降雨对波浪成长和海气界面湍流及其相互作用的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
降雨是一种常见的大气现象,在研究海表面特征量的变化时,对降雨造成的影响是不能忽略的,尤其是对卫星高度计数据进行反演海表风速的研究中,海面粗糙度的变化会影响到雷达返回数据,从而对风速估算的准确性产生影响。在自然界中,由于重力场和风场的作用,雨滴对海-气界面会产生水平和垂直方向上的动量和质量输入,所以,降雨过程一定会对海面粗糙度以及海面风应力等要素产生影响。早期的海洋学家认为,降雨可以使海面趋于平静;随后的研究中发现,降雨对海面波浪成长状态的影响是双重的:在重力波频段,降雨使波浪成长衰减,但是在毛细波/毛细重力波频段,降雨对波浪成长状态反而是促进。究竟降雨对海面粗糙度以及海面应力如何影响,目前还存在着很大争议,对海浪谱微结构的影响机制还不清楚。
     本文通过在实验室大型风浪水槽中进行实验,研究降雨对机械波、涌浪、风浪以及湍流的作用。其中重点研究了降雨对风浪和湍流的作用。在实验室中,进行了不同环境要素条件下的实验,通过利用皮托管、波高仪和多普勒流速仪分别同时测量波浪和湍流等要素。通过实验研究发现,当处于低风速的条件下,在所有的频率范围内风浪成长都是被降雨所抑制的;而在高风速条件下,降雨对风浪成长都是起到促进作用的。降雨对波浪成长的这种双重作用是随着雨强的增加而增强,但是实验并没有观测到降雨区的长短所带来的影响。波浪均方波陡的变化与波浪的成长有很好的相关性。在低风速下,湍流的湍动能耗散率由于降雨作用而显著增强,而波浪成长被严重抑制,这意味着能量是从波浪传递到湍流中。而在高风速条件下,湍动能耗散率的增加是被抑制的,而风浪的成长则被促进,这意味着此时能量是从湍流传递到波浪中。但是,在外海观测中,降雨通常对波浪成长起到的是抑制作用,并且随着风速的增加,抑制作用变得更为显著。
     为了解释在实验室和外海观测中降雨对波浪成长所带来的作用的不同,本文提出在湍流和波浪能量交换之间存在着共振机制,并给出了实验室和外海的谱峰频率与湍流惯性子区的结构示意图。假设共振发生在波浪的谱峰频率与湍流的惯性子区重叠的时候,此时湍流的能量将会转化为波浪的能量。而当谱峰频率与惯性子区分离的时候,此时能量将从波浪传递到湍流中。波浪的谱峰频率与湍流的惯性子区分离的越远,那么从波浪到湍流的这种能量转化就越有效。同时,利用这个机制也可以用于解释在实验室实验中,气体交换速率的抑制现象。此外,也可以利用这个理论解释在靠近海面处的湍动能耗散率变化,与经典的固壁理论的结果进行比较。
Rainfall is a very common phenomenon in daily life; however, in the research of seasurface feature, the effect of rainfall can not be ignored. Especially on the retrieval ofsea surface wind using altimeter data, the change of sea surface roughness during rainwill affect the accuracy of wind retrieval. As a result of wind field and gravity,momentum is transferred between rain and sea water in air-sea boundary layer inhorizontal and vertical directions, sea surface roughness, wind stress and otherfeatures can be altered by rainfall inevitably. In early studies, oceanographers figuredthat rainfall can damp gravity waves. Later studies found dual effect of rainfall onsurface waves: damping in gravity wave range and growth in capillary andgravity-capillary wave range. However, the mechanism behind this phenomenon isstill disputable.
     Rain effects on mechanical waves and swell and wind waves and turbulence wereinvestigated through experiments in a large windwavetank. Research was focused onthe role of rainfall effects on wind wave and turbulence. For many differentenvironmental conditions, the wind, wave and turbulence were simultaneouslymeasured by Pitot tube, wave gauge and acoustic Doppler velocimetry, respectively.Itis found that the wind waves are damped over full frequency range at low windspeed, but are enhanced at high wind speed. This dual effect of rain on wind wavesincrease with the increasing of rain rate, while the influence of rainfall-area length isnot observable. The variation of mean square slope of water surface is correlated wellwith the wave development. At low wind speed, the corresponding turbulence interms of turbulent kinetic energy (TKE) dissipation rate is significantly enhanced byrain as the waves are damped severely, which is indicated that the energy transfersfrom wave to turbulence. At high wind speed, the augment of TKE dissipation rate issuppressed while the wind waves are enhanced, which is suggested that the energytransfers from turbulence to wave. In the field, however, the rain usually attenuatesthe development of waves, which is more significant with the increasing of windspeed.
     In order to explain this contradiction of rain effect on waves between laboratory and field, a resonant mechanism about energy exchange between turbulence and wave isproposed. It is hypothesized that the resonance occur only when the spectral peak ofwaves (SPW) overlap in frequency with the inertial subrange of turbulence (IST), inwhich the turbulent energy of random motion transfers to the wave energy of orderedmotion. When SPW and IST are separated away, the energy from ordered waves willtransfer to random turbulence. The farther they depart, the more efficient of energytransferring from wave to turbulence. This mechanism is applied to interpret thedamping phenomenon of gas transfer velocity in laboratory experiments, and thevariation of TKE dissipation rates near sea surface compared with the law of wall.
引文
[1]文圣常,余宙文.海浪原理与计算原理.北京:科学出版社,1984.
    [2]徐德伦,于定勇.随机海浪理论.北京:高等教育出版社,2001.
    [3] Agrawal, Y., E. Terray, M. Donelan, P. Hwang, A.J. Williams III, W.M. Drennan, K.K.Kahma, and S.A. Kitaigorodskii,1992: Enhanced dissipation of kinetic energy beneathsurface waves. Nature,359,219-220.
    [4] Anis, A., and J.N. Moum,1995: Surface wave-turbulence interactions: Scaling ((z) near thesea surface. J. Phys. Oceanogr.,25,2025-2045.
    [5] Apel, J. R. An improved model of the ocean surface wave vector spectrum and its effects onradar backscatter. J. Geophys. Res.,1994,99:16269-16291.
    [6] Banner, M. L. Equilibrium spectra of wind waves. J. Phys. Oceanogr.,1990,20:966-984.
    [7] Bliven, L. F. and G. Norcross. Effects of rainfall on scatterometer derived wind speeds. in:Proc. IGARSS’88Symp. Edinburg,1988.565-566.
    [8] Caldwell, D. R., and W. P. Felliott. Surface stresses produced by rainfall. J. Phys. Oceanogr.,1971,1,145-148.
    [9] Caldwell, D.R., and W.P. Elliott,1972: The effect of rainfall on the wind in the surface layer.Bound.-Layer Meteor.,3,146-151.
    [10] Crapper, G. D. Introduction to water waves. Wiley,1984.
    [11] Deacon, E. L.,and E. Webb. Small scale interaction. in: The Sea: Ideas and Observations,1962,Vol.1, New York, Wiley:43-87.
    [12] Dingle, A. N., and Y. Lee. Terminal fallspeeds of raindrops. J. Appl. Meteor.,1972,11:877-879.
    [13] Donelan, M. A. and W. J. Pierson. Radar scattering and equilibrium ranges inwind-generated wave with application to scatterometry. J. Geophys. Res.,1987,92:4971-5029.
    [14] Drennan, W.M., M.A. Donelan, E.A. Terray, and K.B. Katsaros,1996: Oceanic turbulencedissipation measurements in SWADE. J. Phys. Oceanogr.,26,808-815.
    [15] Edson, J. B., A. A. Hinton, K. E. Prada, J. E. Hare and C. W. Fairall. Direct covariance fluxestimates from mobile platforms at sea. J. Atmos. Oceanic Technol.,1998,15,547-562.
    [16] Elfouhaily, T., D. Vandemark, J. Gourrion and B. Chapron. Estimation of wind stress usingdual-frequency TOPEX data. J. Geophys. Res.,1998,103:25101-25108.
    [17] Fairall, C. W., J. B. Edson, S. E. Larsen and P. G. Mestayer. Inertial-dissipation air-sea fluxmeasurements: A prototype system using real time spectral computations. J. Atmos.Oceanic Technol.,1990,7:425-453.
    [18] Farrow, J. B. The influence of the atmosphere on remote sensing at microwave and radiowavelengths, prepared for ESRO under ESTEC Contract No.1838/72ESA,1975.
    [19] Geermaert, G. L., K. B. Katsaros and K. Richter. Variations of the drag coefficient and itsdependence on sea state. J. Geophys. Res.,1986,91,7667-7679.
    [20] Geermaret, G. L., S. E. Larsem amd F. Hansen. Measurements of the wind stress, heat fluxand turbulence intensity during storm conditions over the North Sea. J. Geophys. Res.,1987,92:13127-13139.
    [21] Green, T., and D. F. Houk. The mixing of rain with near-surface water. J. Fluid Mech.,1979,90,569-588.
    [22] Guymer, T. H., G. D. Quartly, and M. A. Srokosz. The effects of rain on ERS-1radaraltimeter data. J. Atmos. Oceanic Technol.,1995,12,1229-1247.
    [23] Hansen, J. P. Development of slope spectra of the wind-disturbed water surface. PhD.Dissertation, College of Marine Studies, University of Delaware:1985.
    [24] Hasselmann, K., et al. Measurements of wind wave growth and swell decay during the JointNorth Sea Wave Project (JONSWAP). Erganzungsheft Zeit. Deut. Hydr. Zeit.,1973, No.12,95pp.
    [25] Hasselmann, K., et al. A parametric wave prediction model. J. Phys. Oceanogr.,1976,6(2):200-228.
    [26] Ho, D.T., L.F. Bliven, R. Wanninkhof, and P. Schlosser,1997: The effect of rain onair-water gas exchange. Tellus,49B,149-158.
    [27] Ho, D.T., W.E. Asher, L.F. Bliven, P. Schlosser, and E.L. Gordon,2000: On mechanisms ofrain-induced air-water gas exchange. J. Geophys. Res.,105,24,045-24,057.
    [28] Ho, D.T., F. Veron, E. Harrison, L.F. Bliven, N. Scott, and W.R. McGillis,2007: Thecombined effect of rain and wind on air-water gas exchange: A feasibility study. J. Mar. Sys.,66,150-160.
    [29] Houk, D., and T. Green. A note on surface waves due to rain. J. Geophys. Res.,1976,81,4482-4484.
    [30] Hwang, P. A., W. J. Teague and G. A. Jacobs. A statistical comparison of wind speed, waveheight, and wave period derived from satellite altimeters and ocean buoys in the Gulf ofMexico region. J. Geophys. Res.,1998,103:10451-10468.
    [31] Jones, I. S. F. and Y. Toba. Wind stress over the ocean. Cambridge University Press.November2001.
    [32] Kitaigorodskii, S.A.,1984: On the fluid dynamical theory of turbulent gas transfer acrossan air-sea interface in the presence of breaking wind-waves. J. Phys. Oceanogr.,14(5),960-972.
    [33] Komori, S., T. Shimada, and R. Misumi,1999: Turbulence structure and mass transfer at awind-driven air-water interface. Wind over Wave Couplings: Perspectives and Prospects,Edited by S.G. Sajjiadi, N.H. Thomas and J.C.R. Hunt, Clarendon Press, Oxford,pp.273-285.
    [34] Lamont, J.C., and D.S. Scott,1970: An eddy cell model of mass transfer into the surface ofa turbulent liquid, AIChE J.,16,512-519.
    [35] Large, W. G. and S. Pond. Open ocean momentum flux measurements in moderate to strongwinds. J. Phys. Oceanogr.,1981,11:324-336.
    [36] Larsen, S. E. Observing and Modeling the atmospheric boundary layer. In: Energy andWater Cycles in the Climate System. Eds. E. Raschke and D. Jacob. NATO ASI series I,1993, Vol5, Springer, Heidelberg, Germany:365-418.
    [37] Le Méhauté, B. Gravity-capillary rings generated by water drops. J. Fluid Mech.,1988,197:415-427.
    [38] Le Méhauté, B., and T. Khangaonkar. Dynamic interaction of intense rain with water waves.J. Phys. Oceanogr.,1990,20:1805-1812.
    [39] Liu, Y., M.-Y. Su, X.-H. Yan and W. T. Liu. The mean-square slope of ocean surface wavesand its effects on radar backscatter. J. Atmos. Oceanic Technol.,2000,17:1092-1105.
    [40] Longuet-Higgins, M. S. The propagation of short surface waves on longer gravity waves. J.Fluid Mech.,1987,177:293-306.
    [41] Lorke, A., and F. Peeters,2006: Toward a unified scaling relation for interfacial fluxes. J.Phys. Oceanogr.,36,955-961.
    [42] Malkus, J. S. Large scale interactions. The Sea: Ideas and Observations, Vol.1, New York:Wiley,1962:88-294.
    [43] Manton, M. J. On the attenuation of sea waves by rain. Geo-phys. Fluid Dyn.,1973,5:249-260.
    [44] Méhauté B.L., and T. Khangaonkar,1990: Dynamic interaction of intense rain with waterwaves. J. Phys. Oceanogr.,20,1805-1812.
    [45] Milliff, R. F., J. Morzel, D. B. Chelton, and M. H. Freilich. Wind stress curl and wind stressdivergence biases from rain effects on QSCAT surface wind retrievals. J. Atmos. OceanicTechnol.,2004,21:1216-1231.
    [46] Mitsuyasu, H., and T. Kusaba,1985: Wind waves and wind-generated turbulence in thewater. In: The Ocean Surface, ed. By Y. Toba and H. Mitsuyasu, D. Reidel, p.389-394.
    [47] Monin, A. S. and Yaglom, A. M. Statistical fluid mechanics: Mechanics of turbulence,1971,Vol.1, MIT Press, Cambridge, MA,769pp.
    [48] Moore, R. K., Y. S. Yu, A. K. Fung, D. Kaneko, G. J. Dome, and R. E. Werp. Preliminarystudy of rain effects on radar scattering from water surface. IEEE J. Oceanic Eng.,1979,OE-4:31-32.
    [49] Nystuen, J. A. A note on the attenuation of surface gravity waves by rainfall. J. Geophys.Res.,1990,95:18353-18355.
    [50] Poon, Y.-K., S. Tang, and J. Wu. Interactions between wind and waves. J. Phys. Oceanogr.,1992,22:976-987.
    [51] Quartly, G. D., T. H. Guymer, and M. A. Srokosz. The effects of rain on TOPEX radaraltimeter data. J. Atmos. Oceanic Technol.,1996,13:1209-1229.
    [52] Reynolds, O. On the action of rain to calm the sea. in: Papers on Mechanical and PhysicalSubjects, Vol. I, Cambridge University Press:1900,86-88.
    [53] Roll, H. V. Physics of the Marine Atmosphere. New York, Academic Press:1965,426.
    [54] Siscoe, G. L., and Z. Levin. Water drop-surface wave interactions. J. Geophys. Res.,1971,76:5112-5116.
    [55] Smith, S. D. Wind stress and heat flux over the ocean in gale force winds. J. Phys.Oceanogr.1980,10:709-726.
    [56] Sreenivasan, K.R.,1995: On the universality of the Kolmogorov constant. Phys. Fluids,7,2778-2784.
    [57] Takagaki, N., and S. Komori,2007: Effects of rainfall on mass transfer across the air-waterinterface. J. Geophys. Res.,112, C06006, doi:10.1029/2006JC003752.
    [58] Tang, S., and J. Wu. Suppression of wind-generated ripples by surface films: A laboratorystudy. J. Geophys. Res.,1992,97:5301-5306.
    [59] Terray, E.A., M.A. Donelan, Y.C. Agrawal, W.M. Drennan, K.K. Kahma, A,J. Williams III,P.Hwang, and S.A. Kitaigorodskii,1996: Estimates of kinetic energy dissipation underbreaking waves. J. Phys. Oceanogr.,26,792-807.
    [60] Thorpe, S.A.,1995: Dynamical processes of transfer at the sea surface. Prog. Oceanogr.,35,315-352. Tsimplis, M.N.,1992: The effect of rain in calming the sea. J. Phys. Oceanogr.,22,404-412.
    [61] Tsimplis, M. N., S. A. Thorpe,1989: Wave damping by rain. Nature,1989,342:893-895.
    [62] Tsimplis, M. N. The effect of rain in calming the sea. J. Phys. Oceanogr.,1992,22:404-412.
    [63] Van Dorn, W. G. Wind stress on an artificial pond. J. Marine Res.,1953,12:249-276.
    [64] Walsh, E. J. Problems inherent in using aircraft for radio oceanographic studies. IEEE Trans.Antennas and Propagation.,1977, AP-25(1):145-149.
    [65] Wang, J. and J. Wu. Effects of near-bottom return flows on wind-induced currents. J. Phys.Oceanogr.,1987,17:2263-2271.
    [66] Wu, J. Wind stress and surface roughness at the air-sea interface. J. Geophys. Res.,1969,74(2),444-455.
    [67] Wu, J. Wind-induced drift currents. J. Fluid Mech.,1975,68:49-70.
    [68] Wu, J. Directional slope and curvature distributions of wind waves. J. Fluid Mech.,1977,79:463-480.
    [69] Wu, J. Wind-stress coefficients over sea surface near neutral conditions–A revisit. J. Phys.Oceanogr.,1980,10:727-740.
    [70] Wu, J. Roughness elements of the sea surface, their spectral composition. Tellus,1986,38:178-188.
    [71] Wu, J. Near nadir microwave specular return from the sea surface–Altimeter algorithm forwind and wind stress. J. Atmos. Oceanic Technol.,1992,9:659-667.
    [72] Yang, Z., S. Tang, and J. Wu. An experimental study of rain effects on fine structures ofwind waves. J. Phys. Oceanogr.,1997,27,419-430.
    [73] Yelland, M. J. and P. K. Taylor. Wind stress measurements from the open ocean. J. Phys.Oceanogr.1996.26:541-558.
    [74] Yelland, M. J., B. I. Moat, P. K. Taylor, R. W. Pascal, J. Hutchings and V. C. Cornell. Windstress measurements from the open ocean corrected for airflow distortion by the ship. J.Phys. Oceanogr.,1998,28:1511-1526.
    [75] Yoshikawa, I., H. Kawamura, K. Okuda, and Y. Toba1988: Turbulent structure in waterunder laboratory wind waves. J. Oceanogr. Soc. Japan,44,143-156.
    [76] Zappa, C.J., D.T. Ho, W.R. McGillis, M.L. Banner, J.W.H. Dacey, L.F. Bliven, B. Ma, and J.Nystuen,2009: Rain-induced turbulence and air-sea gas transfer. J. Geophys. Res.,114,C07009, doi:10.1029/2008JC005008.
    [77] Zhao, D., Y. Toba, K. Sugioka and S. Komori (2006): New sea spray generation functionfor spume droplets. J. Geophys. Res.,111, C02007, doi:10.1029/2005JC002960.
    [78] Zhao, D., Y. Toba, Y. Suzuki and S. Komori (2003): Effect of wind waves on air-sea gasexchange: Proposal of an overall CO2transfer velocity formula as a function ofbreaking-wave parameter. Tellus,55B,478-487.
    [79] Zhao, D. and Y. Toba (2003): A spectral approach for determining altimeter wind speedmodel functions. J. Oceanogr.59,235-244.
    [80] Zhao, D. and Y. Toba (2001): Dependence of whitecap coverage on wind and wind-waveproperties. J. Oceanogr.57,603-616.
    [81]李明明.降雨对表面波结构影响的实验研究:[硕士学位论文].青岛:中国海洋大学海洋环境学院,2009.
    [82]丁赟.风浪状态对海面风应力的影响:[硕士学位论文].青岛:中国海洋大学海洋环境学院,2005.
    [83]过杰.海面粗糙度及其提取与应用的研究:[硕士学位论文].青岛:中国海洋大学海洋环境学院,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700