碱式氯化镁纳米棒干燥动力学及分子动力学
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碱式氯化镁是一种新型的高功能无机化工产品,可作为阻燃剂、补强增韧剂、填充剂等。而纳米级的碱式氯化镁具有纳米材料的所有特性,这使纳米级碱式氯化镁呈现出特有的的特性,因而备受关注。
     采用液相法,以六水氯化镁(MgCl2·6H20)和轻质氧化镁(MgO)为原料,合成出碱式氯化镁纳米棒(3Mg(OH)2·MgCl2·8H2O),采用热分析动力学技术处理实验数据,研究碱式氯化镁纳米棒的干燥机理,得到其干燥方程为MR=exp[-(kt)n],干燥速率方程为-dMR/dt=knMR(-lnMR)(?),其中干燥时间指数n=1.808,干燥速率常数k=Aexp(-CT/T)exp(-CLL)=Aexp[-(Ev+RTCLL)/RT]=Aexp[-Ev+Ed)/RT]=Aexp(-E/RT),扩散活化能Ed=RTCLL,表观活化能E=Ev+RTCLL,采用扩散活化能Ed=RTCLL,和等湿分比方法确定碱式氯化镁纳米棒的干燥动力学参数:频率因子A=8.997min-1,界面蒸发活化能Ev=15.399kJ·mol-1,长度常数Q=161.380m-1,温度常数CT=1852.177K。
     碱式氯化镁纳米棒的干燥过程可以分为三段,分别采用分段函数表示。其中升速阶段的干燥方程为MR=exp[-(kt)n1],干燥速率方程为-dMR/dt=kn1MR(-1nMR)(?)恒速阶段的干燥方程为MR=a-mkt,干燥速率方程为-dMR/dt=mk;降速阶段的干燥方程为MR=exp[-(kt)n2],干燥速率方程为-dMR/dt=kn2MR(-1nMR)(?)
     采用分子动力学模拟的方法,并以异丙醇分子中各个作用位点为统计对象进行统计平均,对异丙醇分子的气液界面特性进行了研究,探讨了截断半径、温度、薄层切片数Num和分子数N对异丙醇气液界面特性的影响。模拟结果表明,温度T’对气液相主体密度表现出相反的规律,其中气相主体密度随着温度的升高而逐渐增大,液相主体密度则逐渐减小,而界面厚度则逐渐增大;截断半径rc*对气相及液相密度影响不大,当rc*=4.0时,液相主体密度的模拟值与实验值最为接近,rc*=4.0为异丙醇分子模拟时所选取的最佳截断半径,界面厚度则随着截断半径rc*的增大而逐渐减小;随着分子数N的增大,气相主体密度逐渐减小,而液相主体的密度在分子数越多时越接近于实验值,界面厚度则随着分子数的增大而增大;薄层切片数对异丙醇气液界面特性的影响不大,在薄层切片数为200时,其液相主体密度的模拟值接近于实验值。
Basic magnesium chloride is a new type of high functional inorganic chemical product, which is often used as flame retardants, hardening filler, filling agent and so on. Basic magnesium chloride nanorods possess the characteristics of nano-materials,which make the nanoscale basic magnesium chloride materials shows the particular property, thus receives more and more attention.
     Basic magnesium chloride nanorods were prepared by liquid phase method with magnesium chloride hexahydrate and light magnesium oxide.The analysis kinetics method was used to treat the experiental data in order to study the drying mechanism of basic magnesium chloride nanorods.Than,the drying equation MR=exp[-(kt)n]and the drying rate equation-DMR/dt=knMR (-lnMR)(?) were obtained.Thereinto,the drying index n=1.808, the drying rate constant k=Aexp(-CT/T)exp(-CLL)=Aexp[-(Ev+RTCLL)/RT]=Aexp[-(Ev+Ed)/RT]=Aexp(-E/RT),the diffusion activation energy Ed=RTCLL,the apparent activation energy E=Ev+RTCLL. Then, by using the equal moisture ratio method to determine the drying kinetics parameters, the frequency factor A=8.997min-1, the length constant CL=161.380m-1, the activation energy of interface evaporation Ev=15.399kJ·mol-1, and the temperature constant C7=1852.177K were obtained.
     The drying process of basic magnesium chloride nanorods can be divided into three parts, which got the drying equation and the drying rate equation at different segment.The drying equation in the increasing rate drying period, the constant rate drying period and the decelerating rate drying period are MR=exp[-(kt)n1], MR=a-mkt, MR=exp[-(kt)n2], respectively, and the drying rate equation are-dMR/dt=kn1MR(-lnMR)(?),-dMR/dt=mk,-dMR/dt=kn2MR(-lnMR)(?), respectively.
     The vapor-liquid interface characteristics of isopropanol were investigated by molecular dynamics simulation(MD),and with the each effect point of isopropanol for object in statistical average method. The distribution regularities of interface characteristics were given, and the influence of cut-off radius, temperature, the number of moleculus and thin slice layer on interface characteristics were studied. The study shows that:The temperature has the opposite influence on the interface characteristics, one of is that with the increase of temperature, the density of gas phase and the interfacial thickness increase gradually, but the density of liquid decreases. The cut-off radius has little effect on the interface characteristics of isopropanol, the simulation value of liquid density is close to experimental value when the rc*=4.0, sorc*=4.0is the optimal cut-off radius for MD of isopropanol,and the interfacial thickness is decreasing with the increase of cut-off radius. The density of gas phase is decreasing with the increase of molecules, whereas, the density of liquid is closer to the experimental value. When the number of thin slice layer was200, the simulation value of liquid density is close to experimental value, but the vapor-liquid interface density and the interfacial thickness had little changed and had no obvious regularity.
引文
[1]王宝和.干燥动力学研究综述[J].干燥技术与设备,2009,7(1):51-56.
    [2]BABAS S J, PAPANICOLAOU E, KYRIAKIS N, et al. Evaluation of thin-layer drying models for describing drying kinetics of figs(Ficus carica)[J]. Journal of Food Engineering,2006,75(2):205-214.
    [3]曹崇文.农产品干燥机理、工艺与技术[M].北京:中国农业大学出版社,1998.
    [4]吕晓明.碱式氯化镁纳米棒的制备及表面改性研究[D].大连,大连理工大学,2008.
    [5]王在华,冯刚,孙庆国,等.碱式氯化镁和氧化镁晶须的制备与表征[J].盐湖究,2007,15(4):41-44.
    [6]王宝和.相变动力学和热分析动力学在干燥动力学研究中应用的可能性[J].干燥技术与设备,2009,7(3):103-110.
    [7]席国喜,宋世理,刘琴.热分析动力学研究新进展[J].河南师范大学学报2004,32(4):78-82.
    [8]SANTOS J C 0, SANTOS I M G, SOUZA A G, et al. Thermal stability and kinetics study on thermal decomposition of commercial edible oils by thermogravimetry[J]. J. Food Sci.,2002,67(4):1393-1398.
    [9]曹新志,金征宇.γ-环糊精的玻璃化及热分解动力学的研究[J].中国粮食学报,2005,20(2):37-40.
    [10]朱小梅.盐酸环丙沙星的热稳定性和热分解动力学研究[J].中国药房,2008,19(22):1707-1708.
    [11]陈曦,于钦学,任文娥,等.聚酯的热分析与热解动力学的研究[J].绝缘材料,2009,42(3):52-63.
    [12]李建军.用差热分析方法研究确定明矾生产的干燥工艺[J].阴山学刊,2004,18(1):72-73.
    [13]苏婷婷,张连惠,汞红,等.甲烷磺酸锌的热分析及脱水动力学[J].辽宁石油化工大学学报,2005,25(1):20-26.
    [14]PIELICHOWSKI K, TOMASIK P, SIKORA M. Kinetics of gelatinization of potato starch studied by non-isothermal DSC[J]. Carbohydrate Ploymers,1998,35:49-54.
    [15]FESSAS D, SCHIRALDI A. Starch gelatinization kinetics in bread dough:DSC investigations on simulated baking processes[J]. J. Them Anal. Cal.,2000,61: 411-423.
    [16]胡祖荣,史启祯,高胜利,等.热分析动力学(第二版)[M].北京:科学出版社,2008.
    [17]王秀兰,穆小玲,王宝和.温度积分近似式的评析[J].辽宁化工,2009,38(8):554-557.
    [18]任宁,张建军.热分析动力学数据处理方法的研究进展[J].化学进展,2006,18(4):411-416.
    [19]FREIRE F, FIGUERIREDO A, FERRAO P. Thermal analysis and drying kinetics of olive bagasse[J]. Drying Technology,1999,17(4&5):895-907.
    [20]FENG H, TANG J, JOHN D W. Determination of moisture diffusivity of red delicious apple tissues by thermogravimetric analysis[J]. Drying Technology,2000,18(6):1183-1199.
    [21]MADHAVA M, RAO P S, GOSWAMI T K. Drying kinetics of paddy drying using thermogravimetric analysis[J]. Drying Technology,2001,19(6):1201-1210.
    [22]CAI J M, CHEN S Y. Determination of drying kinetics for biomass by thermogavimetric analysis under nonisothermal condition[J]. Drying Technology,2008,26:1464-1468.
    [23]陈镜泓,李传儒.热分析技术及其应用[M].科学出版社,1985.
    [24]BOIKO E A. Research on kinetics of the thermal processing of brown coals of various oxidative ageing degree using the non-isothermal methods[J]. Thermochimica Acta,2000,348:97-104.
    [25]LOOI A Y, GOLONKA K, RHODES M. Drying kinetics of single porous particles in superheated stream under pressure[J]. Chemical Engineering Journal,2002,87: 329-338.
    [26]ANDROUTSOPOULOS G P. Megalopolis lignite drying kinetics based on TGA experimental results[J]. Chemical Engineering Science,1986,41(8):2053-2059.
    [27]李先春,余江龙,胡广涛,等.印尼褐煤干燥和水分再吸收特性的试验研究[J].现代化工2009,29(1):5-7.
    [28]王伟云,李爱民.温度及特征尺度对污泥表观干燥动力学的影响研究[J].安全与环境学报,2007,7(6):34-37.
    [29]Thermal analysis application brief:Kinetics of drying by thermogravimetric analysis[J/OL]. http://www.tainst.com.
    [30]武德智.市政污泥与造纸污泥干化特性的实验研究[D].广州:华南理工大学,2010.
    [31]PICKLES C A. Drying kinetics of nickeliferous limonitic laterite ores[J]. Minerals Engineering,2003,16:1327-1338.
    [32]王秀兰.氢氧化镁纳米棒的热分解动力学和干燥动力学[D].大连:大连理工大学硕士学位论文,2010.
    [33]穆小玲.碱式氯化镁纳米棒的干燥动力学和热分解动力学[D].大连:大连理工大学硕士学位论文,2010.
    [34]何昌斌.Mg5(CO3)4(OH)2·4H20纳米花的干燥动力学及L-J流体的MD模拟[D].大连:大连理工大学硕士学位论文,2011.
    [35]汪文川.分子模拟-从算法到应用[M],化学工业出版社,2002,7.
    [36]蔡治勇.界面微观特性的分子动力学模拟研究[D].重庆:重庆大学动力工程学院,2008.
    [37]梅东海,李以圭,陆九芳,等Lennard-Jones纯流体液汽界面的分子动力学模拟[J],清华大学学报,1998,38(6):23-26.
    [38]METTHIAS M, JOCHEN W, JOHANN F. Molecular dynamics simulation of the liquid-vapor interface:Binary mixtures of Lennard-Jones fluids[J]. J. Chem. Phys.,1999,110(2): 1188-1194.
    [39]王遵敬,陈民,过增元Lennard-Jones流体汽液界面的分子动力学研究[J].清华大学学报,2001,41(2):80-83.
    [40]张新铭,刘朝,曾丹苓.界面热毛细波的分子动力学模拟[J].工程热力学学报,2003,24(6):914-916.
    [41]谭宁.界面微尺度热现象的分子动力学模拟[D].重庆:重庆大学动力工程学院,2002.
    [42]朱蓓蓓,高洪涛.氨水溶液汽液界面微观结构的分子模拟[J].计算机与应用化学,2009,26(7):869-872.
    [43]孙杰.水分子模型差异对汽液界面参数分布的影响[J].工程热物理学报,2009,30(1):1-4.
    [44]杨林,袁其朋,杨小进.含醇溶液中分子扩散系数的分子模拟[J].高校化学工程学报,2006,20(2):296-299.
    [45]孙炜,陈中,吴元欣,等.甲醇水溶液结构和扩散性质的分子动力学模拟[J].武汉理工大学学报,2006,28(7):18-22.
    [46]孙炜,陈中,黄素逸.电场作用下甲醇结构和扩散性质的分子动力学模拟[J].化工学报,2005,56(5):763-768.
    [47]俞联梦,唐耀,刘娟红,等.液态甲醇的分子动力学模拟[J].化学工业与工程,2009,26(4):338-341.
    [48]李勇,刘锦超,许海全,等.超临界甲醇的分子动力学模拟[J].西南民族大学学报·自然科学版,2009,35(4):824-830.
    [49]郭艳峰,刘锦超,李树森,等.甲醇/水混合物的分子动力学模拟[J].西南民族大学学报·自然科学版,2010,36(1):139-141.
    [50]马总平,唐耀,刘娟红,等.外场作用下乙醇团簇的分子动力学模拟[J].西南民族大学学报·自然科学版,2009,35(5):1053-1056.
    [51]SAIZ L, PADO J A, GUARDIA E. Structure and Dynamics of Liquid Ethanol[J]. J. Phys, Chem.B 1997,101(1):78-86.
    [52]PADRO J A, SAIZ L, GUARDIA E. Hydrogen bonding in liquid alcohols:a computer simulation study[J]. Jourmal of Molecular Structure,1997,416(1&3):243-248.
    [53]ZHANG Y, YANG J C, YANG X Y, et al. Structural and hydrogen bond analysis for supercritical ethanol:A molecular simulation study[J]. J.of Supercritical Fluids,2005,36 (2):145-153.
    [54]OSMAIR V D O, LUIZ C G F. Molecular dynamics simulation of liquid ethylene glycol and its aqueous solution[J]. Journal of Molecular Structur,2005,728 (1&3):179-187.
    [55]李勇,刘锦超,芦鹏飞,等.从常温常压到超临界乙醇的分子动力学模拟[J].物理学报,2010,59(7):4880-4887.
    [56]程岳山,张翠娟.乙醇/水二元混合物结构性质的分子力学模拟[J].泰山医学学报,2007,28(4):263-266.
    [57]ERIK J W W, ALEX C H. Dynamics properties of water/alcohol mixtures studied by computer simulation[J]. J. Chem Phys,2003,119(14):7308-7317.
    [58]甘婷婷.烷烃、芳香烃、醇表面力与分子能量项关系[D].江南大学硕士学位论文.2008.
    [59]DAIGUJI H. Molecular dynamic study of n-alcohols adsorbed on an aqueous electrolyte solution[J]. J. Chem. Phys,2001,115 (3):538-1549.
    [60]ZHENG W D, LING S W, XIAO J H, et al. Selective Adsorption of Isopropyl Alcohol Aqueous Solution on Polypropylene Surfaces:A Molecular Dynamics Simulation[J]. J. Chem. Phys,2001,115(3),22415-22421.
    [61]KONSTANTIN B. TARMYSHOV, FLORIAN M P. Interface between platinum(111)and liquid isopropanol(2-propanol):A Model for molecular dynamics studies[J]. J. Chem. Phys,2007,126, (7):074702(1-15).
    [62]朱蓓蓓,高洪涛.辛醇对LiBr水溶液气液界面的影响[J].工程热物理学报,2010,31(3):381-384.
    [63]朱蓓蓓,高洪涛.添加正辛醇的溴化锂水溶液汽液界面微观形态[J].工程热物理学报,2009,30(5):741-744.
    [64]陈正隆,徐为人,汤立达.分子模拟的理论与实践[M].化学工业出版社,2007,7.
    [65]王宝和,穆小玲.碱式氯化镁纳米棒干燥动力学方程及参数的确定[J].干燥技术与设备2009,7(6):248-252.
    [66]许树成,张磊,解金春,等.异丙醇的O-H伸缩振动泛频光谱和分子构象[J].化学物理学报,2000,13(2):149-155.
    [67]JORGENSEN W L. OPLS All-Atom Force Field for Carbohydrates[J]. J Comput Chem,1997,18(16):1955-1970.
    [68]JORGENSEN W L, MAXWELL D S, JULIAN T. Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids[J]. J. Am. Chem. Soc.1996,118,11225-11236.
    [69]KAHN K, BRUICE T C. Parameterization of OPLS-AA Force Field for the Conformational Analysis of Macrocyclic Polyketides[J]. J Comput Chem,2002,23 (10):977-996.
    [70]陈敏伯.计算化学-从理论化学到分子模拟[M].科学出版社,2009.3.
    [71]王松汉.石油化学设计手册[M].化学工业出版社,2002.1.
    [72]GE J, KJELSTRUP S, BEDEAUX D, et al. Transfer coefficient for evaporation of a system with a Lennard-Jones long-range spline potential [J]. Physical Review E, 2007,75:061604.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700