动态海面及其上目标复合电磁散射与多普勒谱研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
关于动态海环境下微波高频段雷达回波特性的研究一直是业界重点关注的热点之一。尤其当海环境中存在船类等复杂运动目标时,该研究课题成为一项十分复杂且极具挑战性的工作,主要表现在以下几个方面:其一,海浪因其运动方式复杂多变,仅针对时变海面电磁散射特性的研究就已经包含众多难点,如海浪的非线性运动、二维海浪时变运动所带来的巨大计算负担、电磁波与海浪的复杂作用方式等等。尤其在微波高频段下,目前仍然没有一种十分有效的海杂波模型及时变特性分析模型;其二,海面上目标(主要指船类目标)往往具有超大电尺寸和复杂精细的结构,使得船类目标电磁散射的快速计算同样也是计算电磁学领域的难点;其三,船类目标同海面之间的电磁耦合十分复杂,加之时变海面与目标的水动力相互作用使得目标在海面上的姿态不断随时间变化,从而使问题变得更加复杂。
     本论文系统地研究了微波高频段下海面电磁散射及其与电大尺寸目标复合散射问题,建立了时变海面散射模型和时变海面及其上方运动目标复合散射模型,分析了海面回波及海上目标回波的幅度均值变化规律及其多普勒谱特性。论文工作主要从以下几个方面展开:
     1.基于散射贡献面元化思想,提出了“半确定性面元散射模型”,适合快速计算任意单双站角、不同海况条件下的海面电磁散射系数的空间分布及均值水平,同时,结合该模型实现了二维海面合成孔径雷达(SAR)成像快速模拟。
     2.基于电磁波与海浪的布拉格谐振基本散射机理,提出了毛细波的简化表示方法。利用该简化表示处理传统微扰解积分核的指数项,推导出任意倾斜微粗糙小面元复反射函数的解析近似表达式,并在小面元模型物理描述的基础上,建立了同时包含回波幅度和相位信息的二维海面复反射函数快速预估模型,即“毛细波相位修正面元散射模型(CWMFSM)”。本文基于具有可观计算效率的CWMFSM模型,实现了X波段下二维时变海面确定性样本的多普勒谱模拟和分析。
     3.在详细讨论了传统多路径及修正多路径复合散射分析模型的基础上,提出了一种基于粗糙表面镜像反射单元空间分布加权镜像路径耦合贡献的思路,并建立了适合计算电大目标及其下方确定性粗糙面复合散射特性的快速预估模型。这种加权多路径模型相对于传统多路径方法更加合理地处理了目标下方粗糙面镜像反射单元斜率缓变对耦合散射的影响,从而更加适合快速计算不同时刻下具有确定性高度分布特性的粗糙海面及其上目标的时变复合散射问题。
     4.采用六自由度船舶随浪运动模型研究了系列60船模的随浪运动特征,并在此基础上结合毛细波相位修正面元散射模型、加权多路径复合散射模型建立了“全动态”船海复合环境下微波高频段雷达回波快速预估模型。充分讨论了海上船类目标摇荡及平行运动对复合场景雷达回波幅度时变特性及多普勒谱特性的影响。
The study on the characteristic of radar returns at higher microwave frequenciesfrom the time-evolving maritime scene has always been one of the topics that attract themost attention in the community. The problem will be much more complex andchallenging especially for the composite maritime scene contaminated by a movingship-like target. It mainly displays in three aspects. First, the motion of sea wavesalways has a certain amount of randomness and polytropy, which makes the predictionon the scattering from time-evolving sea a very difficult task. The major difficulties arethe computational burden arises from the numerical simulation on the nonlinear ortwo-dimensional time-evolving sea waves, and the complex interactions between theelectromagnetic waves and sea waves. At higher microwave frequencies, the problem isstill beyond a sufficient solution and comprehensive explanation. Second, the target(mainly the ship-like target) on the sea surface is always with super large electrical sizeand has many refined structures, which also bring great challenge on the fast calculationon the target scattering. Third, the coupling interaction between the scattering wavesfrom the target and sea surface is also very complicated. Besides, the ship motion inseaway makes the posture of target continuously change with time. Under thecircumstances, the problem becomes much more awkward.
     This dissertation presents the research of the electromagnetic scattering from thesea surface and the composite scattering from the electrically large moving ship-liketargets at sea surface, which is with emphasis on the characteristic analysis of Dopplerspectra and mean levels of the radar echo at higher microwave frequencies. The mainworks are as follows:
     1. Based on the facetized treatment of the scattering contribution, the“Semi-deterministic facet scattering model, SDFSM” is developed to implement the fastprediction on the spatial distributions and mean levels of the electromagnetic scatteringfrom sea surface for arbitrary bistatic configurations and various sea states. Meanwhile,the model is used to further simulations on the synthetic aperture radar (SAR) imageryof two-dimensional sea scene.
     2. The capillary waves that detected by radar is represented by a simplified waveaccording to the Bragg resonant mechanism, which is the main term of the interactionbetween the electromagnetic waves and sea surface. The simplifications above allow usto derive a simple asymptotic expression of the integration in the Fuks’ formula, whichfacilitates the development of a compact asymptotic representation of the instantaneous complex reflective function of a deterministic two-dimensional sea profile. Theproposed model is named the “capillary wave modification facet scattering model,CWMFSM”, which is then employed for the fast calculation on the scattering andDoppler of two-dimensional sea surface at higher microwave frequencies (X Band).
     3. After a careful examination on the traditional multi-path model and the modifiedmulti-path model, the author propose a new approach for dealing with the couplingscattering interaction according to the distribution characteristic of thespecular-reflection scattering elements on the deterministic rough profiles. A so-called“Weighted multi-path model, WMPM” is developed based on the calculation of themulti-path coupling scattering contributions that weighted by the probabilitydistribution function of the specular-reflection scattering elements. In comparison withthe aforementioned two models, the proposed WMPM treats the statistical affect of thedeterministic surface model to the coupling scattering in a more reasonable term. Thus,the WMPM is more suitable for the calculation of the composite scattering from a targetat a deterministic rough sea surface.
     4. With the long term goal of fast prediction on the electromagnetic compositescattering from the moving ship-like target at a time-evolving sea surface, the authorfirstly examine the characteristics of the sea-keeping motions of a Series-60ship model,then combine the CWMFSM and the WMFM to develop an efficient simulator of theradar return signals from the “fully dynamic” ship-sea scene at higher microwavefrequencies. The simulator allows us qualitative analysis on the influence of thetranslation and rotation motions of ship-like target to the composite scattering andDoppler spectra.
引文
[1]中华人民共和国国土资源部.2008年国土资源公报. http://www.mlr.gov.cn/wszb/2009/20090331bzzbhxdzzk/beijingziliao/200903/t20090331687345.htm.2009.
    [2]冯士筰,李凤岐,李少菁.海洋科学导论.北京:高等教育出版社,1999.
    [3]中华人民共和国海洋局.“908专项”会议. http://www.soa.gov.cn/soa/news/importantnews/webinfo/2012/02/1330304734229611.htm.2012.
    [4]陈春林,顾昌贤.陆地和海洋的雷达反射特性.北京:国防工业出版社,1983.
    [5]焦培南,张忠治.雷达环境与电波传播特性.北京:电子工业出版社,2007.
    [6]丰鉴章,李元智,孙书敏等.海岸工程中的海浪推算方法.北京:海洋出版社,1987.
    [7] C. T. Pozzer, S. Roberto and N. M. Pellerger. Procedural solid-space techniques for modelingand animating waves. Computer and Graphics,2002,26(6):877-885.
    [8] C. Johanson. Real-time water rendering. Sweden: Department of Computer Science, LundUniversity,2004.
    [9] P. Y. Ts’O and B. A. Barsky. Modeling and rendering waves: wave-tracing using beta-splinesand reflective and refractive texture mapping. Journal ACM Trans. on Graphics,1987,6(3):191-214.
    [10] S. Jeschke, H. Birkholz and H. Schmann. A procedural model for interactive animation ofbreaking ocean waves. WSCG’2003. Germany: Union Agency-science Press,2003.
    [11] W. T. Reeves. Particle system: A technique for modeling a class of fuzzy objects. ComputerGraphics,1983,17(3):359-376.
    [12] R. Wcislo, J. Kitowski and J. Moscinski. Cellular automation as a fast tool for animation ofliquid in multi-object scenes.6thInternational Conference in Central Europe on ComputerGraphics and Visualization, Germany, Prinston Hall,1998,417-423.
    [13] J. X. Chen and N. V. Lobo. Toward interactive-rate simulation of fluids with movingobstacles using Navier-Stokes equations. Graph Models and Image Process,1995,57(2):107-116.
    [14] M. Kass and G. R. Miller, Stable fluid dynamics for computer graphics. Proc. Of ACMSIGGRAPH Symposium on Computer Graphics,1999,49-55.
    [15] N. Foster. Realistic animation of liquids. Graphical Models and Image Processing,1996,58(5):471-483.
    [16] S. Joung and J. Shelton.3Dimensional ocean wave model using directional wave spectra forlimited capacity computers. IEEE OCEANS '91.'Ocean Technologies and Opportunities inthe Pacific for the90's Proceedings.1991,1:608-614.
    [17] H. He, et al. A way to real time ocean wave simulation. IEEE Proceeding on ComputerGraphics, Imaging and Vision: New Trends,2005:409-415.
    [18] J. Tessendorf. Simulating ocean water. Simulating Nature: Realistic and InteractiveTechniques, ACM SIGGRAPH2001Course Notes,47,2001.
    [19] G. A. Mastin, P. A. Watterger and J. F. Mareda. Fourier Synthesis of Ocean Scenes. IEEECG&A,1987,16-23.
    [20] D. B. Creamer, et al. Improved linear representation of ocean surface waves. J. Fluid Mech.,1989,205:135-161.
    [21] J. T. Johnson, J. V. Toporkov and G. S. Brown. A Numerical Study of Backscattering FromTime-Evolving Sea Surfaces: Comparison of Hydrodynamic Models. IEEE Trans. Geosci.Remote Sens.,2001,39(11):2411-2420.
    [22] J. V. Toporkov and G. S. Brown. Numerical simulations of scattering from time-varying,randomly rough surfaces. IEEE Trans. Geosci. Remote Sens.,2000,38(4):1616-1625.
    [23] G. Soriano, M. Joelson and M. Saillard. Doppler spectra from a two-dimensional oceansurface at L-Band. IEEE Trans. Geosci. Remote Sens.,2006,39(11):2411-2420.
    [24] K. M. Watson and B. J. West. A transport equation description of nonlinear ocean surfacewave interactions. J. Fluid Mech.,1975,70:815-826.
    [25] A. R. Hayslip, J. T. Johnson and G. R. Baker. Further numerical studies of backscatteringfrom time-evolving nonlinear sea surfaces. IEEE Trans. Geosci. Remote Sens.,2006,41(10):2287-2293.
    [26] A. Fournier and W. T. Reeves. A simple model of ocean waves. Computer Graphics,1986,20(4):75-84.
    [27] F. Nouguier, et al.“Choppy wave” model for nonlinear gravity waves. J. Geophys. Res.,2009,114(C09012):1-16.
    [28] B. B. Mandelbrot. The fractal geometry of nature. San Francisco: Freeman,1982.
    [29] G. Franceschetti. Scattering from natural rough surfaces modeled by fractional Brownianmotion two-dimensional processes. IEEE Trans. Antennas Propag.,1999,47(9):1405-1415.
    [30] P. Flandrin. On the spectrum of fractional Brownian motions. IEEE Trans. Inform. Theory,1989,35(1):197-199.
    [31] D. L. Jaggard and Y. Kim. Diffraction by band-limited fractal screens. J. Opt. Soc. Am. A,1987,4(6):1055-1062.
    [32] D. L. Jaggard and X. Sun. Scattering from fractally corrugated surfaces. J. Opt. Soc. Am. A,1990,7(6):1131-1139.
    [33] J. Chen, T. K. Y. Lo and H. Leung. The use of fractals for modeling EM waves scatteringfrom rough sea surface. IEEE Trans. Geosci. Remote Sens.,1996,34(4):966-972.
    [34]鄢来斌,李思昆,张秀山.虚拟海战场景中的海浪实时建模与绘制技术研究.计算机研究与发展,2001,38(5):568-573
    [35]陈前华,邓建松,陈发来.滴水涟漪的计算机动画模拟.计算机研究与发展,2001,38(5):524-528
    [36]杨怀平,孙家广.基于海浪谱的波浪模拟.系统仿真学报,2002,14(9):1175-1178.
    [37]李广鑫等.一种面向虚拟环境的真实感水波面建模算法.计算机研究与发展,2004,41(9):1580-1585.
    [38]郭立新,吴振森.二维导体粗糙面电磁散射的分形特征研究.物理学报.2000,6,49(6):1064-1069
    [39] L.-X. Guo, L.-C. Jiao and Z.-S. Wu. Electromagnetic Scattering from Two-DimensionalRough Surface Using the Kirchhoff Approximation, Chin. Phys. Lett.2001,1,18(1):214-216.
    [40] Y.-Q. Jin, Z.-X. Li. Bistatic scattering and transmitting through a fractal rough dielectricsurface using the forward and backward method with spectrum acceleration algorithm. J.Electro. Wave Appl.,2002,16(4):551-572.
    [41]文圣常,余宙文.海浪理论与计算原理.北京:科学出版社,1984.
    [42]徐德伦,于定勇.随机海浪理论.北京:高等教育出版社,2001.
    [43]袁业立,华锋,潘增弟,孙乐涛. LAGFD-WAM海浪数值模式——I.基本物理模型.海洋学报,1992,14(5):1-7.
    [44]袁业立,潘增弟,华锋,孙乐涛. LAGFD-WAM海浪数值模式——II.区域性特征线嵌入格式及其应用.海洋学报,1992,14(6):12-24.
    [45]杨永增,乔方利,赵伟,滕涌,袁业立.球坐标系下MASNUM海浪数值模式的建立及其应用.海洋学报,2005,27(2):1-7.
    [46] P. Beckmann and A. Spizzichino. The Scattering of electromagnetic waves from roughsurfaces. New York: Pergamon,1963.
    [47] F. G. Bass and I. M. Fuks. Wave Seattering from Statistcally Rough Surfaces. Oxford:Pergamon,1979.
    [48] A. K. Fung. Microwave scattering and emission models and their applications. London:Artech House,1994.
    [49] A. Ishimaru. Wave propagation and scattering in random media. Wiley-IEEE Press,1999.
    [50] J. A. Ogilvy. Theory of Wave Scattering From Random Rough Surfaces. Bristol: institute ofphysics Publishing,1991.
    [51] E. Bahar. Full-wave solutions for the depolarization of the scattered radiation fields by roughsurfaces of arbitrary slope. IEEE Trans. Antennas Propag.,1981,29(3):443-454.
    [52] S. L. Broschat, et al. A numerical comparison of the phase perturbation technique with theclassical field perturbation and Kirchhoff approximation for random rough surface scattering.J. Electromagn. Waves Appl.,1988,2:119-36.
    [53] A. K. Fung, Z. Li and K. S. Chen. An improved IEM model for bistatic scattering from roughsurfaces, J. Electromagn. Waves Appl.,2002,16:689–702.
    [54] C. A. Guérin, G. Soriano and T. Elfouhaily. Weighted curvature approximation: numericaltests on2D dielectric surfaces. Waves Random Media,2004,14:349–363.
    [55] A. G. Voronovich. Wave Scattering from Rough Surfaces (Springer Series on WavePhenomena). Berlin: Springer,1994.
    [56] T. Elfouhaily and C. A. Guérin. A critical survey of approximate scattering wave theoriesfrom random rough surfaces. Waves in Random and Complex Media,2004,14: R1-R40.
    [57] E. I. Thorsos. The validity of the Kirchhoff approximation for rough surface scattering usinga Gaussian roughness spectrum. J. Acoust. Soc. Am.,1988,83(1):78-92.
    [58] D. E. Barrick. Rough surface scattering based on the specular point theory. IEEE Trans.Antennas Propag.,1968,16(4):449-454.
    [59] V. Hesany, W. J. Plant and W. C. Keller. The normalized radar cross section of the sea at100incidence. IEEE Trans. Geosci. Remote Sens.,2000,38(1):64-72.
    [60] F. C. Jackson, et al. Sea surface mean square slope from Ku-band backscatter data. J.Geophys. Res.,1992,97(C7):11411-11427.
    [61] A. Ishimaru and J. S. Chen. Scattering from very rough metallic and dielectric surfaces: atheory based on the modified Kirchhoff approximation. Waves in Random Media,1991,1(1):21-34.
    [62] J. V. Toporkov and G. S. Brown. Numerical study of the extended Kirchhoff approach and thelowest order small slope approximation for scattering from ocean-like surfaces: Doppleranalysis. IEEE Trans. Geosci. Remote Sens.,2002,50(4):417-425.
    [63] S. O. Rice. Reflection of electromagnetic waves from slightly rough surfaces. Commun. PureAppl. Math.,1951,4:351-78.
    [64] G. S. Agarwal. Interaction of electromagnetic waves at rough dielectric surfaces. Phys. Rev.B,1977,15:2371-2383.
    [65] I. M. Fuks, and A. G. Voronovich. Wave diffraction by rough interfaces in an arbitraryplane-layered medium. Wave in Random Media,2000,10(2):253-272.
    [66] I. M. Fuks. Wave diffraction by a rough boundary of an arbitrary plane-layered medium.IEEE Trans. Antennas Propagat.,2001,49(4):630-639.
    [67] J. T. Johnson. Third order small perturbation method for scattering from dielectric roughsurfaces. J. Opt. Soc. Am.,1999,16:2720–2726.
    [68] M. A. Demir and J. T. Johnson. Fourth-and higher-order small-perturbation solution forscattering from dielectric rough surfaces. J. Opt. Soc. Am.,2003,20:2330–2337.
    [69] D. E. Barrick. First-order theory and analysis of MF/HF/VHF scatter from the sea. IEEETrans. Antennas Propag.,1972,20(1):2-10.
    [70] D. E. Barrick and J. B. Snider. The statistics of HF sesa-echo Doppler spectra. IEEE Trans.Antennas Propag.,1977,25(1):19-28.
    [71] J. W. Wright. A New Model for Sea Clutter. IEEE Trans. Antennas Propag.,1968,16:217-223.
    [72] F. G. Bass, et al. Very High Frequency Radiowave Scattering by a Disturbed Sea Surface-PartI: Scattering from a slightly disturbed boundary. IEEE Trans. Antennas Propag.,1968,16(5):554-559.
    [73] F. G. Bass, et al. Very High Frequency Radiowave Scattering by a Disturbed Sea Surface-PartII: Scattering from an actual sea surface. IEEE Trans. Antennas Propag.,1968,16(5):560-568.
    [74] G. R. Valenzuela. Theories for the interaction of electromagnetic and oceanic waves-a review.Boundary Layer Meteorol.,1978,31:61-65.
    [75] A. K. Fung and K. K. Lee. A Semi-Eempirical Sea-Spectrum Model for scattering coefficientestimation. IEEE Journal of Oceanic Engineering,1982,7(4):166-176.
    [76] G. S. Brown. Backscattering from a Gaussian-distributed perfectly conduction rough surface.IEEE Trans. Antennas Propag.,1978,26(3):472-482.
    [77] K. Hasselmann, et al. Theory of synthetic aperture radar ocean imaging: a MARSEN view. J.Geophys. Res.,1985,90(C3):4659-4686.
    [78] G. Soriano and C. A. Guérin. A cutoff invariant two-scale model in electromagnetic scatteringfrom sea surfaces. IEEE Geoscience and remote sensing letters,2008,5(2):199-203.
    [79] W. J. Plant, et al. Normalized radar cross section of the sea for backscatter:1. Mean levels. J.Geophys. Res.,2010,115(C09032):1-11.
    [80] R. Romeiser, A. Schmidt, and W. Alpers. A three-scale composite surface model for theocean wave-radar modulation transfer function. J. Geophys. Res.,1994,99(C5):9785–9801.
    [81] W. J. Plant. A stochastic, multiscale model of microwave backscatter from the ocean. J.Geophys. Res.,2002,107(C9):1-21.
    [82] E. J. Walsh, et al. Visual demonstration of three scales sea-surface roughness under lightwind conditions. IEEE Trans. Geosci. Remote Sens.,2005,43(8):1751-1762.
    [83] A. G. Voronovich. Small-slope approximation in wave scattering from rough surfaces. Sov.Phys.-JETP,1985,62:65–70.
    [84] A. G. Voronovich. Small-slope approximation for electromagnetic wave scattering at a roughinterface of two dielectric half-spaces. Waves in Random and Complex Media,1994,4(3):337-367.
    [85] G. Soriano and M. Saillard. Scattering of electromagnetic waves from two-dimensional roughsurfaces with impedance approximation. J. Opt. Soc. Am.,2001,18(1):24-33.
    [86] G. Berginc. Small-slope approximation method: a further study of vector wave scatteringfrom two dimensional surfaces and comparison with experimental data. Progress InElectromagnetics Research,2002,37:251-287.
    [87] S. T. McDaniel. Small-slope predictions of microwave backscatter from the sea surface.Waves in Random and Complex Media,2001,11(3):343–360.
    [88] T. Elfouhaily, et al. Local and non-local curvature approximation: a new asymptotic theoryfor wave scattering. Waves Random Media,2003,13:321-338.
    [89] T. Elfouhaily, S. Guignard and D. R. Thompson. Formal tilt invariance of the local curvatureapproximation. Waves Random Media,2003,13: L7–L11.
    [90] F. Nouguier, C. A. Guérin, and G. Soriano. Analytical techniques for the Doppler signature ofsea surfaces in the microwave regime. I: Linear surfaces. IEEE Trans. Geosci. Remote Sens.,2011,49(12):4856–4864.
    [91] F. Nouguier, C. A. Guérin, and G. Soriano. Analytical techniques for the Doppler signature ofsea surfaces in the microwave regime. II: Nonlinear surfaces. IEEE Trans. Geosci. RemoteSens.,2011,49(12):4920–4927.
    [92] R. F. Harrigton. Field Computation by Moment Method. New York: Macmillan Company,1968.
    [93] K. S. Yee. Numerical solution of initial boundary value problems involving maxwell'sequations in isotropic media. IEEE Trans. Antennas Propagat.,1966,14(5):302-307.
    [94] S. H. Lou, L. Tsang and C. H. Chan. Application of finite element method to Monte Carlosimulations of scattering of waves by random rough surfaces: penetrable case. Waves inRandom Media,1991,1(4):287-307.
    [95] N. Engheta, et al. The fast multipole method (FMM) for electromagnetic scattering problems.IEEE Trans. Antennas Propagat.,1992,40(6):634-641.
    [96]梁昌洪,魏兴昌.矩量法结合小波变换快速求解磁场积分方程.西安电子科技大学学报(自然科学版),2000,27(6):705-708.
    [97] L. Tsang, C. H. Chan, and K. Pak. Monte-Carlo simulation of largescale problems of randomrough surface scattering and applications to grazing incidence with the BMIA/canonical gridmethod. IEEE Trans. Antennas Propagat.,1995,43(8):851-859.
    [98] Q. Li, L. Tsang, K. Pak, and C. H. Chan. Bistatic scattering and emissivities of randomdielectric lossy surfaces with the physics-based two-grid method in conjunction with thesparse-matrix canonical-grid method. IEEE Trans. Antennas Propagat.,2000,48(1):1-11.
    [99] J. T. Johnson, et al. A numerical study of ocean polarimetric thermal emission. IEEE Trans.Geosci. Remote Sens.,1999,37(1):8-20.
    [100] D. Holliday, et al. Forward-backward: A new method for computing low-grazing anglescattering. IEEE Trans. Antennas Propagat.,1996,44(5):722-729.
    [101] H. T. Chou and J. T. Johnson. A novel acceleration algorithm for the computation ofscattering from rough surfaces with the forward–backward method. Radio Sci.,1998,33(5):1277-1287.
    [102] A. Iodice. Forward–Backward Method for scattering from dielectric rough surfaces. IEEETrans. Antennas Propagat.,2002,50(7):901–911.
    [103] C. D. Moss, et al. Forward-Backward Method with spectral acceleration for scattering fromlayered rough surfaces. IEEE Trans. Antennas Propagat.,2006,54(3):1006-1016.
    [104] D. A. Kapp and G. S. Brown. A new numerical method for rough surface scatteringcalculations. IEEE Trans. Antennas Propagat.,1996,44:711-722.
    [105] J. V. Toporkov and G. S. Brown. Numerical simulations of scattering from time-varying,randomly rough surfaces. IEEE Trans. Geosci. Remote Sens.,2000,38(4):1616-1625.
    [106]金亚秋,黄兴忠,殷杰羿.具有泡沫白帽的粗糙海面的后向散射.海洋学报,1994,16(4):63-72.
    [107]黄兴忠,金亚秋,殷杰羿.泡沫覆盖的随机粗糙海面的双站散射和热辐射.地球物理学报,1995,38(2):163-173.
    [108] M.-Y. Xia, et al. Wavelet-based simulations of electromagnetic scattering from large-scaletwo-dimensional perfectly conducting random rough surfaces. IEEE Trans. Geosci. RemoteSens.,2001,39(4).
    [109] Y.-D. Zhang and Z.-S. Wu. Modified two-scale model for low-grazing-angle scattering fromtwo dimensional sea surface. Chinese Physics Letters,2002,19(5):666-669.
    [110] M.-Y. Xia, et al. An efficient algorithm for electromagnetic scattering from rough surfacesusing a single integral equation and multilevel sparse-matrix canonical-grid method. IEEETrans. Antennas Propag.,2003,51(6):1142-1149.
    [111] L.-X. Guo and Z.-S. Wu. Application of the extended boundary condition method toelectromagnetic scattering from rough dielectric fractal sea surface. J. Electromagn. WavesAppl.,2004,18(9):1219-1234.
    [112] H.-X. Ye and Y.-Q. Jin. Parameterization of the tapered incident wave for numericalsimulation of electromagnetic scattering from rough surface. IEEE Trans. Antennas Propag.,2005,53(3).
    [113] Z.-Q. Zhao and J. C. West. Low-Grazing-Angle microwave scattering from athree-dimensional spilling breaker crest: a numerical investigation. IEEE Trans. Geosci.Remote Sens.,2005,43(2):286-294.
    [114] X. Li and X. Xu. Scattering and Doppler spectral analysis for two-dimensional linear andnonlinear sea surfaces. IEEE Trans. Geosci. Remote Sens.,2011,49(2):603–611.
    [115] Y.-H. Wang, Y.-M. Zhang, and L.-X. Guo. Investigation on the Doppler shifts induced by1-Docean surface wave displacements by the first order small slope approximation theory:Comparison of hydrodynamic models. Chin. Phys. B,2010,19(7):074103.
    [116] B. Liu, Z.-Y. Li and Y. Du. A fast numerical method for Electromagnetic scattering fromdielectric rough surface. IEEE Trans. Antennas Propag.,2011,59(1):180-188.
    [117] M. Zhang, H. Chen, and H.-C. Yin. Facet-based investigation on EM scattering fromelectrically large sea surface with two-scale profiles: Theoretical model. IEEE Trans. Geosci.Remote Sens.,2011,49(7),1967-1975.
    [118] D. Nie, et al. Study of microwave backscattering from two-dimensional nonlinear surfaces offinite-depth seas. IEEE Trans. Geosci. Remote Sens.,2012, to be published.
    [119] F. Arikan. Statistic of simulated ocean clutter. Journal of Electromagnetic Waves andApplications,1998,12:499-526.
    [120] S. Haykin and S. Puthusserypady. Chaotic dynamics of sea clutter. Chaos,1997,7(4):777-802.
    [121] T. Lo, et al. Fractal characterization of sea-scattered signals and detection of sea-surfacetargets. IEE Proceedings F. on Radar and Signal Processing,1993,140(4):243-250.
    [122] J. Daley, J. T. Ransone and J. J. Burkett. Radar sea return-JOSS I, Technical Report NRLReport7268, Naval Research Laboratory, Wave Propagation Branch, Electronics Division.
    [123] J. Daley, J. T. Ransone and J. J. Burkett. Radar sea return-JOSS II, Technical Report NRLReport7534, Naval Research Laboratory, Wave Propagation Branch, Radar Division.
    [124] L. C. Schroeder, et al. AAFE RADSCAT13.9-GHz measurements and analysis: Wind-speedsignature of the ocean. IEEE J. Oceanic Eng.,1985,10,10(4):346-357.
    [125] F. J. Wentz, S. Peteherich and L. A. Thomas. A model function for ocean radar cross-sectionat14.6GHz. J. Geophys. Res.,1984,89:3689-3704.
    [126] S. V. Nghiem, F. K. Li and G. Neumann. The dependence of ocean backscatter at Ku-band onoceanic and atmospheric parameters. IEEE Trans. Geosci. Remote Sensing.,1997,35(3):581-600.
    [127] K. D. Ward, C. J. Baker and S. Watts. Maritime surveillance radar. Part I: Radar scatteringfrom the sea surface. IEE Proceedings F. on Radar and Signal Processing,1990,137(2):51-62.
    [128] K. D. Ward, R. J. A. Tough and S. Watts. Sea Clutter Scattering, the K Distribution and RadarPerformance.2006, UK, London: The Institution of Engineering and Technology.
    [129] C. M. Javier, et al. Statistical analysis of a high-resolution sea-clutter database. IEEE Trans.Geosci. Remote Sensing.,2010,48(4):2024-2037.
    [130] W. J. Plant, et al. Normalized radar cross section of the sea for backscatter:1. Mean levels. J.Geophys. Res.,2010,115(C09032):1-11.
    [131] D. Walker. Experimentally motivated model for low grazing angle radar doppler spectra ofthe sea surface. IEE Proc.-Radar Navig.,2000,147(3):114-120.
    [132] W. J. Plant, et al. Bound waves and Bragg scattering in a wind‐wave tank. J. Geophys. Res.,1999,104(C2):3243-3263.
    [133] P. H. Y. Lee, et al. Scattering from breaking gravity waves without wind. IEEE Trans.Antennas Propagat.,1998,46(1):14–26.
    [134] A. Farina and A. Russo. Coherent radar detection in Log-normal clutter. IEE Proc. F.,1986,133(1):39-54.
    [135] M. angaswamy and D. Weiner. Non-Gaussian random vector identification using sphericallyinvariant random processed. IEEE Trans. On AES.,1993,29(1):111-123.
    [136] D. Crombie. Doppler spectrum of sea echo at13.56Mc/s. Nature,1955,175:681-683.
    [137] V. W. Pidgeon. The Doppler dependence of radar sea-return. J. Geophys. Res.,1968,73(4):1333-1341.
    [138] G. R. Valenzuela and M. B. Laing. Study of Doppler spectra of radar sea. J. Geophys. Res.,1970,75(3):551-563.
    [139] J. V. Toporkov, M. A. Sletten and G. S. Brown,“Numerical scattering simulations fromtime-evolving ocean-like surfaces at L-and X-band: Doppler analysis and comparisons witha composite surface analytical model. presented at the XXVII General Assembly URSI,Maastricht, the Netherlands,2002, BP.P.10.
    [140] Y.-H Wang and Y.-M. Zhang. Investigation on Doppler shift and bandwidth of backscatteredechoes from a composite sea surface. IEEE Trans. Geosci. Remote Sensing.,2011,49(3):1071-1081.
    [141] Jin Au Kong(原著),吴季等译.电磁波理论.北京:电子工业出版社,2003.
    [142]汪茂光.几何绕射理论.第二版,西安:西安电子科技大学出版社,1988.
    [143] A.石丸(原著),黄润恒等译.随机介质中波的传播和散射.北京:科学出版社,1986.
    [144] N. Engheta, et al. The fast multipole method (FMM) for electromagnetic scattering problems.IEEE Trans. Antennas Propagat.,1992,40(6):634-641.
    [145] J.-M. Song, C.-C. Lu and W.-C. Chew. Multilevel fast multipole algorithm forelectromagnetic scattering by large complex objects. IEEE Trans. Antennas Propagat.,1997,45(10):1488-1493.
    [146] T.-J. Cui, et al. Efficient MLFMA, RPFMA, and FAFFA Algorithms for EM Scattering byVery Large Structures. IEEE Trans. Antennas Propagat.,2004,52(3):759-769.
    [147] J. Hu, et al. Fast Solution of Electromagnetic Scattering from Thin Dielectric Coated PEC byMLFMA and Successive Overrelaxation Iterative Technique. IEEE Microwave and WirelessComponents Letters,2009,19(12):762-764.
    [148] E. Bleszynski, M. Bleszynski and T. Jaroszewicz. AIM: Adaptive Integral Method forSolving Large-scale Electromagnetic Scattering and Radiation Problems. Radio Science,1996,31(5):1225-1251.
    [149]梁昌洪,魏兴昌.矩量法结合小波变换快速求解磁场积分方程.西安电子科技大学学报(自然科学版),2000,27(6):705-708.
    [150] T. Namiki.3-D ADI-FDTD method-unconditionally stable time-domain algorithm forsolving full vector Maxwell's equations. IEEE Transactions on Microwave Theory andTechniques,2000,48(10):1743-1748.
    [151] Y. W. Cheong, et al. Wavelet-Galerkin scheme of time-dependent inhomogeneous electro-magnetic problems. IEEE Microwave and Guided Wave Letters,1999,9(8):297-299.
    [152] A. A. Ergin, B. Shanker and E. Michielssen. The plane wave time-domain algorithm for thefast analysis of transient wave phenomena. IEEE Antennas Propagat. Mag.,1999,41(4):39-52.
    [153] B. Shanker, et al. Fast analysis of transient electromagnetic scattering phenomena using themultilevel plane wave time domain algorithm. IEEE Trans. Antennas Propagat.,2003,51(3):628-641.
    [154] U. Jakobus and F. M. Landstorfer. Improved PO-MM hybrid formulation for scattering fromthree dimensional perfectly conducting bodies of arbitrary shape. IEEE Trans. AntennasPropagat.,1995,43(1):162-169.
    [155] M. Ren, et al. Coupled TDIE-PO method for transient scattering from electri-cally largeconducting objects. Electronics Letters,2008,44(4):258-260.
    [156]杨凌霞,葛德彪,魏兵.组合目标电磁散射的FDTD/TDPO混合方法.系统工程与电子技术,2008,30(4):637-640.
    [157] M. R. Pino, et al. The generalized Forward–Backward method for analyzing the scatteringfrom targets on ocean-like rough surfaces. IEEE Trans. Antennas Propagat.,1999,47(6):961-969.
    [158] R. J. Burkholder, M. R. Pino and F. Obelleiro. A Monte Carlo study of the rough-sea-surfaceinfluence on the radar scattering from two-dimensional ships. IEEE Antennas andPropagation Magazine,2001,43(2):25-33.
    [159] D. Colak, R. J. Burkholder and E. H. Newman. Multiple Sweep Method of MomentsAnalysis of Electromagnetic Scattering from3D Targets on Ocean-like Rough Surfaces.Microwave Opt. Technol. Lett.,2007,49(1):241-247.
    [160] Y. Zhang, et al. Mode-Expansion method for calculating electromagnetic waves scattered byobjects on rough ocean surfaces. IEEE Trans. Antennas Propagat.,2005,53(5):1631-1639.
    [161] T.-J. Cui, et al. Efficient MLFMA, RPFMA, and FAFFA Algorithms for EM Scattering byVery Large Structures. IEEE Trans. Antennas Propagat.,2004,52(3):759-769.
    [162] T.-J. Cui and W. Wiesbeck. Electromagnetic scattering by multiple three-dimensionalscatterers buried under multilayered media-part II theory. IEEE Trans. Geosci. Remote Sens.,1998,36(2):535-546.
    [163] P. Liu and Y.-Q. Jin. Numerical simulation of bistatic scattering from a target at low altitudeabove rough sea surface under an EM-Wave incidence at low grazing angle by using thefinite element method. IEEE Trans. Geosci. Remote Sens.,2004,52(5):1205-1220.
    [164] P. Liu and Y.-Q. Jin. The finite-element method with domain decomposition forelectromagnetic bistatic scattering from the comprehensive model of a ship on and a targetabove a large scale rough sea surface. IEEE Trans. Geosci. Remote Sens.,2004,42(5):950-956.
    [165] L. Kuang and Y.-Q. Jin. Bistatic scattering from a three-dimensional object over a randomlyrough surface using the FDTD algorithm. IEEE Trans. Antennas Propagat.,2007,55(8):2302-2312.
    [166] Y.-Q. Jin and Z.-X. Li. Numerical simulation of radar surveillance for the ship target andoceanic clutters in two-dimensional model. Radio Science,2003,38(3):1045(1-11).
    [167] F.-S. Deng, et al. Numerical simulation of vector wave scattering from the target and roughsurface composite model with3-D multilevel UV method. IEEE Trans Antennas Propagat.,2010,58(5):1625-1634.
    [168]康士峰,王显德.粗糙面与目标电磁散射统计特性分析.微波学报,2004,20(3):43-46.
    [169] J. T. Johnson. A numerical study of scattering from an object above a rough surface. IEEETrans. Geosci. Remote Sens.,2002,50(10):1361-1367.
    [170] J. T. Johnson. A Study of the Four-path Model for Scattering from an Object above a HalfSpace. Microwave Opt. Technol. Lett.,2001,30(6):130-134.
    [171] T. Chiu and K. Sarabandi. Electromagnetic scattering interaction between a dielectriccylinder and slightly rough surface. IEEE Trans Antennas Propagat.,1999,47(5):902-913.
    [172] D. E. Lawrence and K. Sarabandi. Electromagnetic scattering drom a dielectric cylinderburied beneath a slightly rough surface. IEEE Trans Antennas Propagat.,2002,50(10):1368-1376.
    [173] R. J. Burkholder, P. Janpugdee and D. Colak. Development of Computational Tools forPredicting the Radar Scattering from Targets on a Rough Sea Surface. Technical Report,Ohio State University Electro Science Laboratory, Columbus, Ohio,2001.
    [174] R. J. Burkholder, M. R. Pino and D. H. Kwon. Development of ray-optical methods forstudying the RCS of2D targets on a rough sea surface. Technical Report, Ohio StateUniversity Electro Science Laboratory, Columbus, Ohio,1999.
    [175] F. Xu and Y.-Q. Jin. Bidirectional analytic ray tracing for fast computation of compositescattering from electric-large target over a randomly rough surface. IEEE Trans. Geosci.Remote Sens.,2009,57(5):1495-1505.
    [176]朱国强,曹秦峰,杨河林.正弦型粗糙面上方平板的电磁波散射.武汉大学学报(自然科学版),1996,42(5):661-668.
    [177]向长青,朱国强,杨河林.平板与正弦型组合粗糙面的电磁波复合散射[J].电波科学学报,1998,13(3):256-260.
    [178]朱国强,杨河林.导体条带与周期粗糙面对电磁波的复合散射[J].武汉大学学报,1999,33(3):103-107.
    [179]崔凯,许小剑,毛士艺.基于高频混合方法的海上目标电磁散射特性分析.电子与信息学报,2008,30(6):1500-1503.
    [180]王勇,许小剑.海上舰船目标的宽带雷达散射特征信号仿真.航空学报,2009,30(2):337-342.
    [181] M. Zhang, et al. Time-domain techniques for transient scattering from dielectric bodies andsea surface governed by Jonswap's sea spectra. Chin. Phys. Lett.,2009,26(8):084101.
    [182] H. Chen, et al. An efficient slope-deterministic facet model for SAR imagery simulation ofmarine scene. IEEE Trans Antennas Propagat.,2010,58(11):3751-3756.
    [183] Y. W. Zhao, M. Zhang and H. Chen. An efficient ocean SAR raw signal simulation byemploying fast Fourier transform. Journal of Electromagnetic Waves and Application,2010,24:2273-2284.
    [184] M. Zhang, et al. SAR imaging simulation for composite model of ship on dynamic oceanscene. Progress In Electromagnetics Research,2011,113:395-412.
    [185] W. Luo, et al. An efficient hybrid high-frequency solution for the composite scattering of theship very large two-dimensional sea surface. Progress In Electromagnetics Research M,2009,8:79-89.
    [186]罗伟.时变海面与目标复合电磁散射研究.西安电子科技大学博士论文,2012.
    [187]赵言伟.海面目标合成孔径雷达成像模拟研究.西安电子科技大学博士论文,2012.
    [188] B. Guan, et al. Electromagnetic scattering from objects above a rough surface using themethod of moments with half-space Green's function. IEEE Trans. Geosci. Remote Sens.,2009,47(10):3399-3405.
    [189]叶红霞.随机粗糙面与目标复合电磁散射的数值计算方法.复旦大学博士论文,2007.
    [190]叶红霞,金亚秋.随机粗糙面上介质目标差场散射的快速计算方法.中国科学G辑,2006,36(2):142-157.
    [191]叶红霞,金亚秋.三维介质粗糙面上导体目标散射的解析-数值混合算法.电波科学学报,2008,23(6):1144-1153.
    [192] W. Yang, et al. Iterative hybrid method for Electromagnetic scattering from a3-D objectabove a2-D random dielectric rough surface. Progress In Electromagnetics Research,2011,117:435-448.
    [193] S.-Y. He and G.-Q. Zhu. A hybrid MM-PO method combining UV technique for scatteringfrom two-dimensional target above a rough surface. Microwave and Optical TechnologyLetters,2007,49(12):2957-2960.
    [194]张晓燕,盛新庆.介质粗糙面上目标后向散射的高效混合算法.计算物理,2010,30(4):460-464.
    [195]李西敏,童创明,付树洪,等.高斯粗糙面与临空目标复合电磁散射的KH-MoM解.电波科学学报,2010,25(6):1146-1151.
    [196]姬伟杰,童创明.三维目标与粗糙面复合散射的广义稀疏矩阵平面迭代及规范网格算法.物理学报,2011,60(1):301-309.
    [197] S.-T. Qin, et al. A TDIE/TDPO hybrid method for the analysis of TM transient scatteringfrom two-dimensional combinative conducting cylinders. Progress In ElectromagneticsResearch,2010,102:181-195.
    [198]秦三团.随机粗糙面与目标复合电磁散射的快速算法研究.西安电子科技大学博士论文,2011.
    [199] R. J. Burkholder, M. R. Pino and F. Obelleiro. Low angle scattering from2-D targets on atime-evolving sea surface. IEEE Trans. Geosci. Remote Sens.,2002,40(5):1185-1190.
    [200] K. Jamil and R. J. Burkholder. Radar scattering from a rolling target floating on atime-evolving rough sea surface. IEEE Trans. Geosci. Remote Sens.,2006,44(11):3330-3337.
    [201] P. Liu and Y. Q. Jin. Numerical simulation of bistatic scattering from a target at low altitudeabove rough sea surface under an EM-Wave incidence at low grazing angle by using thefinite element method. IEEE Trans. Geosci. Remote Sensing,2004,52(5):1205-1220.
    [202]刘鹏,金亚秋.动态起伏海面上低飞目标电磁散射Doppler频谱的有限元-区域分解法数值模拟.中国科学G辑,2004,34(3):265-278.
    [203]徐小剑,姜丹,李晓飞.时变海面舰船目标动态雷达特征信号模型.系统工程与电子技术,2011,33(1):42-47.
    [204] T. Elfouhaily, et al. A unified directional spectrum for long and short wind-driven waves. J.Geophys. Res.,1997,102:15781-15796.
    [205] W. J. Pierson and L. Moscowitz. A proposed spectral form for fully developed wind seasbased on the similarity theory of S.A.kitaigorodsrii. J. Geophys. Res.,1964,69(24):5181-5190.
    [206] K. Hasselmann, et al. Measurements of wind-wave growth and swell decay during theJONSWAP. Report, Hamburg: Deutsches Hydrographisches Institut,1973.
    [207] D. E. Hasselmann, M. Dunckel and J. A. Ewing. Directional wave spectra observed duringJONSWAP1973. J. Phys. Oceanogr.,1980,10(7):1264-1280.
    [208] C. Brüning, W. Alpers and K. Hasselmann. Int. J. of Remote Sens.,1990,11(10):1695-1727.
    [209] M. S. Longuet-Higgins, D. E. Cartwright and N. D. Smith. Observations of the directionalspectrum of sea waves using the motions of a floatation buoy. Ocean Wave Spectra,Englewood Cliffs: Prentice-Hall,1963,111-136.
    [210] H. Mitsuyasu, et al. Observation of the directional spectrum of ocean waves using acloverleaf buoy. J. Phys. Oceanogr.,1975,5:750-760.
    [211] M. A. Donelan, J. Hamilton and W. H. Hui. Directional spectra of wind generated waves.Philos. Trans. R. Soc. London, Ser. A,1985,315:509-562.
    [212]赵振宇,董国祥.航海安全水池三维造波机造波特性与实际波浪模拟应用.交通部上海船舶运输科学研究所学报,2001,24(1):23-28.
    [213]李积德.船舶耐波性.哈尔滨:哈尔滨船舶工程学院出版社,1992.
    [214] E. R. Jeferys. Directional seas should be ergodic. Applied Ocean Research,1987,9(4):186-191.
    [215] C. Cox and W. Munk. Measurement of the roughness of the sea surface from photographs ofthe sun glitter. Journal of the Optical Society of America,1954,44:838-850.
    [216] A. Arnold-Bos, A. Khenchaf and A. Martin. Bistatic radar imaging of the marineenvironment-part I: theoretical background. IEEE Trans. Geosci. Remote Sensing,2007,45(11):3372-3383.
    [217] K. Oumansour, Y. Wang and J. Saillard. Multifrenquency SAR observation of a ship wake.IEE Proc. Radar, Sonar Navig.,1996,143(4):275-280.
    [218] I. Hennings, et al. Radar imaging of Kelvin arms of ship wakes. Int. J. Remote Sens.,1999,20(13):2519-2543.
    [219] N. Okino, Y. Kakazu and M. Morimoto. Extended depth-buffer algorithms for hidden-surfacevisualization, IEEE Computer Graphics and Applications,1984,4:79-88.
    [220] J. W. Wright. Backscattering from capillary waves with application to sea clutter. IEEE Trans.Antennas Propag.,1966, AP-14(6):749-754.
    [221] W. J. Plant and W. C. Keller. Evidence of Bragg scattering in microwave Doppler spectra ofsea return. J. Geophys. Res.,1990,95(C9):16299-16310.
    [222] E. M. Poulter, M. J. Smith and J. A. McGregor. Microwave backscatter from the sea surfaceBragg scattering by short gravity waves. J. Geophys. Res.,1994,99(C4):7929-7943.
    [223] H. Goldstein. Sea echo, in Propagation of Sort Radio Waves. New York: McGraw-Hill,1951,481-527.
    [224] V. W. Pidgeon. Doppler dependence of radar sea return. J. Geophys. Res.,1968,73(4):1333-1341.
    [225] Y. V. Mel’nichuk and A. A. Chernikov. Spectra of radar signals from sea surfaces fordifferent polarizations. Izv. Atmos. Ocean Phys.,1971,7:14-24.
    [226] M. W. Long. On a two-scatterer theory of sea echo. IEEE Trans. Antennas Propagat.,1974,22:667-672.
    [227] A. I. Leykin, et al. The effect of long waves on energy spectra of radar signals scattered froma sea surface. Izv. Vyssh. Uchebn. Zaved Radiofiz.,1795,3:346-357.
    [228] A. I. Kalmykov and V. V. Pustovoytenko. On polarization features of radio signals scatteredfrom the sea surface at small grazing angles. J. Geophys. Res.,1988,93(C10):12235-12248.
    [229] A. T. Jessup, W. K. Melville and W. C. Keller. Breaking waves affecting microwavebackscatter,1, Detection and verification. J. Geophys. Res.,1991,96(C11):20547-20559.
    [230] P. H. Y. Lee, et al. X band microwave backscattering from ocean waves. J. Geophys. Res.,1995,100(C2):2591-2611.
    [231] F. T. Ulaby, R. K. Moore and A. K. Fung. Microwave Remote Sensing: Active and Passive,vol. II. Norwood, MA: Artech House,1986.
    [232] D. S. W. Kwoh, B. M. Lake and H. Rungaldier. Microwave scattering from internal wavemodulated surface waves: A shipboard real aperture coherent radar study in the Georgia StraitExperiment. J. Geophys. Res.,1988,93(C10):12235-12248.
    [233] P. H. Y. Lee, et al. What are the mechanisms for non-Bragg scattering from water wavesurface. J. Geophys. Res.,1999,34(1):123-138.
    [234] E. C. Monahan and I. G. O’Muircheartaigh. Whitecaps and the passive remote sensing of theocean surface. Int. J. Remote Sens.,1986,7(5):627–642.
    [235] J. C. West and Z. Q. Zhao. Electromagnetic modeling of multipath scattering from breakingwater waves with rough faces. IEEE Trans. Geosci. Remote Sens.,2002,40(3):583-592.
    [236] J. C. West and S.-J. Ja. Two-scale treatment of low-grazing-angle scattering from spillingbreaker water waves. Radio Sci.,2002,37(4):1045(1-12)
    [237] O. M. Phillips. Radar returns from the sea surface Bragg scattering and breaking waves. J.Phys. Oceanogr.,1988,18(8):1065-1074.
    [238] V. D. Kudryavtsev, et al. A semiempirical model of the normalized radar cross-section of thesea surface1. Background model. J. Geophys. Res.,2003,108(C3):1-24.
    [239] A. I. Kalmykov and V. V. Pustovoytenko. On polarization features of radio signals scatteredfrom the sea surface at small grazing angles. J. Geophys. Res.,1976,81(12):1960-1964.
    [240] D. S. W. Kwoh and B. M. Lake. A deterministic, coherent, and dualpolarized laboratory studyof microwave backscattering from water waves, part I: short gravity waves without wind.IEEE J. Oceanic Eng.,1984, OE-9(5):291-308.
    [241] D. R. Lyzenga and E. A. Ericson. Numerical calculations of radar scattering from sharplypeaked ocean waves. IEEE Trans. Geosci. Remote Sens.,1998,36(2):636-646.
    [242] L. A. Klein and C. T. Swift. An Improved Model for the Dielectric Constant of Sea Water atMicrowave Frequencies. IEEE Trans. Antennas Propagat.,1977, AP-25(1):104-111.
    [243] P. W. Vachon and K. Katsaros. RADARSAT synthetic aperture radar measurements of some1998hurricanes. International Geoscience and Remote Sensing Symposium (IGARSS),1999,3:1631-1633.
    [244] R. J. Wagner. Shadowing of randomly rough surfaces. J. Acoust. Soc. Am.,1967,41(1):138-147
    [245] L. C. Schroeder and W. L. Grantham. SASS measurements of the Ku-band radar signature ofthe ocean. IEEE J. Oceanic Eng.,1982, OE-7(1):3-14.
    [246] L. C. Schroeder, et al. AAFE RADSCAT13.9-GHz measurements and analysis: Wind-speedsignature of the ocean. IEEE J. Oceanic Eng.,1985,10(4):346-357.
    [247] A. Awada, et al. Bistatic scattering from an anisotropic sea surface: Numerical comparisonbetween the first-order SSA and the TSM models. Wave in Random Media,2006,16(3):383-394.
    [248]何宜军.成像雷达海浪成像机制.中国科学(D辑),2000,30(5):554-560.
    [249] W. A. Alpers, D. B. Ross and C. L. Rufenach. On the detectability of ocean surface waves byreal and synthetic aperture radar. J. Geophys. Res.,1981,86(C7):6481-6498.
    [250] W. A. Alpers. Monte Carlo simulations for studying the relationship between ocean wave andsynthetic aperture radar image spectra. J. Geophys. Res.,1983,88(C3):1745-1759.
    [251] W. A. Alpers and C. Bruening. On the relative importance of motion-related contributions toSAR imaging mechanism of ocean surface waves. IEEE Trans. Geosci. Remote Sens.,1986,GE-24(6):873-885.
    [252] C. Beard. Coherent and incoherent scattering of microwaves from the ocean. IEEE Trans. onAntennas and Propagat.,1961,9(5):470-483.
    [253] W. J. Plant. Microwave sea return at moderate to high incidence angles. Waves in RandomMedia,2003,13(4):339-354.
    [254] J. C. West. Correlation of Bragg scattering from the sea surface at different polarizations.Waves in Random Media,2005,15(3):395-403.
    [255] J. C. West, R. K. Moore and J. C. Holtzman. The slightly-rough facet model in radar imagingof the ocean surface. Int. J. Remote Sens.,1990,11(4):617-637.
    [256] J. C. West. Comparison of modeled backscatter from slightly rough curved surfaces withnumerical predictions. IEEE Trans. Geosci. Remote Sens.,1993,31(4):880-884.
    [257] G. Franceschetti, M. Migliaccio and D. Riccio. On ocean SAR raw signal simulation. IEEETrans. Geosci. Remote Sens.,1993,31(4):880-884.
    [258] A. I. Kozlov, L. P. Ligthart and A. I. Logvin. Mathematical and Physical Modelling ofMicrowave Scattering and Polarimetric Remote Sensing: Monitoring the Earth'sEnvironment Using Polarimetric Radar: Formulation and Potential Applications, New York:Kluwer Academic Publishers,2001,43-65.
    [259] H. Chen, M. Zhang and H.-C. Yin. Facet-based Treatment on Microwave Bistatic Scatteringof Three-Dimensional Sea Surface with Electrically Large Ship. Progress InElectromagnetics Research,2012,123:385-405.
    [260] W. Thomson (Lord Kelvin),“On Ship Waves,” Trans. Inst. Mech. Eng., vol.8, pp.409-433,1887.
    [261] P. H. Y. Lee, et al. Lineshape analysis of breaking-wave Doppler spectra. IEE Proc.-Radar,Sonar Navig.,1998,145(2):135-139.
    [262] D. Walker. Doppler modeling of radar sea clutter. IEE Proc.-Radar, Sonar Navig.,2001,148(2):73-80.
    [263] C. L. Rino, et al. Numerical simulation of backscattering from linear and nonlinear oceansurface realizations. Radio Sci.,1991,26(1):51–71.
    [264] E. Bahar, M. A. Fitzwater and D. E. Barrick. Computations of scattering cross sections forcomposite surfaces and the specification of the wavenumber where spectral splitting occurs.IEEE Trans. on Antennas and Propagat.,1983, AP-31(5):698-709.
    [265] A. Papoulis, Probability, Random Variables, and Stochastic Processes, New York:McGraw-Hill,1991,444-445.
    [266] W. J. Plant. Studies of backscattered sea return with a CW, dual-frequency, X-band radar.IEEE Trans. on Antennas Propagat.,1977, AP-25:28-36.
    [267] D. B. Trizna. A model for Doppler peak spectral shift for low grazing angle sea scatter. IEEEJ. Oceanic Eng.,1985,10(4):368-375.
    [268] D. R. Thompson, B. L. Gotwols and W. C. Keller. A comparison of Ku-band dopplermeasurements at200incidence with predictions from a time-dependent scattering model. J.Geophys. Res.,1991,96(C3):4947-4955.
    [269] J. W. Wright. Detection of ocean waves by microwave radar: The modulation of shortgravity-capillary waves. Boundary Layer Meteorol.,1978,13:87-105.
    [270] A. Michaeli. Equivalent edge currents for arbitrary aspects of observation. IEEE Trans. onAntennas Propagat.,1984,32(3):252-258.
    [271] A. Michaeli. Elimination of infinities in equivalent edge currents-Part1: fringe currentscomponents. IEEE Trans. on Antennas Propagat.,1986,34(4):912-918.
    [272]吴振森,张民.修正劈表示的边缘等效电磁流的改进及在电磁散射中的应用.电子学报,1998,26(9):11-14.
    [273]崔索民,吴振森,方大纲.一种计算多面体目标RCS的等效边缘电磁流公式.微波学报,1997,13(1):20-26.
    [274] M. Ando, et al. Elimination of false singularities in GTD equivalent edge currents. IEEProc.-H,128:289-295.
    [275] P. M. Johansen and O. Breinberg. An exact line integral representation of the physical opticsscattered field: the case of a perfectly conducting polyhedral structure illuminated by electricHertzian dipoles. IEEE Trans. on Antennas Propagat.,1995,43(4):689-696.
    [276]聂在平等.目标与环境电磁散射特性建模:理论、方法与实现(基础篇).北京:国防工业出版社,2009.
    [277]刘应中,缪国平.船舶在波浪上的运动理论.上海:上海交通大学出版社,1987.
    [278] S. Denis and W. J. Pierson. On the motion of ships in confused seas. Trans. SNAME,1953,61.
    [279] B. V. Korvin-Kroukovsky. Investigation of ship motions in regular waves. Trans. SNAME,1955,63.
    [280] B. V. Korvin-Kroukovsky and W. R. Jacobs. Pitching and heaving motions of a ship inregular waves, Trans. SNAME,1957,65.
    [281] F. Tasai and M. Takaki. Theory and calculation of ship responses in regular waves.Symposium on Seawothines of Ships, Japan Society of Naval Architects,1969.
    [282] T. F. Ogilvie and E. O. Tuck. A rational strip-theory of ship motion: Part I. Department ofNaval Architecture, University of Michigan, America: Report No.013,1969.
    [283] N. Salvesen, E. O. Tuck, and O. Faltinsen. Ship motions and sea loads. Trans. SNAME,1970,78:250-287.
    [284] G. P. Miao. On the computation of ship motions in regular waves. Division of ShipHydromechanics, Chalmers University of Technology, Sweden: Report No.58,1980.
    [285] W. Frank. Oscillation of cylinders in or below the free surface of deep fluids. Naval ShipResearch and Development Center, America: Report No.2375,1967.
    [286] H. S ding. Eine Modifikation der Streifenmethode. Schiffstechnik,1969,16:15-18.
    [287] D. Hachmann. Calculation of pressures on a ship’s hull in waves. Ship Technology Research,1991,38:111-133.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700