液体表面特性的光学可视化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光学技术是探测液体表面特性重要手段,通过研究光在液体表面的衍射、干涉、反射和折射等现象,可以探测液体表面特性。液体表面特性的光学可视化研究分为两部分:一部分是动态液面的研究,即激光衍射法探测毛细波及液体表面特性。另一部分是静态液面的研究,即激光边界反射法和掠射法探测润湿效应弯曲液面及液体表面特性。本文围绕液体表面特性的光学可视化研究,主要进行了以下几个方面的工作:
     (1)建立了斜入射情况下毛细波的激光衍射理论。当激光斜入射到几十至几百赫兹毛细波上,观察到稳定的、清晰的衍射图样。运用傅立叶光学中正弦位相光栅衍射理论对实验现象进行了理论分析,完善了斜入射情况下毛细波的激光衍射理论,利用该理论分析了衍射图样的缺级现象和衍射光斑的位置不对称分布,并对斜入射情况下毛细波的衍射光场进行理论仿真,并与实验结果进行了对比分析,理论仿真与实验结果完全符合。
     (2)激光衍射法探测毛细波的波长、振幅和色散关系。通过测量衍射光斑间距,进而实时、准确地测量出不同频率毛细波的波长。通过测定衍射图样中不同级别衍射光斑的光强比,求出了毛细波振幅的大小。探测了单一液体毛细波的色散关系,实验数据和理论曲线基本符合,并利用色散关系求得不同温度下液体的表面张力,实验所测表面张力与标准值基本吻合。理论上建立了液体薄膜毛细波的色散关系,分别探测了薄膜厚度不变时,毛细波的角频率和波数的关系;毛细波的频率不变时,波数和薄膜厚度的关系,实验数据和理论曲线基本符合,提出了利用激光衍射法探测较小厚度薄膜的方法。
     (3)激光入射角与衍射光强的关系。利用傅立叶光学中正弦位相光栅理论分析了不同入射角的激光在毛细波上的衍射,给出了衍射光斑光强分布与入射角的解析关系。实现了不同入射角的激光在毛细波上衍射,发现随着激光入射角的变化,衍射光斑的光强和间距随入射角的变化而变化,并且有缺级现象出现,激光入射角越大,衍射角的位置不对称性越明显,并将实验结果和理论分析加以比较,二者基本吻合。
     (4)激光衍射法测定表面张力、表面压和毛细波波速。利用激光衍射法测定了蒸馏水和煤油的表面张力,同时验证了毛细波的色散关系。测定了不同温度下蒸馏水的表面张力,用最小二乘法对实验数据进行拟合,得出了表面张力和温度的解析关系,表面张力随着温度的增加是递减的,并和温度呈近似线性关系。实现了不溶性单分子膜毛细波的激光衍射,测定了苯单分子膜的表面压。测定了不同频率下毛细波的相速度和群速度,研究了毛细波波速与频率和波长之间的关系,毛细波波速随着频率的增大而增大,随着波长的增大而减小,呈非线性关系。最后,测定了不同温度下毛细波波速,用最小二乘法对实验数据进行拟合,给出了毛细波波速与温度的解析关系,毛细波波速随着温度增加而减小,并和温度呈近似线性关系。
     (5)润湿效应弯曲液面的边界反射及应用。基于激光在润湿效应形成的弯曲液面上边界反射,研究了弯曲液面的特性。当平行激光束垂直入射到平板、细棒、双平板和圆柱形管润湿效应形成的弯曲液面时,弯曲液面的边界反射光随着弯曲液面的变化而变化,产生特殊地反射图样。反射图样中有清晰的干涉条纹,反射图样的形状随边界入射光束宽度的变化而迅速地变化,分析了反射图样的形状与边界入射光束的宽度关系,得出了平板和双平板润湿效应弯曲液面斜率和上升高度的拟合曲线及其解析表达式,细棒和圆柱形管润湿效应弯曲液面斜率的拟合曲线及其解析表达式,进一步计算出弯曲液面上升的最大高度和液体的接触角。建立了一种利用弯曲液面边界反射来实时测量液面特性的新方法。
     (6)光线掠射法和斜板法测定接触角。当平行激光束掠入射到平板润湿效应弯曲液面时产生特殊的反射图样,反射图样的中间为暗场,两侧为亮场。分析了暗场宽度和弯曲液面的最大高度关系,通过测量反射图样的暗场宽度计算出弯曲液面的最大高度,进而计算出弯曲液面的接触角。在斜板法测定接触角实验中,对传统斜板法做了较大改进。平行激光束垂直照射到液体表面,当改变平板的插入角度,平板润湿效应产生的弯曲液面形状也会随着发生变化,同样照射到弯曲液面的反射光也会发生变化,通过观测反射图样,可判断出何时弯曲液面完全平坦,进而通过测定平板转过角度计算出接触角。
Optical technique is important to probe the substance properties. Of course, this method is a good choice for the liquid surface research. When the optical effects, including interference, diffraction, reflection and refraction, occur on the liquid surface, some parameters of liquid surfaces can be measured. Visualization of liquid surfaces by means of the optical method includes two aspects: one is study on the dynamic liquid surface, in other words, probing of capillary waves and liquid surface properties by laser diffraction. The other is study on the static liquid surface, in so many words, measurement of the curved liquid surfaces and liquid surface properties by laser boundary reflection and glancing incidence. Visualization of liquid surfaces by means of the optical method is investigated in detail in this dissertation. The main work can be summarized as follows.
     (1) The theory of investigating capillary waves using optical diffraction in a case of oblique incidence is found. When the laser beam obliquely impinges on capillary waves at a certain angle, steady and visible diffraction spots are formed. The capillary wave acts as a sinusoidal reflection phase grating for the laser beam, and the theory is further developed from the theory of Fourier Optics. Missing order and asymmetry of diffraction patterns are investigated in some detail, both theoretically and experimentally. A combination of simulation and experiment is proposed to trace out light diffraction from capillary waves at a certain angle. The theoretical analysis and experimental results are in good agreement.
     (2) Measurement of the wavelength, the amplitude, and the dispersion relation of capillary waves by laser diffraction. The wavelength of capillary waves is real time determined with great precision by measuring the distance of diffraction spots. The amplitude of capillary waves is calculated by measuring the diffraction intensity ratio of different order. The data give the dispersion relation of capillary waves and provide an accurate method for determining the relation between the surface tension and the temperature, and the standard value and experimental results are in good agreement. The dispersion relation of liquid film surfaces is discussed. The relation between angular frequency and wave number at a fixed film thickness and the relation between wave number and film thickness at a fixed angular frequency are verified with experiments, and experimental data agree well with theoretical curves. A new method for measurement of liquid film thickness is presented in a no-contact way.
     (3) Study on the relation between the diffraction intensity and the angle of incidence. The theory of laser diffraction from capillary waves at a different angle of incidence is found from the theory of Fourier Optics, and the relation between the diffraction intensity and the angle of incidence is obtained. When the laser beam obliquely impinges on capillary waves at a different angle, steady and visible diffraction spots are formed. The diffraction intensity and the distance of diffraction spots vary with the change of an angle of incidence, and there is the phenomenon of missing orders in the diffraction spectrum. Asymmetry of diffraction patterns increases with the increasing of an angle of incidence. The theoretical and experimental results are in good agreement.
     (4) Measurement of liquid surface tension, surface pressure of insoluble monolayer surface film and velocity of capillary waves by laser diffraction. Surface tension of distilled water and kerosene are measured using laser diffraction, subsequently, the theory of dispersion relations is well consistent with the experimental data. The analytic expression of the surface tension and the temperature was derived by the non-linear least square fit to the data. Surface tension of distilled water decreases with the increasing temperature. The approximate relation between surface tension and temperature is linear. When laser falls on the insoluble monolayer surface film capillary waves, in the experiment steady and visible diffraction patterns are obtained. Surface pressure of Benzene is measured carefully. Phase velocity and group velocity of capillary waves are investigated. Velocity of capillary waves increases with the increasing frequency of capillary waves, velocity of capillary waves decreases with the increasing wavelength of capillary waves, and the relation is obviously nonlinear. At last, the velocity of capillary waves is measured at a different temperature, the analytic expression of the velocity and the temperature was derived by the non-linear least square fit to the data. Velocity of capillary waves decreases with the increasing temperature, and the approximate relation between velocity and temperature is linear.
     (5) Boundary reflection from curved liquid surfaces and its application. A simple technique for investigating the curved liquid surface (CLS) was developed, which is based on analyzing the reflection patterns from the CLS. When a collimated light beam vertically illumined the CLS which is caused by the effect of the wetting a smooth flat plate, a rod, a double parallel flat and a columned glass tube, the special reflective patterns, which correspond to the boundary light reflection from a deformed liquid surface, are experimentally obtained. In fact, there are the visible interference fringes in the reflective patterns, and the width of patterns varies with the change of the decreasing width of the incident beam. By analyzing the relation between the reflective patterns and the CLS, the analytic expressions of the slope and height of the CLS around a smooth flat plate and a double parallel flat are derived. According to the same method, the analytic expressions of the slope of the CLS around a rod and a columned glass tube are derived. Furthermore, the contact angle and the surface maximal height of the sample liquid are obtained by the analytic expression. It is believed that the boundary reflection principle is capable of real time describing the measurement of the characterization of CLS.
     (6) A novel contact angle measurement by laser glancing incidence method and tilting plate method. When an expanded and collimated laser beam impinges on the CLS around a smooth flat plate at glancing incidence, special reflective patterns of a strip-shape dark region in the center and the bright region on both sides are observed. The relation of the dark region width and the maximal height of the CLS is derived theoretically. The contact angle of distilled water on the glass slides is calculated directly by utilizing the dark area width of the reflection pattern. A contact angle measurement by traditional tilting plate method is improved. When a collimated light beam vertically illumined the CLS, the distribution of the reflected light from the CLS will change with the surface deformation. It is possible to measure the surface deformation by determining the change of the reflective light from the CLS. A contact angle is direct calculated by the angle of rotation of a plate.
引文
[1]D.Myers.表面、界面和胶体—原理及应用[M].北京:化学工业出版社,2005:1-10.
    [2]M.Sano,M.Kawaguchi,Y.L Chen,et al.Technique of surface-wave scattering and calibration with simple liquids[J].Rev.Sci.instrum.,1986,57(6):1158-1162.
    [3]K.Sakai,P.K.Choi,H.Tanaka,and K.Takagi.A new light scattering technique for a wide-band ripplon spectroscopy at the MHz region[J].Rev.Sci.Instrum.,1991,62(5):1192-1195.
    [4]V.Kolevzon and G.Gerbeth.Light-scattering spectroscopy of a liquid gallium surface[J].J.Phys.D:Appl.Phys.,1996,29:2071-2081.
    [5]刘大禾.用布里渊散射实现海水中声速的实时遥测[J].声学学报,1998,23(4):184-188.
    [6]刘大禾,J.W.Katz.水中布里渊散射的边缘探测方法[J].中国激光,1999,26(4):307-311.
    [7]徐建峰,李荣胜,周静等.用布里渊散射测量水的体粘滞系数[J].光学学报,2001,21(9):1112-1115.
    [8]吴俊林,杨宗立,袁胜利等.液体表面光场环状暗斑效应及折射率测量[J].光学技术,2004,30(3):308-310.
    [9]陈伟民,张洁.软性亲水性接触镜几何参量的光电成像测量方法[J].光子学报,2006,35(3):456-459.
    [10]Л.Д.朗道,Е.М.栗弗席茨.流体力学[M].北京:高等教育出版社,1983:48-49 294-298.
    [11]张兆顺,崔桂香.流体力学(第2版)[M].北京:清华大学出版社,2006:203-227 404.
    [12]F.S.克劳伏德.波动学(下册)[M].北京:科学出版社,1981:407-416.
    [13]R.M.Heavers.Measuring g and γ with water waves[J].The physics teacher,1997,35:302-304.
    [14]F.Behroozi and A.Perkins.Direct measurement of the dispersion relation of capillary waves by laser interferometry[J].Am.J.Phys.,2006,74(11):957-961.
    [15]庄礼贤,尹协远,马晖扬.流体力学(修订版)[M].中国科学技术大学出版 社,1997:281-316.
    [16]G.I.Stegeman.Optical probing of surface waves and surface wave devices[J].IEEE Trans.Sonics Ultrason.,1976,23(1):33-63.
    [17]W.S.Goruk,R.Normandin,P.J.Vella,et al.Optical diffraction studies of sound waves in lithium niobate[J].J.Phys.D:Appl.Phys.,1976,9:999-1007.
    [18]B.D.Duncan.Visualization of surface acoustic waves by means of synchronous amplitude-modulated illumination[J].Appl.Opt.,2000,39(17):2888-2895.
    [19]K.Yamanaka,H.Cho,and Y.Tsukahara.Precise velocity measurement of surface acoustic waves on a bearing ball[J].Appl.Phys.Lett.,2000,76(19):2797-2799.
    [20]I.Grulkowski and P.Kwiek.Experimental study of light diffraction by standing ultrasonic wave with cylindrical symmetry[J].Opt.Commun.,2006,267:14-19.
    [21]苗润才,赵晓凤,时坚.低频液体表面波的激光干涉测量[J].中国激光,2004,31(6):752-756.
    [22]苗润才,滕晓丽,叶青.液体表面低频声波的非线性声光效应[J].光子学报,2003,32(10):1264-1267.
    [23]苗润才,时坚,赵晓凤.干涉法测量低频表面波的衰减系数[J].光子学报,2005,34(3):382-385
    [24]赵艳,沈中华,陆建等.流-固界面波的激光激发与光偏转检测[J].光子学报,2006,35(12):1793-1797.
    [25]G.Weisbuch and F.Garbay.Light scattering by surface tension waves[J].Am.J.Phys.,1979,47(4):355-356.
    [26]J.D.Barter,K.L.Beach,and P.H.Y.Lee.Collocated and simultaneous measurement of surface slope and amplitude of water waves[J].Rev.Sci.Instrum.,1993,64(9):2661-2665.
    [27]J.D.Barter.Surface strain modulation of insoluble surface film properties[J].Phys.Fluids,1994,6(8):2606-2616.
    [28]J.D.Barter and P.H.Y.Lee.Real-time wave-amplitude spectrum analyzer for air-liquid interfaces[J].Appl.Phys.Lett.,1994,64(15):1896-1898.
    [29]J.D.Barter and P.H.Y.Lee.Imaging surface-wave analyzer for liquid surfaces[J].1997,Appl.Opt.,36(12):2630-2635.
    [30]W.M.Klipstein,J.S.Radnich,and S.K.Lamoreaux.Thermally excited liquid surface waves and their study through the quasielastic scattering of light[J].Am.J. Phys.,1996,64(6):758-765.
    [31]T.K.Barik,A.Roy,and S.Kar.A simple experiment on diffraction of light by interfering liquid surface waves[J].Am.J.Phys.,2005,73(8):725-729.
    [32]T.K.Barik,P.R.Chaudhuri,A.Roy,et al.Probing liquid surface waves,liquid properties and liquid films with light diffraction[J].Meas.Sci.Technol.,2006,17(6):1553-1562.
    [33]F.Behroozi and N.Podolefsky.Capillary-gravity waves and the Navier-Stokes equation[J].Eur.J.Phys.,2001,22:587-593.
    [34]F.Behroozi and N.Podolefsky.Dispersion of capillary-gravity waves:a derivation based on conservation of energy[J].2001,22:225-231.
    [35]F.Behroozi,B.Lambert,and B.Buhrow.Direct measurement of the attenuation of capillary waves by laser interferometry:Noncontact determination of viscosity[J].Appl.Phys.Lett.,2001,78(16):2399-2401.
    [36]F.Behroozi and P.S.Behroozi.Efficient deconvolution of noisy periodic interference signals[J].J.Opt.Soc.Am.A,2006,23(4):902-905.
    [37]P.Behroozi,K.Cordray,W.Griffin,et al.The calming effect of oil on water[J].Am.J.Phys.,2007,75(5):407-414.
    [38]F.Behroozi.Fluid viscosity and the attenuation of surface waves:a derivation based on conservation of energy[J].Eur.J.Phys.,2004,25:115-122.
    [39]苗润才,杨宗立.液体表面波物理特性及其光学效应的研究[J].物理学报,1996,45(9):1521-1525.
    [40]Runcai Miao,Zongli Yang,Jingtao Zhu,et al.Visualization of low-frequency liquid surface acoustic waves by means of optical diffraction[J].Appl.Phys.Lett.,2002,80(17):3033-3035.
    [41]时坚,苗润才.低频液体表面张力与频率关系研究[J].陕西师范大学学报(自然科学版),2004,32(3):44-46.
    [42]苗润才,董军,祁建霞等.低频液体表面波衍射条纹的不对称性[J].光子学报,2006,35(1):1921-1924.
    [43]张亚妮,苗润才.表面声波的激光检测技术[J].激光杂志,2006,27(2):6-8.
    [44]Runcai Miao,Xiaofeng Zhao,and Jian Shi.Modulated interference of reflected light from a liquid surface wave at tens hertz frequencies[J].Opt.Commun.,2006,259(2):592-597.
    [45]Jun Dong,Runcai Miao,Jianxia Qi,et al.Unusual distribution of the diffraction patterns from liquid surface waves[J].J.Appl.Phys.,2006,100,033108:1-3.
    [46]苗润才,祁建霞,董军等.干涉亮条纹强度的不均匀分布[J].光子学报,2007,36(1):156-159.
    [47]杨永正.液体表面波光栅的研究[J].光学学报,1990,10(2):183-188.
    [48]赵秀英,杨永正.液态金属表面特性研究的新途径[J].中国激光医学杂志,1996,5(1):45-49.
    [49]杨永正,杨军.液态金属表面特性研究的新途径[J].半导体光电,1997,18(6):387-390.
    [50]俞世刚.一种新型光纤传感器的应用研究[J].量子电子学报,2004,21(1):64-67.
    [51]朱步瑶,赵振国.界面化学基础[M].北京:化学工业出版社,1999:205-213.
    [52]顾惕人,朱步瑶,李外郎等.表面化学[M].北京:科学出版社,2003:6-8.
    [53]A.W.亚当森.表面的物理化学[M].北京:科学出版社,1984:4-5 115354-357.
    [54]B.G.Kolossvary.The Reflection method of surface tension measurement[J].Am.J.Phys.,1953,21(7):510-512.
    [55]K.Ishida,S.Kinoshita,Y.H.and Mori.Surface tcnsiometer utilizing laser-beam reflection at cylindrical liquid menisci[J].Rev.Sci.Instrum.,1993,64(5):1324-1329.
    [56]杨宗立,苗润才.弯曲表面上光的临界反射现象及其应用[J].光子学报,2000,29(4):327-329.
    [57]Runcai Miao,Zongli Yang,and Jingtao Zhu.Critical light reflection from curved liquid surface[J].Opt.Commun.,2003,218:199-203.
    [58]Jun Dong,Runcai Miao,and Jianxia Qi.Visualization of the curved liquid surface by means of the optical method[J].J.Appl.Phys.,2006,100,124914:1-5.
    [59]吕遒光,陈家璧,毛信强.傅立叶光学基本概念和习题[M].北京:科学出版社,1985:169-174.
    [60]J.W.顾德门.傅里叶光学导论[M].北京:科学出版社,1976:77-80.
    [61]吕乃光.傅立叶光学(第2版)[M].北京:机械工业出版社,2006:65-116.
    [62]王洵,黄克林.正弦衍射光栅的傅立叶分析方法[J].抚顺石油学院学报,2002,22(2):74-77.
    [63]P.G.Klemens.Dispersion relations for waves on liquid surfaces[J].Am.J.Phys.,1984,52(5):451-452.
    [64]F.Behroozi and N.Podolefsky.Dispersion of capillary-gravity waves:a derivation based on conservation of energy[J].Eur.J.Phys.,2001,22:225-231.
    [65]梁富增.光线斜入射时光栅衍射光强分布[J].郑州纺织工学院学报,2001,12(增刊):100-101.
    [66]申志荣.平行光斜入射光栅时的衍射特性研究[J].陕西科技大学学报,2003,21(5):46-48.
    [67]钞曦旭,杨万民,唐纯青.MATLAB及其在大学物理课程中的应用[M].西安:陕西师范大学出版社,2006:53-102.
    [68]罗成汉,刘小山.曲线拟合法Matlab实现[J].现代电子技术,2003,20:16-20.
    [69]J.D.Barter.A capacitive antenna for measurement of the dispersion relation of capillary waves on water[J].Rev.Sci.Instrum.,1993,64(2):556-560.
    [70]苗润才,罗道斌,朱峰.低频液体表面波激光衍射条纹的特征[J].光子学报.2007,36(11):2134-2137.
    [71]Feng Zhu,Runcai Miao,Chunlong Xu,and Zanzan Cao.Measurement of the dispersion relation of capillary waves by laser diffraction[J].Am.J.Phys.,2007,75(10):896-898.
    [72]朱峰,苗润才.激光衍射法测量表面张力和表面压[J].应用激光.2006,26(4):251-260.
    [73]苗润才,朱峰.激光衍射法测测量液体薄膜厚度的研究[J].激光技术.2007,31(5):537-539.
    [74]E.Hecht.Optics(7th edition)[M].北京:高等教育出版社,2005:440-531.
    [75]马科斯·玻恩,埃米尔·沃耳夫.光学原理(第七版)[M].北京:电子工业出版社,2005:371-382.
    [76]刘光启,马连湘,刘杰.化学化工物性数据手册(无机卷)[M].北京:化学工业出版社,2002:3-15.
    [77]J.Pellicer,V.Garcia-Morales,L.Guanter,et al.On the experimental values of the water surface tension used in some textbooks[J].Am.J.Phys.,2002,70(7):705-709.
    [78]王献孚,熊鳌魁.高等流体力学[M].武汉:华中科技大学出版社,2003:231-236.
    [79]罗道斌,苗润才,朱峰.低频液体表面波的光衍射及衰减特性的研究[J].激光技术.2007,31(6):584-586.
    [80]Q.Y.Wang,A.Feder,and E.Mazur.Capillary wave damping in heterogeneous monolayers[J].J.Phys.Chem.,1994,98(48):12720-12726.
    [81]W.D.Garrett and W.A.Zisman.Damping of capillary waves on water by monomolecular films of linear polyorganosiloxanes[J].J.Phys.Chem.,1970,74(8):1796-1805.
    [82]K.Y.Lee,T.Chou,D.S.Chung,and E.Mazur.Direct measurement of the spatial damping of capillary waves at liquid-vapor interfaces[J].J.Phys.Chem.,1993,97(49):12876-12878.
    [83]丁力,娄昊楠,吕景林等.水波频闪法测量液体表面张力系数[J].大学物理实验,2005,18(3):8-10.
    [84]于军胜,唐季安.表(界)面张力测定方法的进展[J].化学通报,1997,11:11-15.
    [85]何全田,陈渝,董宏斌.测量表面张力和接触角的简单方法和装置[J].应用激光,1995,15(5):230-231.
    [86]刘慎秋.用拉普拉斯公式测液体表面张力系数[J].物理实验,1999,19(1):12-13.
    [87]任丰兰,孙宁,王道明等.测量液体表面张力系数的新方法[J].计量与测试技术,2005,32(12):5-6.
    [88]杨宗立.激光在测定液体表面张力系数及折射率中的应用[J].应用激光,2004,24(5):295-298.
    [89]冉竹玉.用涟波干涉法测液体的表面张力系数[J].重庆师范学院学报(自然科学版),1997,14(1):73-76.
    [90]许忠宇,邢凯.用光栅衍射法测试液体表面张力[J].大学物理,2003,22(9):23-24
    [91]K.M.Awati and T.Howes.Stationary waves on cylindrical fluid jets[J].Am.J.Phys.,1996,64(6):808-811.
    [92]唐轶峻,隋成华,李巧文等.利用表面波测定低表面张力液体相速度的方法研究[J].兰州理工大学学报,2006,32(1):161-164.
    [93]朱峰,苗润才.激光衍射法测量液体的表面波速度和表面张力[J].激光杂志,2007,28(3):69-72.
    [94]李葵英.界面与胶体的物理化学[M].哈尔滨:哈尔滨工业大学出版社,1998:49-112.
    [95]赵振国.吸附作用应用原理[M].北京:化学工业出版社,2005:15-32.
    [96]言经柳.液体表面张力的成因及其随温度的变化[J].南宁师范高等专科学校学报,2003,20(4):73-75.
    [97]任文辉,林智群,彭道林.液体表面张力系数与温度和浓度的关系[J].湖南农业大学学报(自然科学版),2004,30(1):77-79.
    [98]易家训.流体力学[M].北京:高等教育出版社,1983:122-131.
    [99]F.S.Crawford.Speed of gravity waves in deep water:Another elementary derivation[J].Am.J.Phys.,1992,60(8):751-752.
    [100]B.V.Zhmud,F.Tiberg,and K.Hallstensson.Dynamics of capillary rise[J].J.Colloid Interface Sci.,2000,228:263-269.
    [101]N.Kaiser,A.Croll,F.R.Szofran,et al.Wetting angle and surface tension of germanium melts on different substrate materials[J].J.Cryst.Growth,2001,231:448-457.
    [102]R.Finn.The contact angle in capillarity[J].Phys.Fluids,2006,18,047102:1-7.
    [103]J.T.Buontempo and F.A.Novak.An inexpensive Wilhelmy balance for the study of Langmuir monolayers[J].Rev.Sci.Instrum.,1992,63(12):5707-5713.
    [104]J.F.Padday,A.R.Pitt,and R.M.Pashley.Menisci at a free liquid surface:surface tension from the maximum pull on a rod[J].Chem.Soc.Faraday Trans.,1975,70:1919-1931.
    [105]D.C.Agrawal and V.J.Menon.An experiment on surface tension using a double capillary method[J].Am.J.Phys.,1984,52(5):472.
    [106]P.O.Scheie.The upward force on liquid in a capillary tube[J].Am.J.Phys.,1989,57(3):279-280.
    [107]B.V.Zhmud,F.Tiberg,and K.Hallstensson.Dynamics of cpillary rise[J].Colloid Interface Sci.,2000,228(2):263-269.
    [108]任学藻.柱形管的毛细现象[J].大学物理,2005,24(7):10-11.
    [109]李键.用毛细管测量纯水表面张力系数的误差讨论[J].物理实验,2003,23(8):45-47.
    [110]A.A.Duarte,D.E.Strier,and D.H.Zanette.The rise of a liquid in a capillary tube revisited:A hydrodynamical approach[J].Am.J.Phys.,1996,64(4):413-418.
    [111]朱峰,苗润才,徐春龙.激光在弯曲液面的反射效应及应用[J].陕西师范大学学报(自然科学版).2007,35(2):35-37.
    [112]Feng Zhu and Runcai Miao.Boundary reflection from curved liquid surfaces and its application[J].Opt.Commun.,2007,275:288-291.
    [113]朱峰,苗润才,罗道斌.凹形弯曲液面的边界反射及应用[J].量子电子学报.2007,24(4):420-424.
    [114]朱峰,苗润才.利用细棒润湿效应弯曲液面边界反射的研究[J].激光杂志.2007,28(5):72-73.
    [115]苗润才,朱峰,罗道斌.激光反射法测量弯曲液面特性[J].光子学报.2007,36(10):1872-1875.
    [116]J.J.Bikerman.Physical Surfaces[M].New York:Academic Press Inc,1970:2-13.
    [117]F.Behroozi,H.K.Macomber,J.A.Dostal,et al.The profile of a dew drop[J].Am.J.Phys.,1996,64(9):1120-1125.
    [118]N.Kaiser,A.Croll,F.R.Szofran,et al.Wetting angle and surface tension of germanium melts on different substrate materials[J].Cryst.Growth,2001,231(4):448-457.
    [119]X.Pepin,S.Blanchon,G.Couarraze.A new approach for determination of powder wettability[J].Int.J.Pharm.,1997,152:1-5.
    [120]赵振国.接触角及其在表面化学研究中的应用[J].化学研究与应用,2000,12(4):370-374.
    [121]李伟,刘方方,张浩等.接触角法在测定固体表面洁净度方面的应用[J].日用化学工业,2006,36(1):34-37.
    [122]马永海.一种新的润湿性测定方法:Wilhelmy动力板法[J].石油实验地质,1995,17(4):402-405.
    [123]籍延坤,郝久清,崔玉广.固体与液体接触角的测定[J].抚顺石油学院学报,2002,22(3):84-86.
    [124]李慧玲.接触角浅析[J].物理通报,1998,3:1-2.
    [125]朱步瑶,赵振国.界面化学基础[M].北京:化学工业出版社,1999:208-216.
    [126]A.E.Ghzaoui.Determination of contact angles:Consistency between experiment and theory[J].J.Appl.Phys.,1999,86(5):2920-2922.
    [127]W.Jin,J.Koplik,and J.R.Banavar.Wetting hysteresis at the molecular scale[J]. Phys. Rev. Lett., 1997,78(8): 1520-1523.
    [128] Yongan Gu, Dongqing Li, and P. Cheng. Determination of line tension from the shape of axisymmetric liquid-vapor interfaces around a conic cylinder [J]. J.Colloid Interface Sci., 1996,180: 212-217.
    [129] Yongan Gu, Dongqing Li, and P. Cheng. A novel contact angle measurement technique by analysis of capillary rise profile around a cylinder [J]. Colloids Surf.A, 1997,122:135-149.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700