百草枯检测新方法及百草枯在小鼠体内死后再分布和死后弥散研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
百草枯又名克芜踪、对草快,化学名是1,1-二甲基-4,4联吡啶阳离子盐,分子式为C_(12)H_(14)N_2·2Cl,分子量为257.2Da,是目前全世界广泛使用的有机杂环类接触性脱叶剂,具有触杀作用和一定内吸作用。纯品为白色结晶,以阳离子形式存在,易溶于水,微溶于乙醇和丙酮,在酸中稳定存在,在碱中易被分解,常用制剂为20%的水溶液。口服中毒死亡率可达90%以上,目前已被20多个国家禁止或者严格限制使用。
     百草枯对哺乳动物具有较强的毒性,尤其是人。目前也没有特效药可以解毒,口服中毒死亡率可达90%以上。据报道,每年在亚洲、美洲、欧洲都有大量的百草枯死亡案例出现,已报告的死亡病例达数百例,多是经口误服致死。
     百草枯可通过消化道、受损的皮肤等途径进人体,中毒后死亡率高,尤其以肺部最为突出,此外还对全身其他脏器造成严重损伤。大脑作为神经中枢部位,对毒物反应极为敏感。百草枯对哺乳动物脑组织中单胺类神经递质存在的危害,为探讨其神经毒性提供了试验素材。
     百草枯可以引起多脏器的损伤,尤其是肺部最为明显。肺部损伤主要表现形式为肺水肿、肺泡出血、炎症细胞侵润、胶原沉积和成纤维细胞增生等。早期患者在中毒几天内死于急性呼吸窘迫综合征和多脏器功能的衰竭。即使早期存活的患者也会因肺间质纤维化在数周内死亡,个别幸存病人也由于肺间质的纤维化其生存质量严重下降。
     基于上述原因,本实验研究首先建立了两种检测百草枯的新方法,又将小鼠作为动物模型,研究了百草枯在其体内的死后分布、死后再分布和死后弥散现象,观察了中毒小鼠血液及脑中单胺类神经递质的变化情况。第一部分除草剂百草枯测定方法的建立
     (1)毛细管电泳—紫外检测法测定血清中百草枯方法的建立
     目的:建立一种准确、简便、快速的方法用于测定百草枯的含量。
     方法:将商品除草剂直接稀释后上样;血清中的百草枯则需要C_(18)固相萃取后上样,在256nm紫外波长处测定百草枯的含量。毛细管电泳法采用重力进样,进样高度25cm,进样时间15s,弹性石英毛细管内径75μm,有效分离长度55cm,分离电压12kV,以浓度20mmol/L,pH3.5的NaH_2PO_4缓冲溶液,1.0mmol/L的十二烷基硫酸钠(SDS)作为电泳缓冲液进行分离。
     结果:毛细管电泳—紫外检测法测得百草枯线性范围为0.02~5.00μg/ml,线性回归方程A=36977c-517,相关系数0.9984。平行进样7次,其RSD为4.52%,计算所得百草枯的检出限为3.0ng/ml。测得除草剂中百草枯的实际含量是182.1g/L。将百草枯实际样品稀释2×105倍过滤后,加入0.02,1.00,2.50μg/ml的标准品测得PQ的回收率分别为96.7%,90.1%,95.6%,平均回收率为94.1%,平均RSD为2.17%。向血清中分别加入上述PQ的标准品固相萃取后,测得其回收率分别为85.0%,88.0%,82.0%,平均回收率为85.0%,平均RSD为4.79%。
     小结:毛细管电泳紫外检测法测定除草剂中百草枯的含量方法准确可靠,结果令人满意。
     (2)修饰电极—电化学法测定除草剂中百草枯的含量
     目的:研究百草枯在番红花红/金纳米/DNA修饰的玻碳电极的电化学行为,并用于实际样品的测定,从而建立一种准确、简便、快速的方法用于测定百草枯的含量。
     方法:(1)修饰电极的制备:将裸玻碳电极置于Al2O3粉末的悬浆之中进行打磨至镜面,取出,依次用1:1的丙酮、1:1的硝酸、二次蒸馏水,各超声清洗5分钟,氮气吹干。(2)条件选择:找出SFR聚合最佳浓度、SFR最佳聚合圈数、金纳米浸泡最佳时间、DNA浸泡最佳时间和缓冲液最佳pH值。(3)在最佳条件下,利用差分脉冲法测定不同浓度百草枯在修饰电极上的线性关系。(4)在2×10-4mol/L百草枯溶液中,考察修饰膜的稳定性及干扰物对其测定时的影响。(5)利用SFR/Au/DNA聚合膜电极对百草枯样品进行了测定,将其稀释至所在范围浓度,在最佳条件下用差分脉冲法进行测定。
     结果:(1)条件选择:SFR的最佳浓度为2mmol/L;SFR的最佳聚合圈数为30圈;金纳米修饰时间为8h;DNA修饰时间为4h;缓冲溶液最佳pH为7.0;(2)利用修饰电极,电化学检测法测得百草枯线性范围为1.0×10~(-5)~1.0×10~(-3)mol/L,线性回归方程H=5.5921c+0.2537,相关系数R~2=0.9957。平行测定11次,其RSD为5.84%,计算所得百草枯的检出限为3.3×10~(-6)mol/L。测得除草剂中百草枯的实际含量是183.6g/L。将百草枯实际样品稀释后,加入0.05,0.25,0.50mmol/L的标准品测得PQ的回收率分别为100.0%,97.4%,97.4%,平均回收率为98.3%;平均RSD为4.70%。
     小结:发现SFR/Au/DNA聚合膜对于百草枯的还原能够起到明显的电催化作用,该电极已用于实际样品测定,结果令人满意。
     第二部分百草枯在小鼠体内的死后分布、死后再分布及死后弥散研究
     目的:(1)建立小鼠百草枯死后分布、埋葬尸体中的分解动力学及死后百草枯灌胃死后弥散的动物模型;(2)研究百草枯在小鼠体内的死后分布及埋葬尸体中的分解动力学;(3)研究百草枯在小鼠体内的死后弥散现象。
     方法:(1)百草枯在埋葬尸体中的分解动力学研究
     ①取健康昆明小鼠28只,8LD_(50)剂量百草枯灌胃染毒致死。0天的死后立即解剖取材,其余装入塑料袋,不封口,埋于河北医科大学本部公共卫生学院西面花园中。分别于21、42、63、84、105、126天后挖出,解剖取材,高效液相色谱法检测其中百草枯的含量;②取健康昆明小鼠8只,8LD_(50)剂量百草枯灌胃染毒致死,死后随机分成2组,分别装于木箱和编织袋中,埋于花园中,63天后挖出解剖取材,检测其中百草枯的含量;③取健康昆明小鼠8只,以同样剂量处死后,分别于2012.3.3与2012.5.5埋葬,63天后(即2012.5.5及2012.7.7)挖出;解剖取材,检测百草枯的含量。
     (2)百草枯在小鼠体内的死后弥散研究
     ①将小鼠脊椎脱臼处死,1小时后,4LD_(50)百草枯灌胃,将染毒的小鼠置于常温环境下(20℃),分别于6、12、24、48、72、96h各解剖4只小鼠,取心、肾、脑、肺、右下肢肌肉,血液。将小鼠的肝脏分为四个部分,分别是:(Ⅰ)肝左叶;(Ⅱ)肝中间部分;(Ⅲ)肝右叶;(Ⅳ)肝基底部位。称重,测其百草枯的含量;②将小鼠脊椎脱臼处死,1小时后,4LD_(50)百草枯灌胃,将染毒的小鼠分别置于4℃和-20℃,72h后解剖,取心、肝、肾、脑、肺、右下肢肌肉,血液,称重,测其百草枯的含量;③将小鼠脊椎脱臼处死,1小时后,以2LD_(50)和8LD_(50)百草枯灌胃,将染毒的小鼠置于20℃,72h后解剖动物,取心、肝、肾、脑、肺、右下肢肌肉、血液,称量,测其百草枯的含量。
     结果:(1)百草枯在小鼠体内的死后分布:中毒小鼠死亡后体内各个组织都检测出百草枯,其中胃>肠>肾>肝>脾>肺>血液>右下肢肌肉>脑>心;(2)埋葬尸体中百草枯随时间变化:8LD_(50)灌胃致死小鼠埋葬尸体中PQ的含量呈现先上升,后下降的趋势。埋葬42天后尸体心、肝、脾、肺、肾、胃、肠、脑、右下肢肌肉中百草枯含量升至最高,之后缓慢下降;(3)不同埋葬方式研究结果表明埋葬63天塑料袋包装小鼠尸体心、肺、肝、肾、脑、肌肉中百草枯含量平均值均高于编织袋及木箱包装,说明编织袋保存尸体中百草枯分解较快,木箱次之,塑料袋最慢。(4)不同季节埋葬结果显示:冬天埋葬的小鼠尸体心、肺、肝、肾、脑、肌肉中百草枯含量平均值均高于春天及夏天埋葬的小鼠;(5)死后6小时在小鼠体内各脏器检出百草枯,说明百草枯在死后尸体内是可以发生弥散的。肝左叶是百草枯集中的地方,其百草枯浓度/百草枯血液浓度的比值最高,达到7.87±2.32。另外肝脏中四个不同区域的百草枯平均浓度分别是13.57、11.94、3.89和3.36μg/g(肝左叶、肝基底部位、肝中间部位、肝右叶)。将每一只小鼠测定的不同组织中的百草枯浓度标出,并作出各个脏器的线性关系,其中:肝(R~2=0.4565)、肾(R~2=0.3882)、肺(R~2=0.5414)、脑(R~2=0.6846)、心(R~2=0.6600)、右下肢肌肉(R~2=0.4937);(6)不同储存温度结果显示:72h后,20℃储存的小鼠尸体中,心、肺、肝、肾、脑、右下肢肌肉中百草枯含量平均值均高于4℃及-20℃;(7)不同灌胃剂量结果显示:8LD_(50)灌胃剂量的小鼠尸体中心、肺、肝、肾、脑、右下肢肌肉中百草枯含量平均值均高于2LD_(50)和4LD_(50)。
     小结:(1)本实验分别采用8LD_(50)和4LD_(50)剂量百草枯灌胃染毒,建立了百草枯的死后分布和死后弥散模型,可应用于百草枯中毒(死)的法医学检验及法医毒物动力学研究。(2)8LD_(50)灌胃致死小鼠埋葬尸体中百草枯的含量呈现先上升,后下降的趋势。埋葬42天后尸体心、肝、脾、肺、肾、胃、肠、脑、右下肢肌肉中百草枯含量升至最高,之后缓慢下降。埋葬126天后,小鼠心、肝、脾、胃、肾、肺、肠、右下肢肌肉仍能检测到百草枯;不同埋葬方式对中毒小鼠体内百草枯的含量有一定影响,编织袋分解较快,木箱次之,塑料袋最慢;埋葬季节对中毒小鼠体内百草枯的含量也有影响,冬天温度低,百草枯分解较慢;夏天温度高,百草枯分解较快。(3)小鼠死后1小时4LD_(50)百草枯灌胃后,6h后可在其各个脏器中检测到百草枯,说明百草枯在小鼠体内可发生死后弥散。从肝脏四个部分可以看出,离胃越近的部分,弥散的浓度越大。这与百草枯本身的理化性质、染毒剂量、尸体保存温度及时间、弥散距离和尸体的姿势有关。(4)在百草枯中毒死亡埋葬尸体法医学鉴定时,应根据埋葬时间、埋葬方式、埋葬季节、服毒剂量等因素对尸体中百草枯分解的影响,结合中毒方式和生前抢救情况,及早进行尸体挖掘和检验,全面取材,大致推断埋葬当时尸体中百草枯的含量范围。除了要提取胃内容物、肺、心血等常见的检材外,还应当采取肾,肝,脾,脑等组织进行定性、定量分析,并充分考虑毒物的剂量、死亡时间、尸体所处的环境、体内微生物等影响因素,结合临床表现、病理报告等综合分析,为百草枯误服案件、中毒死亡案件和死后灌毒案件的甄别提供科学客观的依据。
     第三部分单胺类神经递质在百草枯中毒小鼠血、脑组织中的变化研究
     目的:(1)建立单胺类神经递质在小鼠血液和脑中的检测方法;(2)研究百草枯中毒小鼠血液和脑中单胺类神经递质含量的变化情况。
     方法:(1)条件优化:本研究采用高效液相色谱—库仑阵列电化学检测器(HPLC-ECD)对小鼠血液及脑组织中的单胺类神经递质及其代谢产物的检测方法进行了系统研究。通过对样品的前处理方法的改进,对检测电极电势的选择和流动相条件的优化,确定了小鼠血液及脑组织中神经递质及其代谢产物的含量的检测条件。
     (2)动物实验:对照组:健康雄性昆明小鼠,40~45g;中毒组:将健康昆明小鼠以10mg/kg灌胃后,分别于1、3、7、14、21天断头处死,解剖(解剖前注入肝素,以防血液凝固),取心血、脑。小鼠血液前处理用固相萃取;小鼠脑组织样品直接用5%的磺基水杨酸处理,取50μl直接进入HPLC进行检测。
     结果:(1)条件优化:
     ①检测小鼠血液中儿茶酚胺的色谱条件为:流动相缓冲液为20mmol/L柠檬酸三钠,用HCl调pH为3.25,经0.22μm的滤膜过滤后加11%(v/v)的甲醇,应用前经超声脱气,流速为0.5ml/min,柱温保持25℃,电化学检测器电压设置为0.85V。在此条件下,NE、E、DA在0.5~40ng/ml呈现良好的线性关系,检出限依次为0.4、0.4、0.2ng/ml,回收率为89.0%~100.0%,日内及日间RSD均小于6%。
     ②检测小鼠脑中神经递质的色谱条件为:流动相缓冲液为20mmol/L柠檬酸三钠,HCl调pH4.25,经0.22μm的滤膜过滤后加10%(v/v)的甲醇,应用前经超声脱气,流速为1.0ml/min,柱温保持25℃,电化学检测器电压设置为0.75V。在此条件下,DA、MHPG、5-HT、DOPAC、5-HIAA、HVA在10~1000ng/ml呈现良好的线性关系,其检出限为依次为0.2、0.4、0.1、0.4、0.1、0.3ng/ml,六种神经递质的回收率在86.6%~94.5%,日内及日间RSD均小于5%。
     (2)动物实验:
     ①正常及中毒组小鼠血液中儿茶酚胺类物质的测定:中毒后小鼠的儿茶酚胺含量比正常组的平均值低,到21天后,中毒小鼠血液中的NE、E、DA分别是正常组的53%、73%和40%,达到了极显著差异(P<0.01)。
     ②正常及中毒组小鼠脑组织中六种单胺类神经递质的测定:中毒后小脑中的神经递质含量比正常组的平均值低,到21天后,中毒小鼠脑中的DA、DOPAC、HVA、MHPG、5-HT、5-HIAA分别是正常组的77%、82%、58%、85%、81%和84%,DA达到了显著差异(P<0.05),其余五组达到了极显著差异(P<0.01)。
     小结:(1)本文对所建立的方法均进行了周密的验证,结果显示此方法准确、灵敏,操作简单,方便快捷,适宜生物样品的检测;(2)NE、E、DA、DOPAC、5-HT、5-HIAA、MHPG及HVA都是中枢神经系统内重要的神经递质,在神经信号的传递中发挥重要作用,实验结果表明百草枯可导致小鼠血液中儿茶酚胺及脑组织中单胺类神经递质含量减少,影响神经兴奋的传递,对小鼠神经系统具有一定的毒性作用。
     结论:本研究建立了两种检测除草剂百草枯的新方法(CE-UV,ECD),并分别与传统经典高效液相方法做了对比,发现其检测结果准确,检测范围较宽,能满足实际样品的测定需要,可以在法医毒物分析中进行应用。
     创建了百草枯急性中毒的小鼠模型,在此基础上对百草枯在小鼠体内的死后分布、死后再分布及死后弥散进行了一系列的研究,发现8LD_(50)灌胃致死小鼠埋葬尸体中百草枯的含量先上升,后下降,在42天达到极值;埋葬126天后,小鼠各个脏器仍能检测到百草枯。小鼠死后1小时4LD_(50)百草枯灌胃后,6h后可在其各个脏器检测到百草枯,说明其在小鼠体内可以发生死后弥散,且离胃越近的部位,弥散的浓度越大。
     建立了单胺类神经递质在小鼠血液和脑中的检测方法,并且研究了百草枯中毒前后小鼠血液和脑中单胺类神经递质(NE、E、DA、DOPAC、5-HT、5-HIAA、MHPG及HVA)含量的变化情况,结果显示百草枯可导致小鼠血液中儿茶酚胺及脑组织中单胺类神经递质随着时间的延长而减少(21d),影响神经兴奋的传递,对小鼠神经系统具有一定的毒性。
Paraquat (1,1’-dimethyl-4,4’-bipyridinium) and its dichloride salt arebroad-spectrum contact plant killers and herbage desiccants that wereintroduced commercially during the past50years. It is one of the most widelyused herbicidal chemicals in the world and is now available in more than130countries. Its molecular formula and weight are C_(12)H_(14)N_2·2Cl and257.2Da,respectively. The pure substance is white crystal; it usually exists as cationicform. It can be easily dissolved in water, and slightly dissolved in ethanol andacetone. It is stable in acid solutions, and can easily decompose in alkalinesolutions.20%aqueous solutions are usually used in commercial market.
     The biochemical mechanism of paraquat toxicity is due to the cyclicoxidation and reduction in tissues, leading to production of superoxide anionand other free radicals and eventually the highly destructive hydrogenperoxide. The lung is the organ most severely affected in paraquat poisoning,due largely to the preferential accumulation of paraquat in lung alveolar cells.Although many organs are affected by paraquat, death is usually due toprogressive pulmonary fibrosis. At present, there is no completely successfultreatment for paraquat-induced lung toxicity.
     Numerous human injuries and deaths have resulted from intentionalingestion of the concentrated commercial product. Most poisonings resultedfrom the ingestion of the21%cation concentrated, which had been decantedand stored in empty beer, soft drink, or lemonade bottles; paraquat is areddish-brown liquid that resembles root beer or cola drinks.
     Initial clinical signs depend on the route of exposure. Early symptomsand signs of poisoning by ingestion are burning pain in the mouse, throat,chest, and upper abdomen, due to the corrosive effect of paraquat on themucosal lining. Diarrhea, which is sometimes bloody, can also occur. Giddiness, headache, fever, myalgia, lethargy, and coma are other examples ofCNS and systemic findings. Pancreatitis may cause severe abdominal pain.Proteinuria, hematuria, pyuria, and azotemia reflect renal injury. Oliguriaindicates acute tubular necrosis.
     The lung is the primary target organ of paraquat, and pulmonary effectsrepresent the most lethal and least treatable manifestation of toxicity. However,toxicity from inhalation is rare. The primary mechanism is through thegeneration of free radicals with oxidative damage may to lung tissue. Whileacute pulmonary edema and early lung damage may occur within a few hoursof severe acute exposures, the delayed toxic damage of pulmonary fibrosis, theusual cause of death, most commonly occurs7-14days after the ingestion. Inpatients who ingested a very large amount of concentrated solution (20%),some have died more rapidly (within48h) from circulatory failure.
     Therefore, firstly in this study, we estebished three methods to detect PQ;secondly, the distribution, redistribution and postmorterm diffusion ofparaquat in mouse models were studied; thirdly, the determination ofmonoamine neurotransmitters in normal/paraquat-induced mouse brains byHPLC-ECD was established.
     Part Ⅰ The esteblishments of herbicide paraquat determinations
     (1) CE with UV detector in determination of paraquat in serum
     Objective: To establish an accurately, simple and fast method todetermine the content of paraquat in serum and herbicide.
     Methods: The herbicide contained paraquat was diluted and analyzeddirectly by CE. Firstly the protein in serum was precipitated by chloroformand phenol, and then the PQ in serum can be detected by UV detector set at256nm. The separation and determination condition was as follows:gravitation sampling, the time was15seconds, the height was25cm; runningvoltage:15kV, bouncy silica capillary:75μm id., total length70cm,55cmfrom the inlet to UV detection; electrolyte:20mmol/L monosodium phosphate,1mmol/L lauryl sodium sulfate, pH3.5.
     Results: The linear range of PQ was0.02~5.0μg/ml, and the linear equation of the method was A=36977c-517, R~2=0.9984. The detection limitwas3ng/ml. The relative standard deviation (RSD) was4.52%. The recoverywere96.7%,90.1%,95.6%, respectively after diluting PQ production2×105times. The actual content of PQ in the herbicide was182.1g/L. The averageRSD was2.17%. The serum with PQ standard was pre-treated by solid-phaseextraction, and then detected by HPLC. The recovery of standard additionwere85.0%,88.0%,82.0%, respectively, the average RSD was4.79%.
     Summary: The proposed method has been satisfactorily applied for thedetermination of herbicide PQ, and the result was accurate and reliable.
     (2) The determination of PQ in herbicide by electro-chemical detection
     Objective: To establish an accurately, simple and fast method todetermine the content of paraquat in serum and herbicide.
     Methods:①The base GCE was polished to a mirror-like surface withalumina slurries down to0.05mm, rinsed after each polishing withdouble-distilled water, and ultrasonicated in HNO3(1:1v/v), acetone (1:1v/v),and double-distilled water in succession. The base GCE was then dried undera nitrogen flow until use;②Optimized condition: the concerntration of SFR,the circles of SFR modified on the electrode, the immersion time of the Au,the immersion time of the DNA, the pH of the buffer;③In the best conditions,the lineary range of PQ was studied by differential pules voltammetry (DPV).④In the best conditions of2×10-4mol/L PQ solution, the stability of themodified electrode was studied.⑤Real samples were detected by themodified elecreode using DPV.
     Results:①Optimized condition: the concerntration of SFR was2mmol/L, the circles of SFR modified on the electrode was20, the immersiontime of the Au was8h, the immersion time of the DNA was2h, the pH of thebuffer was7;②In optimum conditions, the hight of the peak wereproportional to the concentration of paraquat in the range of1.0×10~(-5)~1.0×10~(-3)mol/L, and the linear equation of the method was H=5.5921c+0.2537,R~2=0.9957. The detection limit was3.3×10~(-6)mol/L, with a relative standarddeviation (n=11) of5.84%. The PQ in the herbicide marked200g/L was actually183.6g/L, and the recoveries range was97.4%~100.0%, average RSDwas4.70%.
     Summary: The proposed method has been satisfactorily applied for thedetermination of herbicide PQ, and the result was accurate and reliable.
     Part Ⅱ The studies on the distribution, redistribution and postmortermdiffusion of paraquat in mouse models
     Objective:(1) To establish the postmortem distribution model ofparaquat in mouse; to establish the decomposition kinetics model of paraquatin buried cadaver of mouse; and to establish the postmortem diffusion modelof paraquat in mouse;(2) To investigate the postmortem distribution ofparaquat in mouse and the decomposition kinetics of paraquat in buriedcadaver of mouse;(3) To investigate the postmortem diffusion of paraquat inmouse.
     Methods:(1) Study on the decomposition kinetics of paraquat in buriedcadavers.
     ①28mouse were given an intra-gastric administration of PQ with adose of8LD_(50). As soon as they died, the mice were put into plastic unsealedbags, and buried in the garden to the west of our building in Hebei MedicalUniversity. Four of them were dug out, dissected and the specimen werecollected for analysis of PQ at0d,21d,42d,63d,84d,105d and126d after theburying by HPLC-UV;②8mice were divided into2group,4of which wereput into mash bag, and the other4were put into coffins. They were dug out,dissected on the63rdday for analysis, and the data were compared with themice packed with unsealed plastic bags on63rdday;③8mice were received8LD_(50)parquat on Mar/3/2012and May/5/2012, respectively, after63days(May/5/2012and Jul/7/2012) the8mice were dug out, dissected, and the datawere compared with the63rdday from Nov/19/2011to Jan/21/2012.
     (2) Study on the postmortem diffusion of paraquat in mice:40mice weresacrificed by cervical dislocation.32of them were received4LD_(50)doseparaquat after1h.4mice were put into a fridge at4℃and-20℃, respectively.After72h, they were dissected for the analysis. The rest24mice were left lying horizontally on their back at room temperature (20℃) for6h,12h,24h,48h,72h and96h. Additionally, the mouse liver was divided into4parts:(Ⅰ):The left lobe of liver,(Ⅱ) The median lobe of liver,(Ⅲ) The right lobeof liver;(Ⅳ) The caudate. Weight and detect PQ;4mice were received2LD_(50)and8LD_(50)dose paraquat after1h, respectively.72h later, they werealso dissected for the analysis.
     Results:(1) Distribution: PQ was detected in the tissues of mice,including some important organs. The concentration of PQ was: stomach>intestine> kidney> liver> spleen> lung> blood> right thigh muscle>brain> heart;(2) PQ in mice poisoned by8LD_(50)paraquat firstly increased andthen decreased. The paraquat in brain, heart, kidney, liver, lung, and thighmuscle reached their vertex on the42ndday, after being buried126days; theydecreased to the bottom;(3) Different burial ways showed that after63days,the differences of paraquat concentration in solid tissues among plastic bags,coffins and mash bags. It showed that there were significant concentrationdifferences in brains and hearts (P<0.05);(4) Also the results of burial indifferent seasons showed that PQ concentration in solid tissues (liver, lung andkidney) were significant among winter, spring and summer (P<0.05);(5)Liver had the highest drug concentration of the tissues investigated. There washowever a striking difference in PQ concentration within the liver; the lobeslying closest to the stomach, the left lobe of liver and the caudate lobe, havingthe highest concentrations. Furthermore, the concentration of PQ found in thebrain, heart, kidney, liver, lung and thigh muscle showed a significant rise(P<0.01) with increasing time after death;(6)2LD_(50),4LD_(50)and8LD_(50)threedoses with stable temperature20℃and72hours diffusion time were designedto study the influence of dose on postmortem diffusion;(7) Three temperaturelevels of-20℃,4℃and20℃with8LD_(50)dose and72hours diffusion timewere used to study the storage temperature on postmortem diffusion.
     Summary:(1) The postmortem distribution, decomposition kinetics anddiffusion models of paraquat (8LD_(50)/4LD_(50)) in mice have been developed, which can be applied to forensic identification and study on forensictoxicokinetics of decomposition of PQ poisoning death cases;(2) PQ in micepoisoned by8LD_(50)paraquat firstly increased and then decreased. The paraquatin brain, heart, kidney, liver, lung, and thigh muscle reached their vertex onthe42ndday, after being buried126days; they decreased to the bottom;different burial ways showed that after63days, the differences of paraquatconcentration in solid tissues among plastic bags, coffins and mash bags; alsothe results of burial in different seasons showed that PQ concentration in solidtissues (liver, lung and kidney) were significant among winter, spring andsummer;(3) There is a postmortem of PQ in the mice, which probably relatesto its physico-chemical property, dose, poisoning way, poisoning time afterdeath, the storage temperature and time of corpse to preserve, diffusiondistance, corpse posture;(4) When we deal with medico-legal expertiseassociated with paraquat poison, factors that may have impact on paraquatdecomposition should be taken into consideration apart from the poisoningway and rescue situation before death to make a comprehensive judgment ofthe value of the exhumation. Exhumation and examination, sample collection,and toxicology analysis should be done earlier, and given full consideration tothe impact of causal factors according to the phases of decomposition to infera general content range of paraquat when the body is buried. On the otherhand, paraquat postmortem diffusion can occur in the corpses, which mayhave connection with the dose of drug, preserving time, diffusion distance,storage temperature and etc. Therefore, in the forensic identification ofparaquat diffusion and its impact on toxicology analysis results should betaken into consideration. Besides examining the stomach contents, lung andheart blood, other samples like kidney, liver, spleen, and brain tissues shouldalso be extracted for comprehensive qualitative, quantitative analysis,especially in quantitative analysis of the poison in the stomach contents. Fullconsideration should be given to the influential factors such as doses, time ofdeath, environment of the corpse, vivo micro-organisms, etc. All these are combined with clinical manifestations, pathology reports and comprehensiveanalysis to provide scientific and objective basis for paraquat mistaken,poison-death and postmortem poisoning cases.
     Part Ⅲ Determination of monoamine neurotransmitters inparaquat-induced mouse brains by HPLC-ECD
     Objective:(1) To establish a new method to detect monoamineneurotransmitters in mouse blood and brain;(2) To observe the NTconcentration differences between normal and paraquat-induced mice.
     Methods:(1) Chromatography conditions optimization: This study wasresearched NTs in mouse blood and brains by HPLC-ECD. The pre-treatmentsof the bio-samples were improved; the applied potential and mobile phasewere optimized;(2) Animal experiments: CK Group: healthy male KM mice,weight:40~45g; Toxic Group: healthy mice were given10mg/kg PQ,7ofthem were sacrificed at1st,3rd,7th,14th,21stday, respectively. The brains andblood were taken out. The blood pre-treatment was SPE; while5%sulfosalicylic acid was used to pre-treat brains. The supernatant or extractionneeds to be filtrated by a0.45μm filter membrane,50μl of which can beinjected into HPLC for analysis.
     Results:(1) Chromatography condition optimization
     ①Blood conditions: Chromatography was performed at25℃on a250mm×4.6mm column, packed with5μm SinoChrom ODS-BP (Yilite,Dalian, China).The mobile phase consisted of11%v/v0.02M sodiumcitrate in methanol. The pH was adjusted from3.25by hydrochloric acid.The flow rate was0.5ml/min isocratic, and the injection volume was20μl. The applying potential of coulometric detector was set0.85V. Inthis conditions, the limits of detection (LODs, S/N=3) for catecholamineswere0.4,0.4,0.2ng/ml, respectively, with linear range of0.5~40ng/ml.The intra-and inter-day RSD value for the peak area were both <6%(n=7). The recovery was between89.0%and100.0%.
     ②Brain conditions: Chromatography was performed at25℃ona250mm×4.6mm column, packed with5μm SinoChrom ODS-BP (Yilite, Dalian, China).The mobile phase consisted of10%v/v0.02M sodiumcitrate in methanol. The pH was adjusted from4.25by hydrochloric acid.The flow rate was1.0ml/min isocratic, and the injection volume was20μl. The applying potential of coulometric detector was set0.75V. Inthis conditions, the limits of detection (LODs, s/n=3) for catecholaminesand their metabolites (DA、MHPG、5-HT、DOPAC、5-HIAA、HVA) were0.2、0.4、0.1、0.4、0.1、0.3ng/ml, respectively, with linear range of10~1000ng/ml. The intra-and inter-day RSD value for the peak area wereboth less than5%(n=7). The recovery was between86.6%and94.5%.
     (2) Animal experiments
     ①Catecholamines in blood: The concentration of CAs in allPQ-induced groups was lower than CK group. After21days, CAs (NE, E,DA) concentration in toxic mouse was respectively53%,73%, and40%ofthat of CK group, with a significance level of0.01(P<0.01).
     ②NTs in brains: The concentration of six NTs in all PQ-induced groupswas lower than CK group. After21days, NTs (DA, DOPAC, HVA, MHPG,5-HT,5-HIAA) concentration in toxic mouse was respectively77%,82%,58%,85%,81%, and84%of that of CK group, with a significance level of0.01, except DA (P<0.05).
     Summary:(1) This method is simple, convenient and sensitive, which issuitable for determination of catecholamines and their metabolites in mouseblood and brain;(2) NE, E, DA, DOPAC,5-HT,5-HIAA, MHPG, and HVAare all the important NTs in mammal CNS, which act important roles intransferring neural signals. The results indicated that PQ can lead to anincrease of NTs in mouse blood and brain, have an adverse neurological effect,causes major damage to the nervous system of mammals.
     Conclusions: In this study three new methods were established to detectPQ (CE-UV, ECD), and compared with traditional HPLC method, we foundthese new methods were simple, sensitivity accurate, reliable and reproducible.These methods can be employed in forensic toxicology analysis.
     To establish the postmortem distribution model of paraquat in mouse and the decomposition kinetics model of paraquat in buried cadaver of mouse; andthe postmortem diffusion model of paraquat in mouse. We found that PQ inmice poisoned by8LD_(50)paraquat firstly increased and then decreased. Theparaquat in brain, heart, kidney, liver, lung, and thigh muscle reached theirvertex on the42nd day, after being buried126days; they decreased to thebottom. The mice were sacrified after1h,4LD_(50)PQ was given. The PQ wasdetected in every tissue after6h. It indicated that there was a postmortem ofPQ in the mice, and the closer to the stomach, the higher the concentrationwas.
     To establish a new method to detect monoamine neurotransmitters inmouse blood and brain, and observe the NT concentration differences betweennormal and paraquat-induced mice. We found that HPLC-ECD was simple,convenient and sensitive, which was suitable for determination ofcatecholamines and their metabolites in mouse blood and brain. NE, E, DA,DOPAC,5-HT,5-HIAA, MHPG, and HVA are all the important NTs inmammal CNS, which act an important roles in transferring neural signals. Theresults indicated that PQ can lead to an increase of NTs in mouse blood andbrain, have an adverse neurological effect, causes major damage to thenervous system of mammals.
引文
1Paixao P, Costa P, Bugalho T, et al. Simple method for determinationof paraquat in plasma and serum of human patients byhigh-performance liquid chromatography. J Chromatogr B,2002,775(1):109-113
    2王朝虹,王忠,刘学俊,等. LC/MS/MS法测定生物组织中百草枯.中国法医学杂志,2008,23(2):114-116
    3Bagchi D, Bagchi M, Hassoun EA, et al. Detection ofparaquat-induced in vivo lipid peroxidation by gas chromatographymass spectrometry and high-pressure liquid chromatography. J AnalToxico,1993,17(7):411-414
    4Takino M, Daishina S, Yamaguchi K. Determination of diquat andparaquat in water by liquid chromatography elecrospray-massspectrometry using volatile ion-pairing reagents. Anal Sci,2000,16:707-711
    5Nunez O, Moyano E, Galceran MT. Capillary electrophoresis-massspectrometry for the analysis of quatemary ammonium hebicides. JChromatogr A,2002,974(1-2):243-248
    6刘菲.斑马鱼胚胎发育技术诊断除草剂的毒性研究.石家庄:河北医科大学.硕士学位论文,2009
    7王朝虹,王志萍,杨志立,等. HPLC法测定百草枯急性中毒大鼠的体内分布.中国法医学杂志,2009,24(4):267-269
    8刘会芳,赵燕燕,王丽娟,等.检测血液中百草枯的交束毛细管电泳在线推扫富集技术.中华劳动卫生职业病杂志,2008,26(7):436-438
    9Tomita M, Okuyama T, Nigo Y. Simultaneous determination of paraquatand diquat in serum using capillary electrophoresis. Biomed Chromato,1992;6:91-94
    10Fuke C, Ameno K, Ameno S, et al. A rapid, simultaneous determination ofparaquat and diquat in serum and urine using second-derivativespectroscopy. J Anal Toxicol,1992,16:214-216
    11Nakagiri I, Suzuki K, Shiaku Y, et al. Rapid quantification of paraquat anddiquat in serum and urine using high-performance liquid chromatographywith automated sample pretreatment. Journal of Chromatography,1989,481:434-438
    12Ito S, Nagata T, Kudo K, et al. Simultaneous determination of paraquatand diquat in human tissues by high-performance liquid chromatography. JChromatogr,1993,617:119-123
    1Chai R, Yuan R, Chai YQ, et al. Amperometric immunosensors based onlayer-by-layer assembly of gold nanoparticles and methylene blue onthiourea modified glassy carbon electrode for determination of humanchorionic gonadotrophin. Talanta,2008,74:1330-1336
    2Zhang HF, Liu RX, Sheng QL. Enzymatic deposition of Au nanoparticleson the designed electrode surface and its application in glucose detection.Colloid Surface B,2011,82:532-535
    3Gopalan AI, Lee KP, Manesha KM, et al. Gold nanoparticles dispersedinto poly(aminothiophenol) as a novel electrocatalyst—fabrication ofmodified electrode and evaluation of electrocatalytic activities fordioxygen Reduction. J Mol Catal A,2006,256:335-345
    4Wang F, Wang YW, Lu K, et al. Sensitive determination of methotrexateat Nano-Au self-assembled monolayer modified electrode. J ElectroanalChem,2012,674:83-89
    5Yang ZS, Hu GZ, Chen X, et al. The nano-Au self-assembled glassycarbon electrode for selective determination of epinephrine in the presenceof ascorbic acid. Colloid Surface B,2007,54:230-235
    6Shipway AN, Lahav M, Willner I. Nanostructured gold colloid electrodes.Adv Mater,2000,12:993-998
    7Sanz VC, Mena ML, Cortes AG, et al. Development of a tyrosinasebiosensor based on gold nanoparticles-modified glassy carbon electrodesapplication to the measurement of a bioelectrochemical polyphenols indexin wines. Anal Chim Acta,2005,528:1-8
    8Raj CR, Okajima T, Ohsaka T. Gold nanoparticle arrays for thevoltammetric sensing of dopamine. J Electroanal Chem,2003,543:127-133
    9Shi AW, Qu FL, Yang MH, et al. Amperometric H2O2biosensor based onpoly-thionine nanowire/HRP/nano-Au-modified glassy carbon electrode.Sens Actuators B,2008,129:779-783
    10Brown LO, Hutchison JE. Formation and electron diffraction studies ofordered2-D and3-D superlattices of amine-stabilized gold nanoparticles. JPhys Chem B,2001,105:8911-8916
    11Whetten RL, Khoury JT, Alvarez MM, et al. Nanocrystal gold molecules.Adv Mater,1996,8:428-433
    12Yang G, Yuan R, Chai YQ. A high-sensitive amperometric hydrogenperoxide biosensor based on the immobilization of hemoglobin on goldcolloid/l-cysteine/gold colloid/nanoparticles Pt–chitosan compositefilm-modified platinum disk electrode. Colloid Surface B,2008,61:93-100
    13Zheng Y, Lin XQ. Modified electrode based on immobilizing horseradishperoxidase on nano-gold with choline covalently modified glassy carbonelectrode as a base. Chin J Anal Chem,2008,36:604-610
    14Hua HL, Jiang H, Wang XM, et al. Detection and distinguishability ofleukemia cancer cells based on Au nanoparticles modified electrodes.Electrochem Commu,2008,10:1121-1124
    15Hu GZ, Zhang DP, Wu WL, et al. Selective determination of dopamine inthe presence of high concentration of ascorbic acid using nano-Auself-assembly glassy carbon electrode. Colloid Surface B,2008,62:199-205
    16Tian XQ, Cheng CM, Yuan HY, et al. Simultaneous determination ofL-ascorbic acid, dopamine and uric acid with goldnanoparticles-cyclodextrin-graphene-modified electrode by square wavevoltammetry. Talanta,2012,93:79-85
    17Gopalan AI, Lee KP, Manesha KM, et al. Electrochemical determinationof dopamine and ascorbic acid at a novel gold nanoparticles distributedpoly(4-aminothiophenol) modified electrode. Talanta,2007,71:1774-1781
    18Xiao F, Zhao FQ, Li JW, et al. Characterization of hydrophobic ionicliquid-carbon nanotubes-gold nanoparticles composite film coatedelectrode and the simultaneous voltammetric determination of guanine andadenine. Electrochim Acta,2008,53:7781-7788
    19王朝虹,王志萍,杨志立,等. HPLC法测定百草枯急性中毒大鼠的体内分布.中国法医学杂志,2009,24(4):267-269
    20Ohsaka T, Koichiro T. Electrocatalysis of poly (thionine)-modifiedelectrodes for oxidation of reduced nicotinamide adenine dinucleotide.J Chem Soc Chem Commun,1993,2:222-224
    21Komura T, Ishihara M. Charge-transporting properties ofelectropolymerized phenosafranin in aqueous media. J ElectroanalChem,2000,493:84-92
    22Ribeiro JA, Carreiar CA, Lee HJ, et al. Voltammetric determination ofparaquat at DNA-gold nanoparticle composite electrodes. ElectrochimicaActa,2010,55,7892-7896
    1王朝虹,王志萍,杨志立,等. HPLC法测定百草枯急性中毒大鼠的体内分布.中国法医学杂志,2009,24(4):267-269
    2Paixao P, Costa P, Bugalho T, et al. Simple method for determinationof paraquat in plasma and serum of human patients byhigh-performance liquid chromatography. J Chromatogr B,2002,775(1):109-113
    3王朝虹,王忠,刘学俊,等. LC/MS/MS法测定生物组织中百草枯.中国法医学杂志,2008,23(2):114-116
    4Bagchi D, Bagchi M, Hassoun EA, et al. Detection ofparaquat-induced in vivo lipid peroxidation by gas chromatographymass spectrometry and high-pressure liquid chromatography. J AnalToxico,1993,17(7):411-414
    5Takino M, Daishina S, Yamaguchi K. Determination of diquat andparaquat in water by liquid chromatography elecrospray-massspectrometry using volatile ion-pairing reagents. Anal Sci,2000,16:707-711
    6Nunez O, Moyano E, Galceran MT. Capillary electrophoresis-massspectrometry for the analysis of quatemary ammonium hebicides. JChromatogr A,2002,974(1-2):243-248
    7贠克明.法医毒物动力学.中国法医学杂志,2008,23(6):361-369
    8任飞.异烟肼法医毒物动力学研究.太原:山西医科大学.硕士学位论文,2006
    9翟恒利.中国法医学新进展.北京:中国人民公安大学出版社,2012:60-63
    10黄光照,麻永昌.中国刑事技术大全,法医病理学.北京:中国人民公安大学出版社,2002:102
    11Robertson MD, Drummer OH. Postmortem distribution andredistribution of mitrobenzodiazepines in man. J Forensic Sic,1998,43(1):5-13
    12Bradberry SM, Cage SA, Proudfoot AT, et al. Poisoning due topyrethroids. Toxicol Rev,2005,24(2):93-106
    13León-González ME, Plaza AM, Pérez-Arribas LV, et al. Rapidanalysis of pyrethroids in whole urine by high-performance liquidchromatography using a monolithic colomn and off-linepreconcentration in a restricted access material cartridge. AnalBioanal Chem,2005,382(2):527-531
    14Vázquez PP, Mughari AR, Galera MM. Solid-phase microextractionfor the determination of pyrethroids in cucumber and watermelonusing liquid chromatography combined with post-colomnphotochemically induced fluorimetry derivatization and fluorescencedetection. Anal Chim Acta,2008,607(1):74-82
    15Pounder DJ. The nightmare of postmortem drug changes. Salem, NewHampshire: Butterworth Legal Publishers,1994:163-91
    16González-Rodríguez RM, Rial-Otero R, Cancho-Grande B, et al.Determination of23pesticide resdues in leafy vegetables using gaschromatography-ion trap mass spectrometry and analyte protectants. JChromatogra A,2008,1196-1197:100-109
    17Lawrence AP, Scott WD, Donald LR. Bioanalytic considerations forpharmacokinetic and biopharmaceutic studies. Clin Pharmacol,1986,26:332-335
    18Ecobichon DJ. Toxic effects of pesticides. New York, McGraw-Hill,1996:666-669
    19Gaside JE. Mathanisms of selective action of pyrethroids. ArchJoxical,1989,63(1):54
    20张潮.利多卡因在硬膜外麻醉犬体内的死后弥散研究.太原:山西医科大学.硕士学位论文,2006
    21黄光照.法医毒理学.北京:人民卫生出版社,2004:186
    22关培英.拟除虫菊酯类农药法医毒物动力学研究(一)——氰戊菊酯、甲氰菊酯和氯氰菊酯在家兔体内的死后分布研究.太原:山西医科大学.硕士学位论文,2008
    23Koreeda A, Yonemitsu K, Ng’walali PM, et al. Clocapramine-relatedfatality postmortem drug levels in multiple psychoactive drug poisoning.Forensic Sci Int,2001,122(1):48-51
    24Hilberg T, Ripel A, Slordal L, et al. The extent of postmortem drugredistribution in a rat model. Forensic Sci,1999,44(5):956-962
    25Hilberg T, Bugge A, Beylich KM, et al. An animal model of postmortemamitriptyline redistribution. Forensic Sci,1993,38:81-90
    26任同喜.盐酸地芬尼多在中毒大鼠体内死后再分布的研究.太原:山西医科大学.硕士学位论文,2006
    27Moriya F, Hashimoto Y. Redistribution of basic druds into cardiac bloodfrom surrounding tissues during early-stage postmortem. Forensic Sci,1999,44(1):10-16
    1顾群,石先哲,许国旺.生物样品中儿茶酚胺类物质分析方法的研究进展.2007,4:457-462
    2叶章群.肾上腺疾病.北京:人民卫生出版社,1997:48-53
    3黄彦,曹蓓截,邱一华.淋巴细胞合成和释放儿茶酚胺的高效液相色谱检测.南通大学学报(医学版),2007,27(6):502-504
    4Hollenbach E, Schulz C, Lehnert H. Rapid and sensitive determinationof catecholamines and the metabolite MHPG using HPLC following novelextraction procedures. Life Sci,1998,63(9),737-750
    5Kopin IJ. Catecholamine metabolism: basic aspects and clinicalsignificance. Pharmacol,1985,37(4):333-364
    6Kjeldsen SE, Schork NJ, Leren P, et al. Arterial plasma norepinephrinecorrelates to blood pressure in middle-aged men with sustained essentialhypertension. Am Heart J,1989,118:775-781
    7Filser JG, Muller WE, Beckmann H. Should plasma or urinary MHPG bemeasured in psychiatric research? Br J Psych,1986,148:95-97
    8Tapie M, Garnier JP, Tremine T, et al. Dosage du MHPG et de sesconjugués urinaires et intérêt dans le diagnostic et le suivi thérapeutiquedes dépressions. Pathol Biol,1988,36(3):217-213
    9Linnoila M, Guthrie S, Lane EA, et al. Clinical studies on norepinephrinemetabolism: How to interpret the numbers. Psych Res,1986,17:229-239
    10Rothschild AJ. Biology of depression. Med Clin Am,1988,72(4):765-790
    11Zavadil AP, Ross RJ, Calil HM, et al. The effect of desmethylimipramineon the metabolism of norepinephrine. Life Sci,1984,35(10):1061-1068
    12Young SN. How to increase serotonin in the brain without drugs. RevPsychiatr Neurosci,2007,32(6):394-399
    13Feldman JM. Urinary serotonin in the diagnosis of carcinoid tumors. ClinChem,1986,32(5):840-844
    14Burgess NK, Sweeten TL, McMahon WM, et al. Hyperserotoninemia andaltered immunity in autism. Journal of autism developmental disorders,2006,36(5):697-704
    15Yoshiura M, Iwamoto T, Iriyama K, et al. Separation of twelvecatecholamine metabolites and determination of some of the metabolites inhuman urine by liquid chromatography with electrochemical detection. LiqChromatogr,1987(10):3141-3159
    16Bacopoulos NG, Hattox SE, Roth RH.3,4-Dihydroxyphenylacetic acidand homovanillic acid in rat plasma: possible indicators of centraldopaminergic activity. Eur J Pharmacol,1979,56(3):225-236
    17Kendler KS, Heninger GR, Roth RH. Brain contribution to the halo-peridol-induced increase in plasma homovanillic acid. Eur J Pharmacol,1981,71(2-3):321-326
    18Klaus R, Fischer W, Hauck HE. Extension of the application of thethermal in-situ reaction on NH2layers to the detection of catecholaminesin biological materials. Chromatographia,1993,37:133-143
    19Raggi M, Sabbioni C, Casamenti G, et al. Determination ofcatecholamines in plasma by high-performance liquid chromatographywith electro chemial detection. J Chromatogr B,1999,730:201-211
    20Wang Y, Fice DS, Yeung PK. A simple high-performance liquidchromatography assay for simultaneous determination of plasmanorepinephrine, epinephrine, dopamine and3,4-dihydroxyphenyl aceticacid. J Pharmo Bio Med Anal,1999,21:519-525
    21Chi JD, Odontiadis J, Franklin M. Simultaneous determination ofcatecholamines in rat brain tissue by high-performance liquidchromatography. J Chromatogr B,1999,731:361-367
    22Torster JP, Jurgen B, Klaus L. Couped-column liquid chromatographicanalysis of catecholamines, serotonin, and metaboliles in human urine.Clin Chem,1999,45:262-268
    23Alberts G, Lameris T, Meiracker AH, et al. Sensitive and specific methodfor the simultaneous determination of natural and synthetic catecholaminesand3,4-dihydroxyphenyl glycol in microdialysis samples. J ChromatogrB,1999,730:213-219
    24Wang H, Li J, Liu X, et al. N-hydroxysuccinimidyl fluorescein-o-acetateas a fluorescent deriratizing reagent for catecholamines in liquidchromatography. Anal Biochem,2000,281:15-20
    25Lee M, Oh SY, Pathak TS, et al. Selective soild-phase extraction ofcatecholamines by the chemically modified polymeric adsorbents withcrown ether. J Chromatogr A,2007,1160:340-344
    26Vuorensola K, Siren H. Determination of urinary catecholamines withcapillary electrophoresis after solid-phase extraction. J Chromatogr A,2000,895:317-327
    27Unceta N, Rodriguez E, De Balugera ZG, et al. Determination ofcatecholamines and their metabolites in human plasma using liquidchromatography with coulometric muti-electrode cell-designdetection. Anal Chim Acta,2001,444:211-221
    28阮金秀,董立春.高压液相色谱电化学检测鼠脑儿茶酚胺浓度.军事医学科学院院刊,1988,12(1):54-56
    29杨志东.小鼠脑组织样品中单胺类神经递质的测定.天津:天津大学.硕士学位论文,2005
    30Mangano EN, Hayley S. Inflammatory priming of the substantia nigrainfluences the impact of later paraquat exposure: Neuroimmunesensitization of neurodegeneration. Neurobiol Aging,2008,10:1-18
    31黄新华,陈本美,陈新.高效液相色谱法测定生物样品中儿茶酚胺及其代谢产物.湖南医科大学学报,2002,27(5):471-473
    32陈亚琼,叶雪清.高效液相色谱法测定妇女血浆吲哚类神经递质.第四军医大学学报,1995,16(4):309-310
    33叶惟玲.用高效液相色谱—电化学检测法快速、灵敏分析生物样本中单胺类神经递质及其代谢产物.生理学报,1987,39(4):412-419
    34Prem K, Renaud V. New approach to the simultaneousanalysis ofcatecholamines and tyrosines in biological fluids. J Chromatogr A,2003,987:349-358
    35Candito M, Bree F, Krstulovic AM. Plasma catecholamine assays: ca-libration with spiked plasma versus aqueous solutions. BiomedChromatogr,1996,10:40-42
    36夏丽华,梁顺华,张莹,等.急性重度百草枯中毒6例报告.职业卫生与应急救援,2008,26:42-43
    37陈庆,康维钧,张荣,等.百草枯对小鼠脑组织脂质过氧化及单胺类神经递质含量的影响.中华劳动卫生职业病杂志,2009,27(4):238-239
    38Kuter K, Smialowska M, Wierońska J, et al. Toxic influence of subchronicparaquat administration on dopaminergic neurons in rats. Brain Res,2007,1155:196-207
    1Dinis-Oliveira RJ, Sarmento A, Reis P, et al. Acute paraquat poisoning:report of a survival case following intake of a potential lethal dose.Pediatrics Emergency Care,2006,22:537-540
    2Rahman M, Lewis DM, Allison K. A case of paraquat burns following anindustrial accident. Emergency Medicine Journal,2007,24:777
    3Podprasart V, Satayavivad J, Riengrojpitak S, et al. No direct hepatotoxicpotential following a multiple-low dose paraquat exposure in rat as relatedto its bioaccumulation. Toxicology Letter,2007,170:193-202
    4Ito S, Kudo K, Imamura T, et al. Detection of drugs and poisons inpostmortem tissue–determination of paraquat in tissues of rabbits buriedunderground. Nippon Hoigoku Zasshi,1997,51(2):83-85
    5Licker M, Schweizer A, Hohn L, et al. Single lung transplantation foradult respiratory distress syndrome after paraquat poisoning. Thorax,1998,53(7):620-621
    6薛维亮,胡峰,杜莉.百草枯中毒机制与临床治疗的研究进展.实用医学杂志,2010,27(2):176-178
    7刘会芳,赵燕燕.百草枯中毒机制及临床治疗现状与展望.中国急救医学,2007,27(11):1042-1044
    8陈慧,石汉文,田英平.百草枯中毒致肺损伤的研究进展.临床荟萃,2006,21(2):146-148
    9Whitehead RD, Montesano MA, Jayatilaka NK, et al. Method formeasurement of the quaternary amine compounds paraquat and diquat inhuman urine using high-performance liquid chromatography-tandem massspectrometry. Journal of Chromatography B,2010,878:2548-2553
    10王瑞花,苏少明,秦光明,等.离子对SEP-HPLC法检测生物检材中的百草枯.法医学杂志,2005,21(2):121-123
    11Stewart MJ, Levitt T, Jarvie DR. Emergency estimations of paraquat inplasma. A comparison of the RIA and ion pair-colorimetric methods. ClinChim Acta,1979,94(3):253-257
    12Brunetto MR, Morales AR, Gallignani M, et al. Determination of paraquatin human blood plasma using reversed-phase ion-pair high-performanceliquid chromatography with direct sample injection. Talanta,2003,59:913-921
    13Matsuoka T, Okuda J. Extraction and quantitation of paraquat and diquatfrom blood. Forensic science international,1993,62:179-186
    14Fell AF, Jarvie DR, Stewart MJ. Analysis for paraquat by second-andfourth-derivative spectroscopy. Clin Chem,1981,27(2):286-292
    15Queree EA, Dickson SJ, Shaw SM. Extraction and quantification ofparaquat in liver and hemolyzed blood. Anal Toxicol,1985,9(1):10-14
    16Ikebuchi J, Yuasa I, Kotosu S. A rapid and sensitive method for thedetermination of paraquat in plasma and urine by thin-layerchromatography with flam ionization detection. Anal Toxocol,1988,12(2):80-83
    17Ariffin MM, Anderson RA. LC/MS/MS analysis of quaternary ammoniumdrugs and herbicides in whole blood. J Chromatogr B Analyt TechnolBiomed Life Sci,2006,842(2):91-97
    18Chichila TM, Walters SM. Liquid chromatographic determination ofparaquat and diquat in crops using a silica column with aqueous ionicmobile phase. Assoc of Anal Chem,1991,74(6):961-967
    19Tsunenari S, Yonemitsu K, Uchimara Y. The influence of putrefactivechanges on the determination of paraquat in autopsy materials. ForensicScience international,1981,17(1):51-56
    20罗晓芳,王翠,王国荣,等.分光光度法测定红虾中的百草枯.中国卫生检验杂志,2001,11(6):86
    21付朝晖,黄雪祥,闵顺耕.反相离子对高效液相色谱法测定血浆中的百草枯.农药,2008,47(11):814-815
    22De Zeeuw RA, Wijsbeek J, Franke JP, et al. Multicentre evaluation ofultra filtration,dialysis, and thermal coagulation as sample pretreatmentmethods for the colorimetric determination of paraquat in blood andtissues. Journal of forensic Sciences.1986,31(2),504-510
    23Mulugeta M, Megersa N. Carrier-mediated extraction of bipyridliumherbicides across the hydrophobic liquid membrane. Talanta,2004,64(1):101-108
    24Zougagh M, Bouabdallah M, Salghi R, et al. Supercritical fluid extractionas an on-line clean-up technique for rapid amperometric screening andalternative liquid chromatography for confirmation of paraquat and diquatin olive oilsamples. Journal of Chromatography A,2008,1024(1):56-61
    25Pateiro-Moure M, Martínez-Carballo E, Arias-Estévez M, et al.Determination of quaternary ammonium herbicides in soils. Comparisonof digestion, shaking and microwave-assisted extraction. Journal ofChromatography A,2008,1196-1197:110-116
    26Lee HS, Kim K, Kim JH, et al. On-line sample preparation of paraquat inhuman serum samples using high-performance liquid chromatographywith column switching. Journal of Chromatography B,1998,716:371-374
    27乔静,杨士云,潘冠民,等.百草枯的HPLC分析.刑事技术,2000,32(2):30-31
    28王朝虹,李玉安,邢俊波,等.高效液相色谱法检测人血中的百草枯.中国法医学杂志,2004,19(3):160-161
    29王朝虹,王志萍,何毅,等.高效液相色谱法测定体液中百草枯.中国法医学杂志,2007,22(6):388-390
    30Fuke C, Arao T, Morinaga Y, et al. Analysis of paraquat, diquat and twodiquat metabolites in biological materials by high-performance liquidchromatography. Leg Med(Tokyo),2002,4(3):156-163
    31Barr DB, Needham LL. Analytical methods for biological monitoring ofexposure to pesticides: a review. Journal of Chromatography B, AnalyticalTechnologies Biomedical Life Sciences,2002,778(1-2):5-29
    32Khan SU. Determination of paraquat residues in food crops by gaschromatography. Bull Environ contam toxical,1975,14(6):745-749
    33Draffan GH, Clare RA, Davies DL, et al. Quantitative determination oftheherbicide paraquat in human plasma by gas chromatographic and massspectrometric method. Chromatography,1977,139(2):311-320
    34黄璐瑶,廖林川,陈礼莉,等.硼氢化钠氯化镍还原—GC/TSD法检测血液和尿液中百草枯.中国法医学杂志,2008,24(6):429-432
    35陈姿如,刘军生,陈礼明,等.血液中百草枯衍生物的气相色谱法测定.中华劳动卫生职业病杂志,2008,26(2):112-113
    36Wang KC, Chen SM, Hsu JF, et al. Simultaneous detection andquantitation of highly water-soluble herbicides in serum using ion-pairliquid chromatography-tandem mass spectrometry. Journal ofChromatography B, Analytical Technologies Biomedical Life Sciences,2008,876(2):211-218
    37王朝虹,王忠,刘学俊,等. LC/MS/MS法测定生物组织中百草枯.中国法医学杂志,2008,23(2):114-116
    38张婷,谭家镒,齐宝坤,等.气相色谱—串联质谱法分析尿和血中除草剂百草枯.中国法医学杂志,2009,24(3):161-163
    39张婷,谭家镒,田艳,等.气相色谱法检测全血中百草枯.广东公安科技,2007,(4):21-22
    40Posecion NC, Ostrea EM, Bielawski DM. Quantitative determination ofparaquat in meconium by sodium borohydride-nickel chloride reductionand gas chromatography/mass spectrometry (GC/MS). Journal ofChromatography B, Analytical Technologies Biomedical Life Sciences,2008,862(1-2):93-99
    41Núnez O, Moyano E, Galceran MT. Solid-phase extraction and samplestacking-capillary electrophoresis for the determination of quaternaryammonium herbicides in drinking water. Journal of Chromatography A,2002,946(1-2):275-282
    42Vinner E, Stievenart M, Humbert L, et al. Separation and quantification ofparaquat and diquat in serum and urine by capillary electrophoresis.Biomedical Chromatography,2001,15(5):342-347
    43刘会芳,赵燕燕,王丽娟,等.检测血液中百草枯的交束毛细管电泳在线推扫富集技术.中华劳动卫生职业病杂志,2008,26(7):436-438
    44成美容,王圆朝,肖亮.毛细管电泳—间接电化学发光法对茶叶中百草枯农药残留的检测.分析测试学报,2009,28(12):1444-1447
    45Lee K, Park EK, Stoecklin-Marois M, et al. Occupational paraquatexposure of agricultural workers in large Costa Rican farms. Int ArchOccup Environ Health,2009,82(4):455-462
    46Abuknesha RA, Luk C. Paraquat enzyme-immunoassays in biologicalsamples: assessment of the effects of hapten-protein bridge structures onassay sensitivity. Analyst,2005,130(6):956-963
    47Koivunen ME, Gee SJ, Park EK, et al. Application of an enzyme-linkedimmunosorbent assay for the analysis of paraquat in human-exposuresamples. Arch Environ Contam Toxical,2005,48(2):184-190
    48Souza DD, Machado SA, Pires RC. Multiple square wave voltammetry foranalytical determination of paraquat in natural water, food, and beveragesusing microelectrodes. Talanta,2006,69(5):1200-1207
    49Lopes IC, Souza DD, Machado SA, et al. Voltammetric detection ofparaquat pesticide on a phthalocyanine-based pyrolitic graphite electrode.Anal Bioanal Chem,2007,388(8):1907-1914
    50陆蕙民.毒物分析.北京:警官教育出版社,1995,532-535
    51赵燕燕,刘会芳,郝丽娜,等.血中百草枯的紫外分光光度测定法.环境与健康杂志,2007,24(5):346-347
    52Kuo TL, Lin DL, Liu RH, et al. Spectra interference between diquat andparaquat by second derivative spectrophotometry. Forensic Sci Int,2001,121(1-2):134-139
    53曾铭,欧阳仙,陈茂坤,等.共振瑞利散射法测定百草枯的研究.分析化学,2008,36(1):112-115
    54Imbenotte M, Azaroual N, Cartigny B, et al. Detection of xenobiotics inbiological fluids by1H NMR spectroscopy. Toxicol Clin Toxicol,2003,
    41(7):955-962
    55贠克明.法医毒物动力学.中国法医学杂志,2008,23(6):361-369
    56张新威.中国刑事科学技术大全—毒品和毒物检验分册.北京:中国人民公安大学出版社,2001,573
    57Hilberg T, Bugge A, Beylich KM, et al. An animal model of postmortemamitriptyline redistribution. Forensic Sci,1993,38:81-90
    58Plueckhahn VD, Ballard B. Diffusion of stomach alcohol and heart bloodalcohol concentration at autopsy. J Forensic Sci,1967,12:463-470
    59Yarema MC, Becker CE. Key concepts in postmortem drug redistribution.J Clin Toxicol(Phila),2005,43(4):235-241
    60Takayasu T, Ohshima T, Tanaka N, et al. Experimental studies onpostmortem diffusion of ethanol-6using rats. J Forensic Sci Int,1995,76(3):179-188
    61Moriya F, Hashimoto Y. Postmortem diffusion of drugs from the bladderinto femoral venous blood. J Forensic Sci Int,2001,123(2-3):248-253
    1Rozet E, Morello R, Lecomte F, et al. Performances of a multidimensionalon-line SPE-LC-ECD method for the determination of three majorcatecholamines in native human urine: Validation, risk and uncertaintyassessments. J Chromatogr B,2006,844:251-260
    2Perry M, Li Q, Kennedy RT. Review of recent advances in analyticaltechniques for the determination of neurotransmitters. Anal Chim Acta,2009,653:1-22
    3Zeng C, Eisner GM, Felder RA, et al. Dopamine receptor and hypertension.Curr Med Chem,2005,3:69-77
    4Ibarra FR, Armando I, Nowicki S, et al. Acute and severe hypobarichypoxia-induced muscle oxidative stress in mice: the role of glutathioneagainst oxidative damage. Eur J Physiol,2005,450:185-191
    5Charkoudian N, Rabbitts JA. Sympathetic neural mechanisms in humancardiovascular health and disease. Mayo Clin Proc,2009,84:822-830
    6Bergquist J, Sciubisz A, Kaczor A, et al. Catecholamines and methods fortheir identification and quantitation in biological tissues and fluids.Neurosci Methods,2002,113:1-13
    7Raggi MA, Sabbioni C, Nicoletta G, et al. Analysis of plasmacatecholamines by liquid chromatography with amperometric detectionusing a novel SPE ion-exchange procedure. J Sep Sci,2003,26:1141-1146
    8Tsunoda M, Aoyama C, Nomura H, et al. Simultaneous determination ofdopamine and3,4-dihydroxyphenylacetic acid in mouse striatum usingmixed-mode reversed-phase and cation-exchange high-performance liquidchromatography. J Pharm Biomed Anal,2010,51:712-715
    9De Jong WHA, Vries EGE, Wolffenbuttel BHR, et al. Automated massspectrometric analysis of urinary free catecholamines using on-line solidphase extraction. J Chromatogr B,2010,878:1506-1512
    10Kushnir MM, Urry FM, Frank EL, et al. Analysis of catecholamines inurine by positive-ion electrospray tandem mass spectrometry. Clin Chem,2002,48:323-331
    11Goldstein DS, Eisenhofer G, Kopin IJ. Sources and significance of plasmalevels of catechols and their metabolites in humans. J Pharmacol Exp Ther,2003,305:800-811
    12Raggi MA, Sabbioni C, Pucci V, et al. Sensitive determination of3-methoxy-4hydroxyphenilglycol (MHPG) in human plasma byHPLC-ED and novel extraction procedures. Chromatographia,2001,53:409-413
    13Valencia IM, Serrano M, Ormazabal A, et al. Current status and futuredevelopments of LC-MS/MS in clinical chemistry for quantification ofbiogenic amines. Clin Biochem,2008,41:1306-1315
    14Yoshitake M, Nohta H, Yoshida H, et al. Selective determination of nativefluorescent bioamines through precolumn derivatization and liquidchromatography using intramolecular fluorescence resonance energytransfer detection. Anal Chem,2006,78(3):920-927
    15Fotopoulou MA, Ioannou PC. Post-column terbium complexation andsensitized fluorescence detection for the determination of norepinephrine,epinephrine and dopamine using high-performance liquid chromatography.Anal Chim Acta,2002,46:179-185
    16Rosano TG, Swift TA, Hayes LW. Advances in catecholamine andmetabolite measurements for diagnosis of pheochromocytoma. Clin Chem,1991,37:1854-1867
    17Peaston RT, Weinkove C. Measurement of catecholamines and theirmetabolites. Ann Clin Biochem,2004,41:17-38
    18Chang HT, Yeung ES. Determination of catecholamines in single adrenalmedullary cells by capillary electrophoresis and laser-induced nativefluorescence. Anal Chem,1995,67:1079-1083
    19Berquist J, Joseffsson E, Tarkowski A, et al. Measurements ofcatecholamine-mediated apoptosis of immunocompetent cells by capillaryelectrophoresis. Electrophoresis,1997,18:1760-1766
    20Vuorensola K, Sirén H. Determination of urinary catecholamines withcapillary electrophoresis after solid-phase extraction. J Chromatogr A,2000,895:317-327
    21Vuorensol K, Kokkonen J, Sirén H, et al. Optimization of capillaryelectrophoretic-electrospray ionization-mass spectrometric analysis ofcatecholamines. Electrophoresis,2001,22:4347-4354
    22Mocko VQ, Novotny M, Schaefer LS, et al. CE coupled withamperometric detection using a boron-doped diamond microelectrode:Validation of a method for endogenous norepinephrine analysis in tissue.Electrophoresis,2008,29:441-447
    23Vlckova M, Schwarz MA. Determination of cationic neurotransmitters andmetabolites in brain homogenates by microchip electrophoresis and carbonnanotube-modified amperometry. J Chromatogr A,2007,1142:214-221
    24Ragab GH, Nohta H, Zaitsu K. Chemiluminescence Determination ofCatecholamines in Human Blood Plasma Using1,2-Bis(3-chlorophenyl)ethylene-Diamine as Precolumn DerivatizingReagent for Liquid Chromatography. Anal Chim Acta,2000,403:155-160
    25M. Tsunoda. Recent advances in methods for the analysis ofcatecholamines and their metabolites. Anal Bioanal Chem,2006,386:506-514
    26Cakal C, Ferrance JP, Landers JP, et al. Microchip extraction ofcatecholamines using a boronic acid functional affinity monolith. AnalChim Acta,2011,690:94-100
    27Schwarz MA. Enzyme-catalysed amperometric oxidation ofneurotransmitter in chip-capillary electrophoresis. Electrophoresis,2004,25:1916-1922
    28De Jong APJM. Derivatization of catecholamines in aqueous solution forquantitative analysis in biological fluids. J Chromatogr,1983276:267-278
    29Chan ECY, Ho PC. High-performance liquid chromatography/atmosphericpressure chemical ionization mass spectrometric method for the analysis ofcatecholamines and metanephrines in human urine Rapid Commun. MassSpectrom,2000,14:1959-1964
    30Wang Y, Fice DS, Yeung PKF. A simple high-performance liquidchromatography assay for simultaneous determination of plasmanorepinephrine, epinephrine, dopamine, and3,4-dihydroxyphenyl aceticacid. J Pharm Biomed Anal,1999,21:519-525
    31Nikolajsen RPH, Hansen AM. Analytical methods for determining urinaryCA in healthy subjects. Anal Chim Acta,2001,449:1-15
    32Mack F, Bonisch H. Dissociation Constants and Lipophilieity ofCatecholamines and Related Compounds. Arch Pharmacol,1979,310:1-9
    33Hees MTIWS, Henegouwen GMJB, Driever MFJ. Liquidchromatographic methods for the quantification of catecholamines andtheir metabolites in several biological samples–A review. Pharm WeekblSci,1983,5:102-108
    34Koivisto P, Tornkvist A, Helctin E, et al. Separation of L-DOPA and fourmetabolites in plasma using a porous graphitic carbon column in ca pillaryliquid chromatography. Chromatographia,2002,55:39-42
    35Eisenhofer G, Kopin IJ, Goldstein DS. Catecholamine metabolism: acontemporary view with implications for physiology and medicine.Pharmacol Rev,2004,56:331-349
    36Antkiewicz-Michaluk L, Ossowska K, Romanska I, et al.3-Methoxytyramine, an extraneuronal dopamine metabolite plays aphysiological role in the brain as an inhibitory regulator ofcatecholaminergic activity. Eur J Pharmacol,2008,599:32-35
    37Uutela P, Reinila R, Harju K, et al. Analysis of Intact Glucuronides andSulfates of Serotonin, Dopamine, and Their Phase I Metabolites in RatBrain Microdialysates by Liquid Chromatography. Anal Chem,2009,81:8417-8425
    38Chan ECY, Wee PY, Ho PC. Evaluation of degradation of urinarycatecholamines and metanephrines and deconjugation of theirsulfoconjugates using stability-indicating reversed-phase ion-pair HPLCwith electrochemical detection. J Pharm Biomed Anal,2000,22:515-526
    39Eisenhofer G. Sympathetic nerve function—assessment by radioisotopedilution analysis. Clin Auton Res,2005,15:264-283
    40Esler M. The sympathetic nervous system through the ages: from ThomasWillis to resistant hypertension. Exp Physiol,2011,96:611-622
    41Yoshitake T, J Kehr, Yoshitake S, et al. Determination of serotonin,noradrenaline, dopamine and their metabolites in rat brain extracts andmicrodialysis samples by column liquid chromatography with fluorescencedetection following derivatization with benzylamine and1,2-diphenylethylenedi. J Chromatogr B,2004,80:177-183
    42Nalewajko E, Wiszowata A, Kojlo A. Determination of catecholamines byflow-injection analysis and high-performance liquid chromatography withchemiluminescence detection. J Pharm Biomed Anal,2007,43:1673-1681
    43Wolthers BG, Kema IP, Volmer M,et al. Evaluation of urinarymetanephrine and normetanephrine enzyme immunoassay (ELISA) kits bycomparison with isotope dilution mass spectrometry. Clin Chem,1997,43:114-120
    44Zhang G, Zhang Y, Ji C, et al. Ultra sensitive measurement of endogenousepinephrine and norepinephrine in human plasma by semi-automatedSPE-LC–MS/MS. J Chromatogr B,2012,895:186-190
    45Petteys BJ, Graham KS, Parnás ML, et al. Performance characteristics ofan LC–MS/MS method for the determination of plasma metanephrines.Clin Chim Acta,2012,413:1459-1465
    46He X, Gabler J, Yuan C, et al. Quantitative measurement of plasma freemetanephrines by ion-pairing solid phase extraction and liquidchromatography–tandem mass spectrometry with porous graphitic carboncolumn. J Chromatogra B,2011,879:2355-2359
    47Peaston RT, Graham KS, Chambers E, et al. Performance of plasma freemetanephrines measured by liquid chromatography–tandem massspectrometry in the diagnosis of pheochromocytoma. Clin Chim Acta,2010,411:546-552
    48Li W, Rossi DT, Fountain ST. Development and validation of asemi-automated method for l-dopa and dopamine in rat plasma usingelectrospray LC/MS/MS. J Pharm Biomed Anal,2000,24:325-333
    49Gabler J, Willer A, Wang S, et al. A simple liquid chromatography-tandemmass spectrometry method for measuring metanephrine andnormetanephrine in urine. Clin Chem Lab Med,2011,49:1213-1216
    50Clark Z D, Frank E L. Urinary metanephrines by liquid chromatographytandem mass spectrometry: Using multiple quantification methods tominimize interferences in a high throughput method. J Chromatogra B,2011,879:3673-3680
    51Kumar A, Hart JP, McCalley DV. Determination of catecholamines inurine using hydrophilic interaction chromatography with electrochemicaldetection. J Chromatogra A,2011,1218:3854-3861
    52Zhu KY, Fu Q, Leung KW, et al. The establishment of a sensitive methodin determining different neurotransmitters simultaneously in rat brains byusing liquid chromatography–electrospray tandem mass spectrometry. JChromatogra B,2011,879:737-742
    53Parrot S, Neuzeret P, Denoroy L. A rapid and sensitive method for theanalysis of brain monoamine neurotransmitters using ultra-fast liquidchromatography coupled to electrochemical detection. J Chromatogra B,2011,879:3871-3878
    54Hirano Y, Tsunoda M, Funatsu T, et al. Rapid assay forcatechol-O-methyltransferase activity by high-performance liquidchromatography-fluorescence detection. J Chromatogra B,2005,819:41-46
    55Sastre E, Nicolay A, Bruguerolle B, et al. Method for simultaneousmeasurement of norepinephrine,3-methoxy-4-hydroxyphenylglycol and3,4-dihydroxyphenylglycol by liquid chromatography withelectrochemical detection: application in rat cerebral cortex and plasmaafter lithium chloride treatment. J Chromatogra B,2004,801:205-211
    56Tsunoda M, Funatsu T. Catecholamine analysis with strong cationexchange column liquid chromatography–peroxyoxalatechemiluminescence reaction detection. Anal Bioanal Chem,2012,402:1393–1397
    57Tsunoda M, Takezawa K, Masuda M, et al. Rat liver and kidneycatechol-O-methyltransferase activity measured by high-performanceliquid chromatography with fluorescence detection. Biomed Chromatogr,2002,16:536–541
    58Cosentino M, Bombelli R, Ferrari M, et al. HPLC-ED measurement ofendogenous catecholamines in human immune cells and hematopoieticcell lines. Life Sci,2000,68:283-295
    59He X, Kozak M. Development of a liquid chromatography–tandem massspectrometry method for plasma-free metanephrines with ion-pairingturbulent flow online extraction. Anal Bioanal Chem,2012,402:3003-3010
    60Smith EA, Schwartz AL, Lucot JB. Measurement of urinarycatecholamines in small samples for mice. J Pharmacol Toxicol Methods,2013,67:45-49
    61Hubbard KE, Wells A, Owens TS, et al. Determination of dopamine,serotonin, and their metabolites in pediatric cerebrospinal fluid by isocratichigh performance liquid chromatography coupled with electrochemicaldetection. Biomed chromatogram,2010,24:626-631
    62Sasaki T, Fukushima T, Ohishi M, et al. Development of a6-hydroxychroman-based derivatization reagent: application to theanalysis of5-hydroxytryptamine and catecholamines by usinghigh-performance liquid chromatography with electrochemical detection.Biomed Chromatogr,2008,22:888-899
    63Machida M, Sakaguchi A, Kamada S, et al. Simultaneous analysis ofhuman plasma catecholamines by high-performance liquidchromatography with a reversed-phase triacontylsilyl silica column. JChromatogr B,2006,830:249-254
    64Sabbioni C, Saracino M A, Mandrioli R, et al. Simultaneous liquidchromatographic analysis of catecholamines and4-hydroxy-3-methoxyphenylethylene glycol in human plasma:Comparison of amperometric and coulometric detection. J Chromatogr A,2004,1032:65-71
    65Zhang W, Xie Y, Ai S, et al. Liquid chromatography with amperometricdetection using functionalized multi-wall carbon nanotube modifiedelectrode for the determination of monoamine neurotransmitters and theirmetabolites. J Chromatogra B,2003,791:217-225
    66Kumarathasan P, Vincent R. New approach to the simultaneous analysis ofcatecholamines and tyrosines in biological fluids. J Chromatogr A,2003,987:349-358
    67Chan ECY, Wee PY, P.Y Ho, Ho PC. High-performance liquidchromatographic assay for catecholamines and metanephrines usingfluorimetric detection with pre-column9-fluorenylmethyloxycarbonylchloride derivatization. J Chromatogr B,2000,749:179-189
    68Heidbreder CA, Lacroix L, Atkins AR, et al. Development and applicationof a sensitive high performance ion-exchange chromatography method forthe simultaneous measurement of dopamine,5-hydroxytryptamine andnorepinephrine in microdialysates from the rat brain. J Neurosci Methods,2001,112:135-144
    69Vaarmann A, Kask A, M eorg U. Novel and sensitive high-performanceliquid chromatographic method based on electrochemical coulometric arraydetection for simultaneous determination of catecholamines, kynurenineand indole derivatives of tryptophan Original. J Chromatogr B,2002,769:145-153
    70Karimi M, Carl JL, Loftin S, et al. Modified high-performance liquidchromatography with electrochemical detection method for plasmameasurement of levodopa,3-O-methyldopa, dopamine, carbidopa and3,4-dihydroxyphenyl acetic acid. J Chromatogr B,2006,836:120-123
    71Gu Q, Shi X, Yin P, et al. Analysis of catecholamines and theirmetabolites in adrenal gland by liquid chromatography tandem massspectrometry. Anal Chim Acta,2008,609:192-200
    72Manica DP, Mitsumori Y, Ewing AG. Characterization of electrodefouling and surface regeneration for a platinum electrode on anelectrophoresis microchip. Anal Chem,2003,75:4572-4577
    73Yoshitake T, Kehr J, Todoroki K, et al. Derivatization chemistries fordetermination of serotonin, norepinephrine and dopamine in brainmicrodialysis samples by liquid chromatography with fluorescencedetection. Biomed Chromatogr,2006,20:267-281
    74Tsunoda M, Mitsuhashi K, Masuda M, et al. Simultaneous determinationof3,4-dihydroxyphenylacetic acid and homovanillic acid using highperformance liquid chromatography–fluorescence detection andapplication to rat kidney microdialysate. Anal Biochem,2002,307:153-158
    75Forster CD and Macdonald IA. The assay of the catecholamine content ofsmall volumes of human plasma. Biomed Chromatogr,1999,13:209–215
    76Todoroki K, Yoshida H, Hayama T, et al. Highly sensitive and selectivederivatization-LC method for biomolecules based on fluorescenceinteractions and fluorous separations. J Chromatogr B,2011879:1325-1337
    77Sakaguchi Y, Yoshida H, Hayama T, et al. Selective liquidchromatographic determination of native fluorescent biogenic amines inhuman urine based on fluorous derivatization. J Chromatogr A,2011,1218:5581-5586
    78Jeon HK, Nohta H, Ohkura Y. High-performance liquid chromatographicdetermination of catecholamines and their precursor and metabolites inhuman urine and plasma by postcolumn derivatization involving chemicaloxidation followed by fluorescence reaction. Anal Biochem,1992,200:332-338
    79Alberts G, Lameris T, Meiracker AH, et al. High-performance liquidchromatographic determination of catecholamines and their precursor andmetabolites in human urine and plasma by postcolumn derivatizationinvolving chemical oxidation followed by fluorescence reaction. JChromatogr B,1999,730:213-219
    80T rnkvist A, Sj berg PJR, Markides KE, et al. Analysis of catecholaminesand related substances using porous graphitic carbon as separation mediain liquid chromatography–tandem mass spectrometry. J Chromatogr B,2004,801:323-32

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700