嵌套复式周期光子晶体结构的带隙模拟及制备方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光子晶体因其能够调控光子传播,在物理、材料等众多领域引起了广泛关注。随着近年光子晶体应用领域的拓展和研究的深入,仅仅产生光子禁带实现光子晶体效应已无法满足应用的需求,对各种器件调制光子禁带的功能提出了更高的要求,复合结构、复杂介质已日渐成为研究主流。为实现光子禁带特性的精确调制,本文以光子晶体周期结构作为突破点,引入更多能够控制禁带特性的结构参数,提出了一种全新的光子晶体结构——嵌套复式周期光子晶体结构。
     本文以探讨这种全新嵌套复式周期结构的理论禁带特性,探索针对不同维度嵌套复式周期结构的制备方法体系,实现不同维度嵌套复式周期结构的制备为研究目标。旨在为今后以明确的应用需求为牵引,进一步开展嵌套复式周期结构光学性能实验研究和相关器件开发奠定充实的技术基础。
     研究内容与结论包括:
     1、针对提出的全新嵌套复式周期结构,在成功建立纯二维嵌套复式周期结构计算模型的基础上,分别研究了介质较连续分布结构类型及高介电常数介质孤立分布结构类型的带隙特性受内、外周期填充率,外周期单元形状,材料介电常数等因素影响的规律。通过与简单周期结构带隙特性的比较,可归纳纯二维嵌套复式周期结构的带隙特点及产生机理:外周期结构参数是光子带隙位置及带隙宽度的主要决定因素,可实现小尺寸调制大波长;内周期结构对带隙特性的微调作用分为两部分:内周期细微结构的引入减小了介质的填充率,改变了有效介电常数,同时内周期的周期效应有助于形成TM模的带隙,而阻碍TE模带隙的形成。与此同时,通过建立二维三维混杂和准三维嵌套复式周期结构模型,获得了与纯二维嵌套复式周期结构相似的,内外结构周期效应同时发挥带隙调制作用的模拟结果。这也成为不同维度嵌套复式周期结构共同具有的最为独特的性质,而较简单周期更易获得超窄禁带成为嵌套复式周期结构另一个显著特性。
     2、制备了氧化铝材料体系纯二维嵌套复式周期结构。在制备工艺中,开拓性地将毛细微模塑技术和电化学阳极氧化技术结合,提出了一套全新的毛细微模塑图案化限域铝阳极氧化方法。通过对r/d可控的铝阳极氧化方法、毛细微模塑限域工艺及其两者兼融性地研究,掌握了相关工艺参数对纯二维嵌套复式周期结构制备的影响规律,并最后成功实现了氧化铝材料体系纯二维嵌套复式周期结构的制备。(1)在成孔范围内,r、d和r/d受阳极氧化电压及体系温度影响;通过后期扩孔单独增大r,也可以提高r/d;可借助热处理及电化学抛光等预处理过程和增加阳极氧化时间改善孔阵列的有序性。(2)苯乙烯聚合过程中单体挥发产生的空隙是影响涂层隔绝电解液性能的关键因素之一,而引发剂浓度、聚合温度和旋转涂敷速度都将对其产生影响。引发剂浓度0.5%时单体挥发最少,提高聚合温度和减慢旋转涂敷速度也有助于提高聚苯乙烯涂层隔绝电解液的性能。采用最佳制备工艺制得的聚苯乙烯涂层可对阳极氧化过程保证48小时的限域作用。(3)实验证明r/d可控的铝阳极氧化方法和毛细微模塑限域工艺兼容性良好,已成功制备出氧化铝材料体系的纯二维嵌套复式周期结构。同时确定了采用毛细微模塑图案化限域铝阳极氧化方法能够制备的纯二维嵌套复式周期结构内外周期参数范围。
     3、制备了硅材料体系二维三维混杂嵌套复式周期结构。在制备工艺中提出了微米凹槽内微球自组装技术——“局域对流自组装胶体模板法”,并将原本用于薄膜制备的PECVD技术用于凹槽内微球间纳米间隙的填充。在半导体硅光刻技术制备外周期的基础上,开展了硅凹槽阵列中硅反opal内三维周期结构的制备研究,掌握了二维三维混杂嵌套复式周期结构制备的关键技术,并最后成功实现了硅材料体系二维三维混杂嵌套复式周期结构的制备。(1)探讨了胶体微球浓度、插片角度、环境温度等工艺条件对外周期硅凹槽阵列内胶体微球自组装效果的影响,结果显示:被微球完全排列满的凹槽比例分别随角度、温度和浓度的增大,呈现先增大再减小的趋势,同时自组装效果随环境空间的增大而恶化。综合各影响因素确定了可以满足二维三维混杂嵌套复式周期结构制备要求的最佳工艺条件。(2)对PECVD方法中影响opal结构内外沉积均匀性的影响因素进行了分析,并通过系统实验研究了工艺参数的影响:SiH_2浓度较小时opal结构内外沉积均匀性较好,而调节射频功率、反应室压力和气体流量是SiH_2浓度的有效控制手段。温度将同时影响SiH_2的分解反应速率、SiH_2浓度和SiH_2扩散系数,实验证明升高温度可提高opal结构内外沉积的均匀性。另外,扩散通道不被堵塞的前提下,沉积时间越长,opal结构排列越规整,则整体填充越致密,越有利于反opal结构的形成。选择表层沉积速率低于200nm/h并兼顾温度对结构内外沉积均匀性影响的工艺组合,在沉积14小时并反洗后成功实现了二维三维混杂嵌套复式周期结构的制备。
     4、针对局域对流自组装这种全新的制备方法,首次建立了动力学过程模型。经过半定量计算,该模型与实验结果吻合较好,可基本正确地描述局域对流自组装过程。同时根据模型确定了采用该方法所能制备的二维三维混杂嵌套复式周期结构内外周期参数范围。
     5、通过变速PECVD和层间抛光工艺,对二维三维混杂嵌套复式周期结构的制备技术进行改进,基本实现了二维三维混杂嵌套复式周期结构的叠加,验证了该技术路线制备准三维嵌套复式周期结构的可行性。
     6、根据纯二维嵌套复式周期结构较简单周期具有更强偏振模式调制能力的特点以及嵌套复式周期结构的超窄带特性,提出了将这种新型嵌套复式周期结构应用于偏振伪装和激光防护领域的设想。
Photonic crystal caused extensive concern in numerous field such as physics and material science because of their unique properties in terms of light propagation. As photonic crystal has been used more and more recently, only producing photonic bands would not satisfy more complex applied needs and it is more critical to modulate the bands accurately. So complex structure and compound material has became research main current. For studying the method to modulate the photonic bands accurately, in this thesis a new structure, nesting complex-period photonic crystal structure, was established. Comparing to simple photonic crystal structure, there are more parameters can modulate bands in nesting complex-period structure.
     This thesis aimed to comprehend the new optical properties of the new complex-period structure in theory, to find out appropriate preparation method and to fabricate the stuctures successfully. These would lay substantial technique foundation for the subsequent experiment study on optical function and the promotion in new devices. The main contents are as follows:
     1. The photonic bands of new 2D nesting complex-period structures were theoretically investigated. The influence of fill ratio of outside period, fill ratio of inside period, shape of outside period units and material on photonic bands were investigated. Calculation revealed that the range of band were mostly adjusted by outside-period structure, and inside-period structure dominated the bands both by changing fill ratio and by the period effect of inside-period structure, the latter contributes to bands in TM mold but obstructs bands in TE mold. These properties validated the feasibility that the band were modulated by much little period structure in nesting complex structure.
     The photonic bands of 2D/3D and pseudo 3D nesting complex-period structures were theoretically investigated. As 2D nesting complex-period structures, Calculation revealed that Outside and inside period structure affected the bands together, which is the most unique properties of nesting complex-period structures.
     2. For fabricating 2D nesting complex-period structure, a new method, "anodization in defined region" was introduced for the first time, which combined electrochemical oxidation with capillary force lithography technology. The technics for preparation of outside and inside period structure as well as compatibility of them were studied. (1) r, d and r/d were affected by anodic voltage or temperature, more higer was anodic voltage or temperature, r or d was more larger, but r/d would keep steady after anodic voltage or temperature increased to high enough. On the other hand, r would increase alone by overtime enlarging, which would cause the r/d increase at the same time. In addition, the order of pores array could be improved through annealed, anodic polished, or increasing anodic time. (2) Lacunas due to styrene vaporizing during polymerization would weaken the protection of polystyrene film. The vaporize was the fewest when the concentration of solicitation was 0.5%, in addition, raising temperature and decelerating rotate also could improve the protection of polystyrene film. Ultimately, the film obtained by using best technics would protect the substrate from electrolyte for 48 hours. (3) Experiments showed capillary force lithography could cooperate well with electrochemical oxidation technology, and finally 2D nesting complex-period structure was fabricated successfully. (4) Following the confinement of electrochemical oxidation and capillary force lithography technology themselves, The size of 2D nesting complex-period structure could be prepared with "anodization in defined region" was estimated.
     3. For fabricating 2D/3D nesting complex-period structure, a new method, "convective assembling in defined region", was put forward, and in a creative way, PECVD was used to fill the voids of prepared silica colloidal crystals in Si flute with Si. After outside period structure (flutes array in si wafer) had prepared with micro fabrication technology, the technics for fabrication of inside period structure, Si inverse opal structure embedded in Si flutes, were studied. (1) The influences of gradient, sphere concentration, temperature and cubage on assembling quality of SiO_2 colloidal spheres are systematically studied. As gradient, temperature, or sphere concentration increased, the assembling quality was improved first then got worsen. In addition, the assembling quality got worsen as cubage was enlarged. The best preparation procedure was found out that could both satisfy the request of 2D/3D nesting complex-period structure, assembling quality should higher than 12.5%, and could cost the least time. (2) The influences of technics in PECVD procedure were studied. The results indicate: rf power, flow rate or pressure in reaction chamber could control the concentration of SiH_2. And temperature could affect the reaction rate, the concentration and the diffuseness of SiH_2. Reducing the concentration of SiH_2 or raising the temperature could contribute to sediment evenly. As the channels for transfer not being plugged up, compact inverse opal could be obtained with prolonging sediment time. And the orderly opal structure is also important in this method. Finally, 2D/3D nesting complex-period structure was fabricated successfully after 14 hours' deposition with deposition rate under 200nm/h.
     4. In this thesis, the mechanism during the growth of colloidal crystals in confined space of flutes array was probed. The result of simulation accorded well with the experiments. And according this mechanism, The size of 2D/3D nesting complex-period structure, could be prepared with "convective assembling in defined region", was estimated.
     5. Base on technics for fabrication of 2D/3D nesting complex-period structure, after discontinuous deposition was used to substitute the single deposition process and polishing was added, two lays of 2D/3D nesting complex-period structure were fabricated, which verified it was doable to fabricat pseudo 3D nesting complex-period structure with this method.
     6. According the stimulated optic properties that 2D nesting complex-period had more modulation on polarization mold and nesting complex-period structure could produce super narrow photonic band, the latent applications in camouflage for recognition with polarization information and laser protection for detection systems were introduced.
引文
[1]Yablonovitch E.Inhibited spontaneous emission in solid-state physics and electronics.Phys.Rev.Lett.,1987,58(20):2059-2062.
    [2]John S.Strong localization of photons in certain disordered dielectric surperlattices.Phys.Rev.Lett.,58(23):2486-2489.
    [3]Joannopoulos J D,Meade R D,Winn J N.Photonic crystals:molding the flow of light.Chichester:Princeton Univ.Press,1995.
    [4]Soukoulis C M.Photonic band gap materials.NATO,ASI,Kluwer,Dordrecht,1996.
    [5]Soukoulis C M.Photonic band gaps and localization.NATO,ARW,Plenum,New York,1993.
    [6]Hok M,Chan C T,Soukoulis C M.Existance of a photonic gap in periodic dielectric structure.Phys.Rev.Lett.,1990,65(25):3152-3155.
    [7]Fan S,Villeneuve P R,Meade R D.Design of three dimensional photonic crystals at submicron length scales.Appl.Phys.Lett.,1994,65:1466-1468.
    [8]Leung K M,Liu Y F.Full vector wave calculation of photonic band gap structure in face-centred-cubic dielectric media.Phys.Rev.Lett.,1990,65(41):2646-2649.
    [9]Zhang Z,Satpathy S.Electromagnetic wave propagation in periodic structures:Bloch wave solution of Maxwell's equations.Phys.Rev.Lett.,1990,65(21):2650-2653.
    [10]Fink Y,Winn J N,Fan S.A dielectric omnidirectional reflector.Science,1998,282:1679-1682.
    [11]Plihalm M,Maradudin A A.Photonic band structure of two dimensional systems:the triangular lattice.Phys.Rev.B,1991,44(16):8565-8571.
    [12]Villeneuve P R,Piche M.Photonic band gaps in two dimensional square and hexagonal lattices.Phys.Rev.B,1992,46(8):4969-4972.
    [13]Anderson C M,Giapis K P.Large two dimensional photonic band gaps.Phys.Rev.Lett.,1996,77(14):2949-2952.
    [14]Qiu M,He S.Large complete band gap in two-dimensional photonic crystals with elliptic air boles.Phys.Rev.B,1999,60(15):10610-10612.
    [15]Agio M,Andreani L C.Complete photonic band gap in a two-dimensional chessboard lattice.Phys.Rev.B,2000,61(23):15519-15522.
    [16]Shen L F,He S,Xiao S S.Large absolute band gaps in two-dimensional photonic crystals formed by large dielectric pixels.Phys.Rev.B,2002,66:165315.
    [17]杨毅彪,王云才,李秀杰等.二维Kagome格子光子晶体禁带的数值模拟.光子学报,2006,35(5):724-728.
    18]Gadot F,Chelnokov A,Delustrac A.Experimental demonstration of complete photonic band gap in graphite structure.Appl.Phys.Lett.,1997,71(13):1780-1782.
    [19]韩喻,谢凯.嵌套复式周期结构二维光子晶体的光学禁带特性及制备研究.人工晶体学报,2006.12:1351-1354.
    [20]Yablonovitch E,Gmitter T J,Leung KM.Photonic band structure:the face centred cubic case employing nonspherica atoms.Phys.Rev.Lett.,1991,67(17):2295-2298.
    [21]Chan T,Toader O,John S.Photonic band gap templating using optical interference lithography.Phys.Rev.E,2005,71:046605.
    [22]L6pez C,Vazquez L,Meseguer F,et al.Photonic crystal made by close packing SiO_2 submicron spheres.Superlattices and Microstructures,1997,22(3):399-404.
    [23]Palacios-Lidon E,Blanco A,Ibisate M,et al.Optical study of the full photonic band gap in silicon inverse opals.Applied Physics Letters,2002,81(26):4925-4927.
    [24]Zhong Y C,Zhu S A,Su H M,et al.Photonic crystal with diamondlike structure fabricated by holographic lithography.Applied physics letters,2005,87:061103.
    [25]Rodriguez I,Lopez-Tejeira F,Sanchez-Dehesa J,et al.Template assisted fabrication technique towards Si-inverse opals with diamond structure.Photonics and nanostructures-Fundamentals and applications,2004,2:59-63.
    [26]Deubel M,Freymann G V,Wegener M,et al.Direct laser writing of three-dimensional photonic-crystal templates for telecommunications.Nature materials,2004,3:444-447.
    [27]Wong S,Deubel M,Willard F P.Direct Laser Writing of Three-Dimensional Photonic Crystals with a Complete Photonic Bandgap in Chalcogenide Glasses.Adv.Mater.,2006,18:265-269.
    [28]Schilling J,M(u|¨)ller F,Wehrspohn R B,et al.Dispersion relation of 3D photonic crystals based on macroporous silicon.Mat.Res.Soc.Symp.Proc.,2002,722:L6.8.1-L6.8.6.
    [29]Steven G J.Photonic crystals:from theory to practice:[doctor thesis].Massachusetts Institute Of Technology,2001.
    [30]Marko A,Theodor D,Jelena K,et al.Design and Fabrication of Silicon Photonic Crystal Optical Waveguides.J.Lightwave Technol.,2000,18:1402.
    [31]Lehmann V,F(o|¨)ll H.Formation Mechanism And Properties Of Electrochemically Etched Tranches In N-Type Silicon V.The Journal of the Electrochemical Society,1990,137:653-659.
    [32]Gruninga U,Lehmann V,Ottow S,et al.Macro-porous silicon with a complete two-dimensional photonic band gap centered at 5μm.Appl.Phys.Lett.,1996,68:747-749.
    [33] Rowson S, Chelnokov A, Lourtiozl J M. Macroporous silicon photonic crystals at 1.55 μm.Electronics Letters,1999, 35(9): 753-755.
    [34] Masuda H, Fukuda K. Ordered metal nanohole arrays made by a two-Step replication of honeycomb structures of anodic alumina. Science, 1995 , 268:1466-1468.
    [35] Garcia N, Ponizowskaya E V, Zhu H, et al. Wide photonic band gaps at the visible in metallic nanowire arrays embedded in a dielectric matrix. Appl.Phys.Lett.,2003,82:3147-3149.
    [36] Shen C M, Zhang X G, Li H L. DC Electrochemical Deposition of CdSe Nanorods Array Using Porous Anodic Aluminum Oxide Template. Materials Science and Engineering A, 2001,303:19-23.
    [37] Sauer G, Brehm G, Schneider S, et al. Highly ordered monocrystalline silver nanowire arrays.Journal Applied Physics, 2002, 91: 3243-3247.
    [38] Hideki M, Masayuki O, Hidetaka A, et al. Photonic Crystal Using Anodic Porous Alumina.Japanese Journal Applied Physics, 1999, 38: L1403-1405.
    
    [39] Hideki M, Masayuki O, Kazuyuki N, et al. Photonic Band Gap in Anodic Porous Alumina with Extremely High Aspect Ratio Formed in Phosphoric Acid Solution. Japanese Journal Applied Physics, 2000, 39: L1039-L1041.
    
    [40] Yablonovitch E, Gmitter T J. Photonic band structure: the face centered cubic case. Phys. Rev.Lett.,1989, 63(18):1950-1953.
    [41] Ozbay E, Abeyta A, Turtle G, et al. Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods. Phys.Rev.B, 1994, 50: 1945-1948.
    [42] Noda S, Yamamoto N, Imada M, et al. Alignment and Stacking of Semiconductor Photonic Bandgaps by Wafer-Fusion. J. Lightwave Technol., 1999,17: 1948.
    [43] Sanders J V. Colour of precious opal. Nature, 1964,204:1151 — 1153.
    [44] Darragh P J, Gaskin A J, Terrell B C,et al. Origin of precious opal. Nature, 1966, 209:13~ 16.
    [45] St(?)ber W, Fink A, Bonn E. Controlled growth of monodisperse silica spheres in micron size range. J.Colloid Interface Sci. 1968,26:62-69.
    [46] Philipse A P. Solid opaline packings of colloidal silica spheres. J. Mater. Sci. Lett., 1989,8(12):1371-1373.
    [47] Astratov V N, Bogomolov V N, Kaplyanskii A A, et al. Optical spectroscopy of opal matrices with CdS embedded in its pores: quantum confinement and photonic band gap effects. Nuovo Cimento,1995, 17(11):1349-1354.
    [48] Deng J G, Tao X M, Li P, et al. A simple self-assembly method for colloidal photonic crystals with alarge area. Journal of colloid and interface science, 2005,286:573-578.
    [49] Jonsson F, Torres C M S, Seekamp J, et al. Artificially inscribed defects in opal photonic crystals. Microelectronic engineering, 2005,78-79 : 429-435.
    [50] Jiang Y, Whitehouse C, Li J, et al. Optical properties of metallo-dielectric microspheres in opal structures. J.Phys.: Condens. Matter, 2003,15: 5871-5879.
    [51] Velev O D, Lenhoff A M. Colloidal crystals as templates for porous materials. Curr Opin Colloid Interface Sci, 2000, 5(1-2):56-63.
    [52] Campbell M, Sharp D N, Harrison M T, et al. Fabrication of photonic crystals for the visible spectrum by holographic lithography. Nature, 2000,404(6773):53—56.
    [53] Mori H, Kirihara S, Miyamoto Y. Fabrication of three-dimensional ceramic photonic crystals and their electromagnetic properties. Journal of the European ceramic society, 2006,26:2195-2198.
    [54] Doshi D A, Huesing N K, Lu M, et al. Optically Defined Multifunctional Patterning of Photosensitive Thin-Film Silica Mesophases. Science,2000,290:107-111.
    [55] Huang Q Y, Lye W K, Longo D M. Submicron Patterned Anodic Oxidation of Aluminum Thin Films.Mater. Res.Soc. Symp. Proa, 2001, 636:D9.49.1.
    [56] Yan J C, Rama Rao G V, Barela M, et al. Growth of patterned nanopore arrays of anodic aluminum oxide. Advanced materials, 2003,15(23):2015-2018.
    [57] Brevnov D A, Barela M, Piyasena M E, et al. Patterning of nanoporous anodic aluminum oxide arrays by using sol-gel processing, photolithography, and plasma etching. Chem. Mater.,2004,16:682-687.
    [58] Blanco A, Chomski E, Grabtchak S, et al. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres. Nature, 2000,405:437-440.
    [59] Vlasov Y A, Astratov V N, Baryshev A V, et al. Manifestation of intrinsic defects in optical properties of self-organized opal photonic crystals. Phys. Rev.E, 2000,61:5784-5793.
    [60] Blaaderen A V, Ruel R, Wiltzius P. Template-directed colloidal crystallization. Nature, 1997,385:321-324.
    [61] Dziomkina N V, Hempenius M A, Vancso J G. Symmetry control of polymer colloidal monolayers and crystals by electrophoretic deposition on patterned surfaces. Adv.Mater., 2005,17:237-240.
    [62] Fustin C A, Glasser G, Spiess H W, et al. Parameters influencing the templated growth of colloidal crystals on chemically patterned surfaces. Langmuir,2004,20:9114-9123.
    [63] Rai- Choudhury P. Handbook of microlithography, Micromachning, and microfabrication.Washington: SpIE Press, 1997.
    
    [64] Xia Y, Whitesides G M. Soft lithography. Angew. Chem.,Int.Ed., 1998,37:550-575.
    [65] Sotomayor Torres C M. Alternative lithography: Unleashing the potentials of nanotechnology. NY:Kluwer Academic, 2003.
    
    [66] Sugawara M. Plasma etching: fundamentals and applications. Oxford: Oxford university press, 1998.
    [67] Veselago V. The electrodynamics of substances with simultaneously negative values of e and μ. Soviet Physics Uspekhi, 1968,10(4):509—514.
    [68] Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction.Science, 2001,292: 77-79.
    [69] Dowling J P, Bowden C M. Anomalous index of refraction in photonic bandgap material. J. Modern Optics, 1994,41:345-351.
    [70] Notomi M. Negative refraction in photonic crystals. Optical and Quantum Electronics, 2002,34:133-143.
    [71] Luo C, Johnson S G, Joannopoulos J D. Negative refraction without negative index in metallic photonic crystals. Optics Express, 2003, 11(7):746-754.
    [72] Foteinopoulou S, Soukoulis C M. Negative refraction and left-handed behavior in two dimensional photonic crystals. Phys. Rev. B, 2003, 67:235107.
    [73] Ao X Y, He S L. Polarization beam splitters based on a two-dimensional photonic crystal of negative refraction. Opt. Lett., 2005,30: 2152-2154.
    [74] Ruan Z C, He S. Open cavity formed by a photonic crystal with negative effective index of refraction. Opt. Lett., 2005,30:2308-2310.
    [75] Park Jeong-Ho, Choi Won San, Koo Hye Young, et al. Doped colloidal photonic crystal structure with refractive index chirping to the [111] crystallographic axis. Langmuir, 2005, 22: 94-100.
    [76] Yan Q F, Zhao X S, Zhou Z C. Fabrication of colloidal crystal heterostructues using a horizontal deposition method. Journal of crystal growth, 2006,288:205-208.
    [77] Hiroyuki Y, Ryotaro O, Katsumi Y, masanori O. Effect of introducing multiple chiral defects on the optical properties of cholesteric liquid crystals. Thin solid films, 2006, 509:197-201.
    [78] Busch K, John S. Liquid-crystal photonic-band-gap materials: the tunable electromagnetic vacuum.Phys. Rev. Lett., 1999,83(5):967-970.
    [79] Liu C Y, Chen L W. Tunable field-sensitive polarizer using hybrid conventional waveguides and photonic crystal structures with nematic liquid crystals, Optics communications. 2005,256:114-122.
    [80] Mcphail D, Straub M, Gu M. Electrical tuning of three-dimensional photonic crystals using polymer dispersed liquid crystals. Appl.Phys.Lett., 2005,86:051103.
    [81] Graugnard E, King J S, Jain S, et al. Electric-field tuning of the bragg peak in large-pore TiO2 inverse shell opals. Physical Review B, 2005, 72: 233105.
    [82] Scherbakov A V, Akimov A V , Golubev V G, et al. Optically induced bragg switching in opal-VO_2 photonic crystals. Physica E, 2003, 17:429-430.
    [83] Rosenberg A, Shirk J. Photonic crystals: intensity-dependent transmission protects sensors. Laser focus world, 2000,36(4): 121.
    [84] Kaplan S F, Kartenko N F, Kurdyukov D A, et al. Electroluminescent three-dimensional photonic crystals based on opal-phosphor composites.Appl.Phys.Lett.,2005,86:071108.
    [85]Yamilov A,Wu X,Cao H.Photonic band structure of ZnO photonic crystal slab laser.Journal of applied physics,2005,98:103102.
    [86]Abrarov S M,Yuldashev S U,Kim T W,et al.Effect of photonic band-gap on photoluminescence of ZnO deposited inside the green synthetic opal.Optics communications,2005,250:111-119.
    [87]Yang Y L,Yang B F,Fu Z P,et al.Enhanced yellow-green photoluminescence from ZnO-SiO2composite opal.J.Phys.:Condens.Matter.,2004,16:7277.
    [88]Garcia-martin A,Armelles G,Pereira S.Light transport in photonic crystals composed of magneto-optically active materials.Phys.Rev.B,2005,71:205116.
    [89]Jonsson F,Flytzanis C.Nonlinear magneto-optical bragg gratings.Phys.Rev.Lett.,2006,96:063902.
    [90]Murzina T V,Kim E M,Kapra R V,et al.Magnetophotonic crystals based on yttrium-iron-garnet infiltrated opals:magnetization-induced second-harmonic generation,appl.Phys.Lett.,2006,88:022501.
    [91]Villeneuve P R,Fan S,Joannopoulos J D.Microcavities in photonic crystals:mode symmetry,tenability,and coupling efficiency.Phys.Rev.,1996,B54:7837-7842.
    [92]Lei X Y,Li H,Ding F,et al.Novel application of a perturbed photonic crystal:high-quality filter.Appl.Phys.Lett.,1997,71:2889-2891.
    [93]Fan S H,Villeneuve P R,Joannopoulos J D.High extraction efficiency of spontaneous emission from slabs of photonic crystals.Phys.Rev.Lett.,1997,78:3294-3297.
    [94]Birks T A,Knight J C,Russell P St J.Endlessly single-mode photonic crystal fiber.Opt.Lett.,1997,22:961-963.
    [95]Hideo K,Takayuki K,Akihisa T,et al.Superprism phenomena in photonic crystals.Phys.Rev.B,1998,58(16):10096-10099.
    [96]Xu Z C,Wang Z L,Michael E S,et al.Multimodal multiplex spectroscopy using photonic crystals.Optics express,2003,11:2126-2133.
    [97]Fleischhaker F,Arsenault A C,Wang Z,et al.Redox-Tunable Defects in Colloidal Photonic Crystals.Advanced Materials,2005,17(20):2455.
    [98]Arsenault A C,Clark T J,Freymann G,et al.From colour fingerprinting to the control of photoluminescence in elastic photonic crystals.Nature materials,2006,5:179-184.
    [99]Li M Z,Wang J X,Feng L,et al.Fabrication of tunable colloid crystals from amine-terminated polyamidoamine dendrimers.Colloids and surfaces A:Physicochem.Eng.,2006,290(1-3):233-238.
    [100]乔在祥,陈文浚,杜邵梅.热光伏技术的研究进展.电源技术,2005,29(1):57-61.
    [101]Lin S Y,Fleming J G,Chow E,et al.Enhancement and suppression of thermal emission by a three-dimensional photonic crystal.Phys.Rev.B,2000,62:2243-2246.
    [102]Lin S Y,Moreno J,Fleming J G.Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation.Appl.Phys.Lett.,2003,83:380-382.
    [103]Cho A.Physics:high-tech materials could render objects invisible.Science,312(5777):1120a.
    [104]Schurig D,Mock J J,Justice B J,et al.Metamaterial Electromagnetic Cloak at Microwave Frequencies.Science,2006,314(5801):977-980.
    [105]Zhang C,Qiao F,Wan J,et at.Enlargement of nontransmission frequency range in photonic crystals by using multiple hereostructures.J.Appl.Phys.,2000,87(6):3174-3176.
    [106]孙冬丽.一维光子晶体波分复用滤波器的研究:[学位论文].成都:西南交通大学,2006.
    [107]符李渊,欧阳征标,李景镇.复周期结构光子晶体的光子能带特性研究.光电子·激光,2002,13(2):139-141.
    [108]黄韩娟,欧阳征标,许桂雯等.复周期光子晶体的理想多通道滤波特性.光电子·激光,2003,14(1):50-53.
    [109]Li Z Y Gu B Y,Yang G Z.Large absolute band gap in 2D anisotropic photonic crystals.Phys.Rev.Lett.,1998,81:2574-2577.
    [110]冯尚申,沈林放,何塞灵.大带隙二维正方介质柱三角晶格光子晶体.物理学报,2004,53:1540-1545.
    [111]仇高新,林芳蕾,李永平.利用复式晶胞实现二维正方形布拉菲格子光子晶体的完全带隙.物理学报,2003,52(3):600-603.
    [112]潘杰勇,梁冠全,毛卫东,等.一类粗锐复合结构光子晶体的完全带隙研究.物理学报,2006,55(2):729-732.
    [113]Mao W D,Dong J W,Zhong Y C,et al.Formation principles of two-dimensional compound photonic lattices by one-step holographic lithography.Opt.Express,2005,13:2994-2999.
    [114]Zhong Y C,Zhu S A,Wang H Z.Fabricationof compound lattice by holographic lithography.Chin.Phys.Lett.,2005,22:369-372.
    [115]Trifonov T,Marsal L F,Rodriguez A,et al.Effects of symmetry reduction in two-dimensional square and triangular lattices.Phys.Rev.B,2004,69:235112.
    [116]黄晓琴.二维复周期光子晶体的带隙结构.激光杂志,2004,25(4):37-38.
    [117]Malkova N,Kim S,Dilazaro T,et al.Symmetrical analysis of complex two-dimensional hexagonal photonic crystals.Phys.Rev.B,2003,67:125203.
    [118]Malkova N,Kim S,Gopalan V.Symmetrical perturbation analysis of complex two-dimensional photonic crystals.Phys.Rev.B,2002,66:115113.
    [119]Song B S,Noda S,Asano T.Photonic devices based on in-plane hetero photonic crystals.Science,2003,300:1537.
    [120]Noda S,Song B S,Akahane Y,et al.In-plane hetero photonic crystals.International Symposium on Photonic and Electromagnetic Crystal Structures V(PECS-V),March 7-11,2004,Kyoto,Japan.
    [121]Mori D,Baba T.Proposal and light propagation of chirped photonic crystal waveguides.International Symposium on Photonic and Electromagnetic Crystal Structures V(PECS-V),March 7-11,2004,Kyoto,Japan.
    [122]Yan Q F,Zhao X S,Zhou Z C.Fabrication of colloidal crystal heterostructures using a horizontal deposition method.Journal of crystal growth,2006,288:205-208.
    [123]Romanov S G,Sotomayor Torres C M,Ye J,et al.light propagation in triple-film hetero-opals.Progress in solid state chemistry,2005,33:279-286.
    [124]Deubel M,Wegener M,Linden S,et al.3D-2D-3D photonic crystal heterostructures fabricated by direct laser writing.Optic letters,2006,31:805-807.
    [1]Leung K M,Liu Y F.Photon band structures:the plane wave method.Phys.Rev.B,1990,41:10188-10190.
    [2]Li Z Y,Lin L L.Photonic band structures solved by a plane-wave-based transfer-matrix method.Phys.Rev.E,2003,67:046607.
    [3]Yablonovitch E.Inhibited spontaneous emission in solid-state physics and electronics.Phys.Rev.Lett.,1987,58(20):2059-2062.
    [4]Joannopoulos J D,Meade R D,Winn J N.Photonic crystals:molding the flow of light.Chichester:Princeton Univ.Press,1995.
    [5]Plihalm M,Maradudin A A.Photonic band structure of two dimensional systems:the triangular lattice.Phys.Rev.B,1991,44(16):8565-8571.
    [6]Jia Z H.Determination of the effective refractive index of porous silicon/polymer composite films.Chinese optics letters,2005,3(10):608-610.
    [7]Yang Z Y,Zhu D Q,Lu D S,et al.Study of the relationship between porous ratio and effective index in nanoporous film.Optical and Quantum electronics,2003,35:1133-1141.
    [1]Joannopoulos J D,Meade R D,Winn J N.Photonic crystals:molding the flow of light.Chichester:Princeton Univ.Press,1995.
    [1]Lazarouk S,Katsouba S,Leshok A,et al.Porous alumina as low-ε insulator for multilevel metallization.Microelectronic engineering,2000,50:321-327.
    [2]Brevnov D A,Barela M,Atanassov P B,et al.Patterning of nanoporous anodic aluminum oxide arrays by using sol-gel processing,photolithography,and plasma etching.Chem.Mater.,2004,16:682-687.
    [3]Yan J C,Rama Rao G V,Atanssov P B,et al.Growth of patterned nanopore arrays of anodic aluminum oxide.Advanced materials,2003,15(23):2015-2018.
    [4]Kim E,Xia Y,Whitesides G M.Micromolding in capillaries:applications in materials science.J.Am.Chem.Soc.,1996,118:5722-5731.
    [5]Kim E,Whitesides G M.Imbibition and Flow of Wetting Liquids in Noncircular Capillaries.J.Phys.Chem.B.,1997,101:855-863.
    [6]Xia Y N,Whitesides G M.Soft Lithography.Annu.Rev.Mater.Sci.,1998,28:153-184.
    [7]《有色金属及其热处理》编写组.有色金属及其热处理.北京:国防工业出版社,1981.
    [8]Hideki M,Masahiro S.Fabrication of glod nanodot array using anodic porous alumina as an evaporation.Jpn.J.Appl.Phys.,1996,35:L126-L129.
    [9]王华.阳极氧化铝膜的制备与性能测试:[学位论文].大连:大连理工大学,2000.
    [10]Shawaqfeh A T,Baltus R E.Growth kinetics and morphology of porous anodic alumina films formed using phosphoric acid.J.Electrochem.Soc.,1998,145(8):2699-2706.
    [11]Jessensky O,M(u|¨)ller F,G(o|¨)sele U.Self-organized formation of hexagonal pore arrays in anodic alumina.Appl.Phys.Lett.,1998,72(10):1173-1175.
    [12]巩运兰,王为,王惠等.铝阳极氧化膜纳米孔阵列结构的自组织过程分析.物理化学学报,2004,20(2):199-201.
    [13]O'Sullivan J P,Wood G C.The morphology and mechanism of formation of porous anodic films on aluminium.Proceedings of the Royal Society of London.Series A,1970,317:511-543.
    [14]陈改玲.多孔氧化铝模板的制备以及应用探索:[学位论文].西安:西安交通大学,2004.
    [15]赫荣晖.阳极氧化铝膜的制备及影响因素研究:[学位论文].大连:大连理工大学,2001.
    [16]李东栋.多孔阳极氧化铝模板的制各及形成机理研究:[学位论文].南京:南京理工大学,2005.
    [17]刘虹雯,郭海明,王业亮等.阳极氧化铝模板表面自组织条纹的形成.物理学报,2004,53(2):656-660.
    [18]Sub K Y,Kim Y S,Lee H H.Capillary force lithography.Advanced materials,2001,13(18):1386-1389.
    [19]刘斌,李瑛,林海潮等.涂层缺陷对金属基体腐蚀行为的影响及研究方法.腐蚀科学与防护技术,2001,13(2):109-111.
    [20]宋诗哲编著.腐蚀电化学研究方法.北京:化学工业出版社,1988.
    [21]Keddam M,Mattos O R,Takenouti H.Reaction Model for iron dissolution studied by electrode impedance.J.Electrochem.Soc.,1981,128(2):257-266.
    [22]Hack H P,Scully J R.Defect area determination of organic coated steels in seawater using the breakpoint frequency method.J.Electrochem.Soc.,1991,138(1):33-40.
    [23]王槐三,寇晓康编著.高分子化学教程.北京:科学出版社,2002.
    [24]陈长琦,王艳,王旭迪等.软刻蚀技术及其应用.真空,2003,6:11-14.
    [25]王喆,刑汝博,韩艳春等.软刻蚀及其应用.化学通报,2002,9:606-613.
    [26]傅献彩,沈文霞,姚天扬.物理化学.北京:高等教育出版社,2002.
    [27]Niels asger mortensen,Laurits Hφjgaard Olesen,Lionel Belmon,et al.Electro- hydrodynamics of binary electrolytes driven by modulated surface potentials.Physical review E,2005,71:056306.
    [28]Kornelius N,Wehrspohn R B,Fischer S F,et al.High Density Hexagonal Nickel Nanowire Arrays with 65 and 100 nm-Pedod.Materials Research Society Symposium Proceeding,2002,705.
    [29]Sauer G,Brehm G,Schneider S,et al.Highly ordered monocrystalline silver nanowire arrays.Journal Applied Physics,2002,91:3243-3247.
    [30]Xu D S,Chen D P,Xu Y J,et al.Preparation of Ⅱ-Ⅵ group semiconductor nanowire arrays by dc electrochemical deposition in porous aluminum oxide templates.Pure and Applied Chemistry,2000,72:127-135.
    [31]Shen C M,Zhang X G,Li H L.DC Electrochemical Deposition of CdSe Nanorods Array Using Porous Anodic Aluminum Oxide Template.Materials Science and Engineering A,2001,303:19-23.
    [1]Denkov N D,Velev O D,Kralchevsky P A,et al.Two-dimensional crystallization.Nature,1993,361:26.
    [2]Dimitrov A S,Nagayama K.Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces.Langmuir,1996,12:1303-1311.
    [3]刘光华.现代材料化学.上海:上海科学技术出版社,2000.
    [4]Cicala G,Capezzuto P,Bruno G.Plasma enhanced chemical vapor deposition of nanocrystalline silicon films from SiF_4-H_2-He at low temperature.Thin solid films,1999,337:59-62.
    [5]Moniruzzaman S,Inokuma T,Kurata Y,et al.Structure of polycrystalline silicon films deposited at low temperature by plasma CVD on substrates exposed to different plasma.Thin solid films,1999,337:27-31.
    [6]许静.胶体自组装制备三维光子晶体方法研究:[学位论文].长沙:国防科学技术大学材料工程与应用化学系,2006.
    [7]李宇杰.低压化学气相沉积/模板制备硅反蛋白石三维光子晶体:[学位论文].长沙:国防科学技术大学材料工程与应用化学系,2005.
    [8]Li J,Xing R B,Huang W H,et al.A self-assembly approach to fabricate the patterned colloidal crystals with a tunable structure.Colloids and surfaces A,2005,269:22-27.
    [9]张金涛,王补宣,彭晓峰.内凹气液界面毛细压力在界面蒸发中的作用.中国科学,2002,32(1):37-42.
    [10]颜肖慈,罗明道.界面化学.北京:化学工业出版社,2005.
    [11]傅献彩,沈文霞,姚天扬.物理化学.北京:高等教育出版社,2002.
    [12]张向宇.实用化学手册.北京:国防工业出版社,1990.
    [13]梁国杰.光子晶体带隙性能研究及大粒径SiO_2微球胶体晶体的制备:[学位论文].长沙:国防科学技术大学材料工程与应用化学系,2006.
    [14]Blanco A,Chomski E,Grabtchak S,et al.Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres.Nature,2000,Vol 405(25):437-439.
    [15]Vlasov Y A,Bo X Z,Sturm J C,et al.On-chip natural assembly of silicon photonic bandgap crystals.Nature,2001,Vol 414(15):289-293.
    [16]彭英才,刘明,何宇亮.PECVD工艺参数对nc-Si:H膜质量的影响.稀有金属,1998,22(4):277-280.
    [17]丁晖,徐重阳,邹雪城等.PECVD a-Si:H薄膜对TFT有源矩阵性能的影响及其淀积丁艺研究.光电子技术,Vol.17(1):28-32.
    [18]Mitsuharu K.Plasma techniques for film deposition.Harrow:Alpha science international Ltd.,2005.
    [19]Amanatides E,Mataras D,Rapakoulias D E.Effect of frequency in the deposition of microcrystalline silicon from silane discharges.J.Appl.Phys.,2001,90:5799.
    [20]zhang L,Deckhardt E,Weber A,et al.Controllable fabrication of SiGe/Si and SiGe/Si/Cr helical nanobelts.Nanotechnology,2005,16:655-663.
    [21]Sun Y G,Rogers J A.Structural forms of single crystal semiconductor nanoribbons for high-permance stretchable electronics.Journal of materials chemistry,2007,17:832-840.
    [22]Choi W M,Song J Z,Khang D Y,et al.Biaxially stretchable "wavy" silicon nanomembranes.Nano letters,2007,7(6):1655-1663.
    [1]Egan W G,Duggin M J.Optical enhancement of aircraft detection using polarization.Proc.SPIE,2000,4133:172-178.
    [2]Egan W G,Duggin M J.Synthesis of optical polarization signatures of military aircraft.Proc.SPIE,2002,4481:188-194.
    [3]Egan W G.Detection of vehicles and personnel using polarization.Proc.SPIE,2000,4133:233-237.
    [4]孙玮,刘政凯,单列.利用偏振技术识别人造目标.光学技术,2004,30(3):267-269.
    [5]杨之文,高胜刚,王培纲.几种地物反射光的偏振特性.光学学报,2005,25(2):241-245.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700