylacetamide. J Phys Chem,1995,99(16): 6208-6219.
    [119]Cornell W D, Cieplak P, Bayly C I, Gould I R, Merz K M, Ferguson D M, Spellmeyer D C, Fox T, Caldwell J W, Kollman P A. A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules. J Am Chem Soc,1995,117(19):5179-5197.
    [120]Gilde A, Siladke N, Lawrence C P. Molecular dynamics simulations of water transport through butanol films. J Phys Chem A,2009,113:8586-8590.
    [121]Hess B, Kutzner C, Spoel D, et al. GROMACS 4:Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput,2008,4(3):435-447.
    [122](德)赫尔曼(D.W.Heermann)著,秦克诚译.理论物理学中的计算机模拟方法.北京:北京大学出版社,1996.
    [123]叶德泳.计算机辅助药物设计导论.化学工业出版社,北京,2004.
    [124]Rahman A, Stillinger F H. Molecular dynamics of liquid water. J Chem Phys,1971,55(7): 3336-3359.
    [125]徐筱杰,侯廷军,乔学斌,章威.计算机辅助药物分子设计.化学工业出版社,北京,2004.
    [126]Verlet L. Computer'experiments'on classical fluids. I. thermodynamical properties of Lennard-Jones molecules. Phys Rev,1967,159(1):98-103.
    [127]Gear C W. Numerical initial value problems in ordinary differential equations. Prentice-Hall, Englewood Cliffs,1971.
    [128]Evans D J, Murad S. Singularity mechanics of nonequilibrium liquid. Academic Press,1977.
    [129]Ciccotti G, Ferrario M. Ryckaert J P. Molecular dynamics of rigid systems in Cartesian coordinates. A general formulation. Mol Phys,1982,47:1253-1264.
    [130]Nose S, Klein M L. Constant pressure molecular dynamics for molecular systems. Mol Phys, 1983,50(5):1055-1076.
    [131]Eastwood J W, Kockney R W, Lawrence D. P3M3DP-the three-dimensional periodic particle-particle/particle-mesh program. Comput Phys Commun,1980,19(2):215-261.
    [132]Allen M P, Tildesley D J. Computer simulation of liquids, Clarendon Press, Oxford,1997.
    [133]Haile J M. Molecular dynamics simulation:elementary methods, Wiley, New York,1992.
    [134]Leach A R. Molecular modelling principles and applications. Prentice Hall,2nd edition,2001.
    [135]Frenkel, Smit.弗兰克等著,汪文川等译.分子模拟:从算法到应用.北京:化学工业出版社,2002.09.
    [136]Rapaport D C. The art of molecular dynamics simulation. Cambridge University Press,2nd edition,2004.
    [137]陈正隆,徐为人,汤立达.分子模拟的理论与实践.北京:化学工业出版社,2007.
    [138]Hotokka M. Molecular dynamics simulations. Report, Department of Physical Chemistry, Abo Akademi University,2002.
    [139]高执棣,郭国霖.统计热力学导论.北京:北京大学出版社,2004.
    [140]Hockney R W, Goel S P, Eastwood J. Quiet high-resolution computer models of a plasma. J Comput Phys,1974,14:148-158.
    [141]Edberg R, Evans D J, Morriss G P. Constrained Molecular-Dynamics Simulations of Liquid Alkanes with a New Algorithm. J Chem Phys,1986,84:6933-6939.
    [142]Baranyai A, Evans D J. New Algorithm for Constrained Molecular-Dynamics Simulation of Liquid Benzene and Naphthalene. Mol Phys,1990,70:53-63.
    [143]Hess B, Bekker H, Berendsen H J C, Fraaije J G E M. LINCS:A Linear Constraint Solver for Molecular Simulations. J Comput Chem,1997,18:1463-1472.
    [144]Ryckaert J P, Ciccotti G, Berendsen H J C. Numerical Integration of the Cartesian Equations of Motion of a System with Constraints:Molecular Dynamics of n-Alkanes. J Comput Phys,1977, 23:327-341.
    [145]Miyamoto S, Kollman P A. SETTLE:An Analytical Version of the SHAKE and RATTLE Algorithm for Rigid Water Models. J Comput Chem,1992,13:952-962.
    [146]Berendsen H J C, Postma J P M, DiNola A, Haak J R. Molecular dynamics with coupling to an external bath. J Chem Phys,1984,81:3684-3690.
    [147]Nose S. A molecular dynamics method for simulations in the canonical ensemble. Mol Phys, 1984,52:255-268.
    [148]Hoover W G. Canonical dynamics:equilibrium phase-space distributions. Phys Rev A,1985, 31:1695-1697.
    [149]Parrinello M, Rahman A. Polymorphic transitions in single crystals:A new molecular dynamics method. J Appl Phys,1981,52:7182-7190.
    [150]Nose S, Klein M L. Constant pressure molecular dynamics for molecular systems. Mol Phys, 1983,50:1055-1076.
    [151]Berendsen H J C, Grigera J R, Straatsma T P T. The missing term in effective pair potentials. J Phy Chem,1987,91(24):6269-6271.
    [152]Aqvist J. Ion-water interaction potentials derived from free energy perturbation simulations. J Phys Chem,1990,94:8021-8024.
    [153]Lybrand T P, Ghosh I, McCammon J A. Hydration of chloride and bromide anions: determination of relative free energy by computer simulation. J Am Chem Soc,1985,107 (25): 7793-7794.
    [154]Jorgensen W L, Maxwell D S, Tirado-Rives J. Development and testing of the OPLS All-Atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc, 1996,118:11225-11236.
    [155]Damm W, Frontera A, Tirado-Rives J, Jorgensen W L. OPLS All-Atom force field for carbohydrates. J Comput Chem,1997,18(16):1955-1970.
    [156]McDonald N A, Jorgensen W L. Development of an All-Atom force field for heterocycles. properties of liquid pyrrole, Furan, Diazoles, and Oxazoles. J Phys Chem B,1998,102:8049-8059.
    [157]Rizzo R C, Jorgensen W L. OPLS all-atom model for amines:resolution of the Amine hydration problem. J Am Chem Soc,1999,121:4827-4836.
    [158]Watkins E K, Jorgensen W L. Perfluoroalkanes:conformational analysis and liquid-state properties from ab initio and monte carlo calculations. J Phys Chem A,2001,105:4118-4125.
    [159]Price M L P, Ostrovsky D, Jorgensen W L. Gas-phase and liquid-state properties of esters, nitriles, and nitro compounds with the OPLS-AA force field. J Comput Chem,2001,22(13): 1340-1352.
    [160]Humphrey W, Dalke A, Schulten K. VMD-visual molecular dynamics. J Mol Graph,1996, 14(1):33-38.
    [161]Van der Waals J D. On the continuity of the gaseous and liquid states. Studies in Statistical Mechanics,1988,14, North Holland, Amsterdam.
    [162]Harris J G. Liquid-vapor interfaces of alkane oligomers:structure and thermodynamics from molecular dynamics simulations of chemically realistic models. J Phys Chem,1992,96 (12): 5077-5086.
    [163]Chen B, Siepmann J I, Klein M L. Vapor-liquid interfacial properties of mutually saturated water/1-butanol solutions. J Am Chem Soc,2002,124:12232-12237.
    [164]Tolman R C. Consideration of the Gibbs Theory of Surface Tension. J Chem Phys,1948,16: 758-774.
    [165]Kirkwood J G, Buff F P. The statistical mechanical theory of surface tension. J Chem Phys, 1949,17(3):338-343.
    [166]Darden T, York D, Pedersen L. Particle mesh Ewald:An N-log(N) method for Ewald sums in large systems. J Chem Phys,1993,98:10089-10092.
    [167]Essmann U, Perera L, Berkowitz M L, Darden T, Lee H, Pedersen L G. A smooth particle mesh ewald potential. J Chem Phys,1995,103:8577-8592.
    [168]Braslau A, Pershan P S, Swislow G, Ocko B M, Als-Nielsen J. Capillary waves on the surface of simple liquids measured by x-ray reflectivity. Phys Rev A,1988,38(5):2457-2470.
    [169]Chang T M, Peterson K A, Dang L X. Molecular dynamics simulations of liquid, interface, and ionic salvation of polarizable carbon tetrachloride. J Chem Phys,1995,103(17):7502-7513.
    [170]Geiger A, Stillinger F H, Rahman A. Aspects of the percolation process for hydrogen-bond networks in water. J Chem Phys,1979,70(9):4185-4193.
    [171]Matsumoto M, Ohmine I. A new approach to the dynamics of hydrogen bond network in liquid water. J Chem Phys,1996,104:2705-2712.
    [172]Marti J, Padro J A, Guardia E. Molecular dynamics simulation of liquid water along the coexistence curve:Hydrogen bonds and vibrational spectra, J Chem Phys,1996,105 (2):639-649.
    [173]Guardia E, Marti J, Garcia-Tarres L, Laria D. A molecular dynamics simulation study of hydrogen bonding in aqueous ionic solutions. J Mol Liq,2005,117:63-67.
    [174]Luzar A, Chandler D. Structure and hydrogen bond dynamics of water-dimethyl sulfoxide mixtures by computer simulations. J Chem Phys,1993,98 (10):8160-8173.
    [175]Jardon-Valadez E, Costas M E. Solvation properties of a polarizable water model in a NaCl solution:Monte Carlo isothermal-isobaric ensamble simulations. J Mol Struc-Theochem,2004(677): 227-236.
    [176]Lee S H, Rasaiah J C. Molecular dynamics simulation of ionic mobility. I. Alkali metal cations in water at 25℃. J Chem Phys,1994,101(8):6964-6974.
    [177]周健,陆小华,王延如,时钧.离子水化的分子动力学模拟.化工学报,2000,51(2):143-149.
    [178]Guardia E, Laria D, Marti J. Reorientational dynamics of water in aqueous ionic solutions at supercritical conditions:A computer simulation study. J Mol Liq,2006,125:107-114.
    [179]Prtay L, Jedlovszky P, Vincze r, Horvai G. Structure of the liquid-vapor interface of water-methanol mixtures as seen from Monte Carlo simulations. J Phys Chem B,2005,109(43): 20493-20503.
    [180]Yao W, Bjurstrom H, Setterwall F. Surface tension of lithium bromide solutions with heat-transfer additives. J Chem Eng Data,1991,36:96-98.
    [181]Weast R C, Astle M J. CRC Handbook of Physics and Chemistry,63rd Edition, CRC Press, Boca Raton, Florida,1982.
    [182]闵爱琳,董长璎,严俊,任劲.表面张力与温度关系的探讨.大学物理实验,1999,12(2):21-22.
    [183]Rivera J L, Starr F W, Paricaud P, Cummings P T. Polarizable contributions to the surface tension of liquid water. J Chem Phys,2006,125(9):094712-1-094712-8.
    [184]Levin Y, Flores-Mena J E. Surface tension of strong electrolytes. Europhys Lett,2001,56(2): 187-192.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700