化学修饰电极的制备及其在流动注射不可逆双安培法中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文从方法、原理及性能等方面对化学修饰电极的设计、表征及催化效能进行了论述。并将其应用于构建流动注射不可逆双安培分析,对化学修饰电极中的自组装修饰、电聚合修饰及纳米粒子的接附修饰三类电极的设计进行了探讨,并对其在电化学催化氧化、电流增敏等应用机理进行了理论研究。其具体研究内容如下:
     1.利用S-Au键的强相互作用,在裸金电极上制备了L-半胱氨酸自组装膜金修饰电极(L-Cys/SAM-Au/CME),研究了阿魏酸在其上的电化学行为。将自组装膜修饰电极用于流动注射不可逆双安培(FI-IB)体系的构建,利用阿魏酸在L-Cys/SAM-Au/CME上的氧化和高锰酸钾(KMnO_4)在裸金电极上的还原构建双安培检测新体系。氧化峰峰电流与阿魏酸浓度在5.0×10~(-7)~8.0×10~(-5)mol/L范围内呈线性关系,其线性回归方程为i(nA)=4.16×10~7 C+50,在1.0×10~(-4)~1.0×10~(-3)mol/L范围内呈线性关系,其线性回归方程为i(nA)=5.6×10~6 C+300,检出限为1.2×10~(-7)mol/L,并应用于阿魏酸钠盐注射液中阿魏酸的测定,结果满意。
     2.在N,N-二环已基碳酰亚胺(DCC)存在介质下,通过酰氨键使多壁碳纳米管(MWCNTs)与L-半胱氨酸(L-Cys)缩合,功能化的MWCNTs通过结构中的S-Au键自组装接着于金电极表面,制备MWCNTs-L-Cys-Au/SAMs-CME,实现了对金电极的MWCNTs、L-Cys共组装修饰,并对其结构进行谱学与电化学表征。探讨了其对Rev的电催化氧化机理。氧化峰峰电流与白藜芦醇浓度在1.0×10~(-5)~2.0×10~(-7)mol/L范围内呈线性关系,其线性回归方程为i(nA)=2.57×10~6C-260,在2.0×10~(-3)~2.0×10~(-5)mol/L范围内呈线性关系,其线性回归方程为i(nA)=1.65×10~7 C-420,方法检出限为8.0×10~(-8)mol/L。该方法具有较高的选择性和灵敏度、样品处理方法简单快速。测定了虎杖及葡萄酒中Rev的含量,结果满意。
     3.利用循环伏安法(CV法)将单体L-苏氨酸(Lry)在铅笔芯电极循环聚合,以形成导电性聚合物修饰膜(P-Lry),探讨了铅笔芯修饰电极上的最佳聚合条件,并对其进行微观显象表征。研究了药物盐酸异丙嗪在该修饰电极上的电化学行为。在pH 6.8磷酸盐缓冲溶液(PBS)中,该氧化峰峰电流(ipa)与盐酸异丙嗪浓度在2.0×10~(-6)~1.5×10~(-3)mol/L范围内呈线性关系,方法检出限为8.5×10~(-7)mol/L(S/N=3)。对盐酸异丙嗪片剂测定结果满意。
     4.在玻碳电极基底上成功的制备了MWCNTs修饰电极(MWCNTs/GCE-CME),并对其表面结构进行显微表征。研究了双嘧达莫(DPD)在该修饰电极上的电化学行为及多种表面活性剂对DPD在MWCNTs/GCE-CME的影响。尝试提出MWCNTs对药物分析中的电催化氧化机理的推论。将包含有MWCNTs的MWCNTs/GCE-CME应用于FI-IB体系的构建,建立了在SDS介质下,直接测定DPD的新方法。在0.05 mol/L H_2SO_4介质溶液中,其ipa与DPD浓度在1.0×10~(-3)~1.5×10~(-6)mol/L范围内呈线性关系,方法检出限为8.0×10~(-7)mol/L。该方法对双嘧达莫片剂测定结果满意。
The study on the methods,principles and performance aspects of the chemically modified electrodes which contain designing,characterization and catalytic efficiency are discussed.In this paper,we construct and design the three types of chemically modified electrodes,apply to flow injection-irreversible biamperometric with the self-assembly modification,polymer modification,and access of nanoparticles modification.The mechanism of electrocatalysis oxidation to analysis material on modified electrode was studied.We take the theoretical investigation about oxidation current increases significantly under the effect of enhancement of electrc transfer at modified electrode comparison to that at the bare electrode.Its specific research as follows:
     1.L-cysteine self-assembled monolayers has been fabricated on the surface of gold electrode(L-Cys/SAM-Au/CME)by S-Au bond interaction,also the electrochemical behaviors of ferulic acid on the modified electrode were investigated.The method of self-assembled monolayers modified electrode is applied to establish in the flow-injection irreversible biamperometric analysis,the irreversible system is composed of electro-catalytic oxidation of ferulic acid on L-cysteine gold modified electrode and reduction of permanganate at the other bare gold electrode.The oxidative peak current increases linearly with the concentration of ferulic acid in the range of 5.0×10~(-7)~8.0×10~(-5)mol/L,linear regression equation:i(nA)=4.16×10~7 C+ 50,and in the range of 1.0×10~(-4)~1.0×10~(-3)mol/L, linear regression equation:i(nA)=5.6×10~6 C+300.The detection limit for ferulic acid is 1.2×10~(-7)mol/L.This proposed method was applied to the analysis of sodium ferulate injection with satisfactory results.
     2.With the aid of a condensation agent DCC,the open-ended and carboxyl groups terminated MWCNTs(multi-walled carbon nanotubes)and L-Cys(L-cysteine)condensation reaction through the carboxyl and amino group,and the function of MWCNTs form self-assembled monolayers on gold electrode surface via bond of S-Au.Prepare the modified electrode of MCNTs-L-Cys-Au/SAMs by co-assembling on gold electrode surface with MWCNTs and L-Cys.Meanwhile,we take the investigation of optical spectroscopy and electrochemistry for modified electrode.Meantime,the mechanism of electrocatalysis oxidation to resveratrol on modified electrode was studied.The oxidative peak current increases linearly with the concentration of resveratrol in the range of 1.0×10~(-5)~2.0×10~(-7) mol/L,linear regression equation:i(nA)=2.57×10~6 C-260,and in the range of 2.0×10~(-3)~8.0×10~(-5)mol/L,linear regression equation:i(nA)=1.57×107C-420.The detection limit for resveratrol is 8.0×10~(-8)mol/L.This proposed method has the advantage of high selectivity and sensitivity.The disposal method of the sample is simple,and applied to the analysis of resveratrol in giant knotweed and red wine with satisfactory results.
     3.The Poly(L-threonine)modified electrode is prepared successfully by using cyclic voltammetric method at lead electrode.The optimum polymerization condition of L-threonine on lead electrode is studied,and the microscopic configuration of the surface of modified electrode also is characterized.The electrochemical behaviors of promethazine on the poly(L-threonine)lead modified electrode are studied.In pH 6.8 phosphate buffer solution (PBS),the oxidative peak current increases linearly with the concentration of promethazine in the range of 2.0×10~(-6)~1.5×10~(-3)mol/L,linear regression equation:i(nA)=1.97×10~7 C-300. The detection limit for promethazine is 8.5×10~(-7)mol/L.This proposed method is applied to the analysis of promethazine tablet with satisfactory results.
     4.The multi-wall carbon nanotubes-modified glassy-carbon electrode(MWCNTs /GCE-CME)is prepared at the bare glassy-carbon electrode,and the micrographs of the MWCNTs/GCE-CME are obtained by device of scanning electron microscopy.The electrochemical behaviors of dipyridamole(DPD)on the modified electrode are studied.The oxidation peak current of DPD at the MWCNTs/GCE-CME under the effect of enhancement of surfactant are investigated.The mechanism is investigated.The oxidative peak current increases linearly with the concentration of DPD in the range of 1.5×10~(-6)~1.0×10~(-3)mol/L, linear regression equation:i(nA)=2.37×10~6 C-450.The detection limit for DPD is 8.0×10~(-7) mol/L.This proposed method was applied to the analysis of DPD tablet with satisfactory results by using MWCNTs/GCE-CME.
引文
[1]Lane R.F.,Hubbard A.T..Electrochemistry of chemisorbed molecules.I.reactants connected to electrodes through olefinic substituents[J],J.Phys Chem.1973,77:1401
    [2]Watkins B.F.,Behling J.R.,Kariv E.,et al.Chiral electrode[J],J.Am.Chem.Soc.,1975,97:3549
    [3]Moses P.R.,Wier L.,Murray R.W..Chemically modified tin oxide electrode[J],J.Anal.Chem.1975,47:1882
    [4]董绍俊,车光礼,谢远武.化学修饰电极[M],北京:科学出版社,2003,6.
    [5]C.Zhao,J.C.Zhang,J.F.Song.Determination of L-cysteine in amino acid mixture and human urine by flow-injection analysis with a biamperometric detector[J],Anal.Biochem.2001,297:170-176.
    [6]Santhanam KSV,Sangoi R,Fuller L.A chemical sensor for chloromethanes using a nanocomposite of multiwalled carbon nanotubes with poly(3-methylthiophene)[J],Sensor Actuat B Chem.2005,106(2):766-771.
    [7]金利通,方禹之.化学修饰电极[M],华东师范大学出版社,1992,5.
    [8]李佳,徐金瑞,孙向英.壳聚糖共价键合化学修饰电极测定亚硝酸根[J],分析化学,2002,30(2):206-209.
    [9]C.Ho,LD.Raistrick,R.A.Huggins.J.Electrochem.Soc.,1980,127:343.
    [10]金松子,田文莉,张春煦,等.磷脂-月桂酸膜修饰玻碳电极测定多巴胺及其电化学行为,分析科学学报,2003,19(2):105-108.
    [11]邓雪蓉,王立世,张水锋,等.电聚合o-ImBPTPPMn(m)Cl膜修饰玻碳电极同时测定抗坏血酸和多巴胺[J],分析化学,2006,34(5):637-641.
    [12]李松林,崔建明.导电聚合物固定酶生物传感器研究进展,材料导报,2006,20(4):38-41.
    [13]霍莉,丁克强,左卫霞,等.自组装膜的研究应用新进展[J],河北师范大学学报(自然科学版),2003,27(6):608-612.
    [14]C.D.Bain,E.B.Tronghton,Y.T.Tao,et al.Formation of monolayer-films by the spontaneous assembly of organic thiols from solution onto gold[J],J.Am.Chem.Soc., 1989,111(1):321-335.
    [15]S.Berohmans,S.S.Arivukkodi,V.Yegnaraman.Self-Assembled Monolayers of 2-Mercaptobenzimidazole on Gold:Stripping Voltammetric Determination of Hg (Ⅱ)[J],Electrochem.Commun.,2000,2(4):226-229.
    [16]李景虹,程广金,董绍俊.一种新型有序超薄有机膜.自组装膜[J],化学通报,1995,10:11-18.
    [17]N.L.Abbott,C.B.Gorman,G.M.Whitesides.Active Control of Wetting Using Applied Electrical Potentials and Self-Assembled Monolayers[J],Langmuir,1995,11(1):16-18.
    [18]J.Sagiv.Organized Monolayers by Adsorption.1.Formation and Structure of Oleophobic Mixed Monolayers on Solid Surfaces[J],J.Am.Chem.Soc.,1980,102(1):92-98.
    [19]李景虹,程广金,董绍俊.自组装膜技术在电分析化学中的研究和应用[J],分析化学,1996,24(9),1073-1079.
    [20]邓文礼,杨大本,方哗,等.硫醇在Au(Ⅲ)上的SA单分子层研究[J],中国科学(B辑),1996,26(2):174-180.
    [21]Y.T.Tao,C.C.Wu,J.Y.Eu,et al.Structure Evolution of Aromatic-Derivatized Thiol Monolayers on Evaporated Gold[J].Langmuir,1997,13(15):4018-4023.
    [22]G.E.Poirier,E.D.Pylant.The Self-Assembly Mechanism of Alkanethiols on Au(Ⅲ)[J].Science,1996,272(5265):1145.
    [23]O.Masayuki,K.Susumu,Y Hiroshi.Electrochemical Oxidation of Reduced Nicotinamide Coenzymes at Au Electrodes Modified with Phenothiazine Derivative Monolayers[J].J.Electroanal.Chem.,1997,422(1-2):45-54.
    [24]S.Jung,G.S.Wilson.Polymeric Mercaptosilane-Modified Platinum Electrodes for Elimination of Interferants in Glucose Biosensors[J].Anal.Chem.,1996,68(4):591-596.
    [25]C.Henke,C.Steinem,A.Jansho,et al.Self-Assembled Monolayers of Monofunctionalized Cyclodextrins onto Gold:Amass Spectrometric Characterizat- ion and Impedance Analysis of Host-Guest Interaction[J].Anal,Chem.,1996,68(18):3158-3165.
    [26]lijima S..Helical microtubles of graphitic carbon[J],Nature,1991,354,56.
    [27]Hamada N.,Savada S.,Oshiyama A..New one-dimensional conductors:Graphiticmicro tubules[J],Phys.Rev.Lett.1992,68,1579
    [28]Kiang C.H.,Goddard W.A.,Beyers R..Carbon nanotubes with single-layer walls[J],Carbon,1995,33,903.
    [29]Odom T.,Huang J.,Kim R.,Lieber C..Atomic structure and electronic properties of single-walled carbon nanotubes[J],Nature,1998,391,62.
    [30]Ye Y,Ahn C.C.,Witham C.,Fultz B.,et al.Hydrogen and sorption and cohesive energy of single-walled carbon nanotubes[J],Appl.phys.lett.1999,74,2307.
    [31]Shui X.P,Chung D.D.L..High-strength high-surface-area porous carbon made from submicron-diameter carbon filaments[J],Carbon,1996,34,811.
    [32]lijima S.,Yudasaka M.,Yamada R.,et al.Nano-aggregates of single-walled graphitic carbon nano-horns[J],Chem.Phys.Lett.1999,309,165.
    [33]Kiang C.H.,Endo M.,Ajayan P.M.,et al.Size Efects in Carbon Nanotubes[J],Phys.Rev.Lett.1998,81,1869.
    [34]Amelinckx S.,Lucas A.,Lambin P..The geometry of multishell nanotubes[J],Rep.Prog.Phys.,1999,62,1471.
    [35]Tsang S.C.,Chen Y.K.,Harris P.J.F..A simple chemical method of opening and filling carbon nanotubes[J],Nature,1993,372,159.
    [36]Wong S.S.,Woolley A.T.,Joselevich E.,et al.Covalently- Functonalized Single-Walled Carbon Nanotube Probe Tips for Chemical Force Microscopy[J],J.Am.Chem.Soc.1998,120,8557.
    [37]朱宏伟,吴德海,徐才录.碳纳米管[M],北京:机械工业出版社,2003.1
    [38]Davis J.J.,Green M.L.H.,Hill H.A.O.,et al..The immobilisation of proteins in carbon nanotubes[J],Inorganica Chimica Acta.,1998,272,261.
    [39]Ago H.,Kugler T.,Cacialli F.,et al..Work Function and Surface Functional Groups of Multiwall Carbon Nanotube[J],J.Phys.Chem.B,1999,103,8116.
    [40]Sano M.,Kamino A.,Kamura J.O.,et al..Carbon Nanotubes Close the Loop[J],Science,2001,293,1299.
    [41]Barisci J.N.,Wallace G.G.,Baughman R.H..Electrochemical Characteriztion of Single-Wall Carbon Nanotube Electrodes[J],J.Electrochem.Soc.2000,147,4580.
    [42]Musameh M.,Wang J.,Merkoci A.,et al.Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes[J],Electrochem.Commun.2002,4:743-750.
    [43]Liu P.F.,Hu J.H..Carbon nanotube powder microelectrodes for nitrite detection[J],Sensors and Actuators B.,2002,84:194-202.
    [44]Brito P.J.,Santhanam K.S.V.,Ajayan P.M..Carbon nanotube electrode for oxidation of dopamine[J],Bioelectrochem and Bioenerg.1996,41,121-128.
    [45]Davis J.J.,Coles R.J.,Hill H.A.O..Protein electrochemistry at carbon nanotube electrodes[J],J.Electroanal.Chem.1997,440:279-286.
    [46]Lapa Rui A S,Lima Jose L F C,Pinto Ivone V O S.Development of a sequential injection analysis system for the simultaneous biosensing of glucose and ethanol in bioreactor fermentation[J].Food Chem.,2003,81:141-146.
    [47]吴友谊,林金明.芯片毛细管电泳电化学检测[J],化学通报,2004,67(3):170-177.
    [48]周文峰,袁倬斌.毛细管电泳柱端安培检测装置的研制[J],分析实验室,2005,24(1):88-90.
    [49]张文,朱伟,徐海红,等.四氢生物蝶呤对大鼠纹状体中单胺类神经递质影响的液相色谱-电化学检测研究[J],中国科学:B辑,2005,35(2):151-158.
    [50]谭学才,翟海云,李荫,等.基于溶胶-凝胶壳聚糖/SiO2杂化材料的安培型葡萄糖生物传感器[J],高等学校化学学报,2004,25(9):1645-1647.
    [51]罗闲波,姜利英,李华清,等.基于电流型生物传感器的手持式多参数生化检测仪[J],传感技术学报,2005,18(3):477-480.
    [52]Foulk,K.Doblhofer,Faraday Trans[J],J.Chem.Soc.,1982,74(13):652-655.
    [53]宋俊峰,赵川,亢晓峰,等.两个不可逆电对共存体系的流动注射双安培分析法[J],高等学校化学学报,2000,21(4):535-537.
    [54]Song J.F.,Zhao C.,Guo W.,et al.Theoretical and experimental study of the biamperometry for irreversible redox couple in flow system[J],Anal.Chim.Acta.,2002,470:229-240.
    [55]李利军,程昊,陈其锋,等.流动注射双安培测定多巴胺[J],分析化学,2006,34(8):1129-1132.
    [56]Li Jun Li,Qi Feng Chen,Lai Bo Yu,et al.Determination of Chlorogenic Acid by Flow injection Irreversible Biamperometry[J],Chin.Chem.Lett.,2007,18(4):431-434.
    [57]李利军,程昊,陈其锋,等.流动注射不可逆双安培法测定对乙酰氨基酚[J],分析测试学报,2006,25(5):38-40
    [58]赵川,张君才,宋俊峰.流动注射双安培法直接测定茶中单宁[J],分析化学,2002,30:210-213.
    [59]Zhao C.,Song J.F..Flow-injection biamperometry for direct determination of hydroxylamine at two pretreated platinum electrodes[J],Anal Chim.Acta,2001,434:261-267.
    [60]Li L.J.,Cheng H.,Huang W.Y.,et al.The Determination of Iodide Based on A Flow-injection Coupling Irreversible Biamperometry[J],Chin.Chem.Lett.,2005,16(12):1629-1632.
    [61]赵川,张君才,宋俊峰.低分子醇的流动注射双安培传感器[J],分析化学,2002,30(6):661-664.
    [62]张君才,赵川,宋俊峰.流动注射双安培法测定异烟肼[J],药学学报,2001,36:679-682.
    [63]张君才,孙敬妮,岳建民.流动注射双安培法测定桑枝中桑色素[J],咸阳师范学院学报,2003,18(6):27-29.
    [64]Zhao C.,Song J.F.,Zhang J.C..Flow-injection biamperometry direct determination of hydrazine at two oxide-modified platinum electrodes[J],Anal.Lett.,2001,34:2111.
    [65]Zhao C.,Song J.F.,Zhang J.C..Determination of total phenols in environmental wastewater by flow-injection analysis with a biamperometric detector[J],Anal Bioanal.Chem.,2002,374(3):498-504.
    [66]Zhao C.,Song J.F.,Zhang J.C..Flow-injection biamperometry of pyrogallol compounds[J],Talanta,2003,59:19-26
    [67]张君才,白育伟,党宏冈.流动注射双安培法测定没食子酸[J],分析科学学报,2005,21(1):69-71.
    [68]张君才,刘静,白育伟,等.流动注射双安培法测定维生素P[J],理化检验-化学分册,2005,41(6):393-395.
    [69]宋俊峰,赵川,过玮,等.抗坏血酸的双安培流动注射分析[J],分析化学,2000,28(1):38-41.
    [70]Chen J.Q.,Song J.F.,Chen L.F..Determination of ethamsylate in pharmaceutical preparations by irreversible biamperometry[J],Microchem.J.,2005,80(1):65-70.
    [71]Jia-Quan Chen,Wei Gao,Jun-Feng Song.Flow-injection determination of iron(Ⅲ)in soil by biamperometry using two independent redox couples[J],Sens.Actuator,B,2006,113:194-200.
    [72]陈家铨,宋俊峰,张雪红.流动注射双安培法测定二苯胺磺酸钠[J],理化检验-化学分册,2004,40(10):567-570.
    [1]Nuzzo R.G.,Allara D.L..Adsorption of bifunctional organic disulfides on gold surfaces[J],J.Am.Chem.,Soc.1983,105:4481.
    [2]Shiyi Xu,Guoli Tu,Bo Peng,et al.Self-assembling gold nanoparticles on thiolfunctionalized poly(styrene-co-acrylic acid)nanospheres for fabrication of a mediatorless biosensor[J],Anal,Chim,Acta.2006,570:151-157.
    [3]Dharmendra,Kumar Maurya,Veena Prakash Salvi.Radiation protection of DNA by ferulic acid under in vitro and in vivo conditions[J],Molecular and Cellular Bio-chemistry,2005,280:209-217.
    [4]Gu H.Y.,Yu A.M.,Chen H.Y..Direct electron transfer and characterization of hemoglobin immobilized on a Au colloid-cysteamine-modified gold electrode[J].Electroanal Chem.2001,516:119-126.
    [5]Yujuan Li,Kaishun Bi.HPLC determination of ferulic acid in rat plasma after oral administration of Rhizoma Chuanxiong and its compound preparation[J].Biomed Chromatogr,2003,17(8):543-546.
    [6]Tao Guo,Yi Sun,Yin Sui,et al.Determination of ferulic acid and adenosine in Angelicae Radix by micellar electrokinetic chromatography[J],Analytical and Bioanalytical Chemistry,2003,375:840-843.
    [7]Zhu X.F.,Hou L.B.,Wang G.S.,et al.Chinese J.of Anal.Chem.2006,34:S118-S112.
    [8]S.kallel trabelsi,N.belhadj tahar,R.Abdelhedi.Electrochemical oxidation of ferulic acid in aqueous solutions at gold oxide and lead dioxide electrodes[J],Journal of Applied Electro-chemistry,2005,35:967-973.
    [9]Song J.F.,Zhao C.,Guo W.,et al.Theoretical and experimental study of the biamperometry for irreversible redox couple in flow system.Anal.,Chim.,Acta.,2002,470:229-240.
    [10]Li Jun li,Hao Cheng H,Wen Yi Huang,et al.The Determination of Iodide Based on a Flow-injection Coupling Irreversible Biamperometry[J],Chinese Chemical Letter,2005,16(12):1629-1632.
    [11]董绍俊,车广礼,谢远武.化学修饰电极,北京:科学出版社,2003,593-594.
    [12]杜丹,王升富,黄春保.L-半胱氨酸修饰金电极对邻苯二酚和对苯二酚的电催化及分析应用[J],分析测试学报,2001,20(5):18-20.
    [13]宋俊峰,赵川,过玮.抗坏血酸的双安培流动注射分析[J],分析化学,2000,28(1), 38-41.
    [1]Jang M.S.,Cai L.N.,Udeani G.O..Cancer chemopreventive activity of resveratrol,a nature product derived from grapes[J],Science,1997,275(10):218-220.
    [2]闫静,王振月,刘丹宁,等.白藜芦醇及其苷的生物活性研究进展[J],中医药学报,2000(2):39-41.
    [3]Kolouchova-Hanzlikova Irena,Melzoch Karel,Filip Vladimir,et al.Rapid Method for Resveratrol Determination by HPLC with Electrchemical and UV Detections in Wines[J],Food Chem,2004,87:151-158.
    [4]Kissinger P.T..Detection for determination of trans-resveratrol in rat blood utilzing an automated blood sampling device[J],J.Chromatogr.B,2000,740:129-133.
    [5]Zhou J.,Cui H.,Wan G.,et al..Direct Analysis of trans-Resveratrol in Red Wine by High Performance Liquid Chromatography with Chemiluminescent Detection[J],Food Chem.,2004,88:613-620.
    [6]Vian M.A.,Tomao V.,Gallet S.,et al.Simple and rapid method for cis- and trans-resveratrol and piceid isomers determination in wine by high-performance liquid chromatography using Chromolith columns[J],J.Chromatogr.A,2005,1085:224-229.
    [7]Gao L.Y.,Chu Q.C.,Ye J.N..Determination of trans-Resveratrol in wines,herbs and health food by capillary electrophoresis with electrochemical detection[J].Food Chem,2002,78:255-260.
    [8]Gu X.,Chu Q.,O'Dwyer M.,et al.Analysis ofresveratrol in wine by capillary electrophoresis[J],J.Chromatogr.A,2000,881:471-481.
    [9]Miroslava S.,Jill P.,Marta F.et al.Optimization of solid-phase extraction using artificial neural networks in combination with experimental design for determination of resveratrol by capillary zone electrophoresis in wines[J],J.Chromatogr.A,2005,1084:180-185.
    [10]姚型军,王术皓,杜凌云.流动注射化学发光法测定样品中的白藜芦醇,化学研究与 应用,2006,18(8):1005-1008.
    [11]郑建斌,张宏芳,张秀琦,等.白藜芦醇的电化学行为及其与DNA的相互作用,高等学校化学学报,2006,27(9):1635-1639.
    [12]董社英,郑建斌,宁艳利.白藜芦醇的电化学行为及其与DNA的相互作用[J],高等学校化学学报,2003,24(3):428-430.
    [13]董绍俊,车广礼,谢远武.化学修饰电极[M].北京:科学出版社,2003,5.
    [14]金利通,方禹之,等.化学修饰电极[M],华东师范大学出版社,1992,5.
    [15]张俊苓,杨芳,郑文杰.自组装单分子膜及其表征方法化[J],化学进展,2005,17(2):203-208.
    [16]杨生荣,任嗣利,张俊彦,等.金属表面自组装缓蚀功能分子膜[J],高等学校化学学报,2001,22(3):470-476.
    [17]杜丹,王升富,黄春保.L-半胱氨酸修饰金电极对邻苯二酚和对苯二酚的电催化及分析应用[J],分析测试学报,2001,20(5):18-20.
    [18]张学群,韦钰.新的分子组装技术:自组装成膜及其应用[J],东南大学学报,1994,24(5):1-6.
    [19]崔晓莉,江志裕.自组装膜技术在金属防腐蚀中的应用研究[J],腐蚀与防护,2001,22,(8):335-338.
    [20]S.Lijima.Helical microtubules of graphite carbon[J],Nature,1991,354:56-58.
    [21]Zhongfan Liu,Ziyong Shen,Tao Zhu et al.Organizing Single-Walled Carbon Nanotubes on Gold Using a Wet Chemical Self-Assembling Technique,Langmuir,2000,16(8):3569-3573
    [22]X F Yu,T Mu,H Z Huang et al.The study of the attachment of a single-walled carbon nanotube to a self-assembled monolayer using X-ray photoelectron spectroscopy Surface Science,2000,461(1-3):199-207.
    [23]Nan X.L.,Gu Z.N.,Liu Z.F..Immobilizing shortened single-walled carbon nanotubes (SWNTs)on gold using a surface condensation method[J].Journal of Colloid and Interface Science,2002,245(2):311-318.
    [1]Cai C.X.,Xue K.H..Electrocatalysis of NADH oxidation with electropolymerized film of nile blue[J],Analytica Chimica Acta,1997,343:69.
    [2]董绍俊,车广礼,谢远武.化学修饰电极[M],北京:科学出版社,2003,305-312.
    [3]曹田,尹静波,罗坤.高分子量聚谷氨酸的合成与表征[J],高等学校化学学报,2006,27(2):369-371.
    [4]Saraceno R.A.,Pack J.G.,Ewing A.G..Catalysis of slow charge transfer reactions at polypyrrole-coated glassy carbon electrodes[J],J.Electroanal.Chem.,1986,197:265.
    [5]涂逸君.盐酸异丙嗪在临床上的应用[J],中国医刊,2003,38(1):50-51.
    [6]中华人民共和国药典[S].国家药典委员会编,2005版,北京:化学工业出版社,2005:511-512.
    [7]梁改玲,王雪芹,仲平.高效液相色谱法测定异丙嗪胆汁片中盐酸异丙嗪的含量[J],药物分析杂志,2005,25(9):1129-1131.
    [8]倪永年,齐正保.化学计量学速差动力学光谱法同时测定盐酸氯丙嗪和盐酸异丙嗪[J],光谱学与光谱分析,2006,26:1364-1367.
    [9]杨季东.铁氰化钾-鲁米诺化学发光体系测定盐酸异丙嗪和盐酸氯丙嗪[J],分析化学,2002,30(12):1529-1529.
    [10]于铁力,孟昭仁,盐酸异丙嗪和盐酸氯丙嗪的示波极谱滴定分析[J],吉林大学学报(理学版),2003,41:115-116.
    [11]李蓉,郭建新.盐酸异丙嗪片含量测定方法的改进[J],中国现代应用药学,1999,16(6):55-58.
    [12]赵凯元,王郚清.1-(2-吡啶偶氮)-2-萘酚修饰的铅笔芯电极上铜的阳极溶出伏安特性[J],分析化学,1998,26(7):914-918.
    [13]Song J.F.,Zhao C.,Guo W.,et al.Theoretical and experimental study of the biamperometry for irreversible redox couple in flow system.Analytica Chimica Acta,2002,470:229-240.
    [1]Iijima S..Helical microtubles of graphitic carbon[J],Nature,1991,354:56-58.
    [2]Ajayan P.M..Nanotubes from Carbon[J].Chem.Rev.,1999,99:1787-1799.
    [3]Kong J.,Franklin N.R.,Zhou C.W.,et al.Molecular Wires as Chemical Sensors[J],Science,2000,287:622-625.
    [4]胡文平,刘云圻,曾鹏举,等.纳米碳管[J],化学通报,2000,2:2-6.
    [5]H.X.Luo,Z.J.Shi,N.Q.Li,et al.Zhuang.Investigation of the Electrochemical and Electrocatalytic Behavior of Single-Wall Carbon Nanotube Film on a Glassy Carbon Electrode[J],Analytical chemistry,2001,73:915-920.
    [6]Jianxiu Wang,Meixian Li,Zujin Shi,et al.Direct electrochemistry of cytochrome at a glassy carbon electrode modified with single-wall carbon nanotubes[J],Analytical Chemistry,2002,74,1993-1997.
    [7]吴芳辉,赵广超,魏先文.多壁碳纳米管修饰电极对对苯二酚的电催化作用[J],分析化学,2003,32(8):1057-1060.
    [8]马勇,王建国,惠飞,等.表面活性剂对硫醇单层膜修饰金电极电化学行为的影响[J],化学学报,2006,64(13):1309-1313.
    [9]杨培慧,苏章益,周志军,等.谷胱甘肽、表面活性剂共存体系对青蒿素过氧键稳定性的影响[J],分析化学,2006,34(3):367-370.
    [10]柴春彦,徐明刚,刘国艳.阳离子表面活性剂对电化学法测试牛奶中氯霉素残留量的影响[J],分析化学,2006,34(12):1715-1718.
    [11]仉文升,李安良.药物化学[M],北京,高等教育出版社,1999.p:296.
    [12]曹阳.双嘧达莫临床抗病毒应用[J],中国药理学通报,1997,13(4):344.
    [13]Kusmic C.,Picano E.,Busceti C.L.,et al.The antioxidant drug dipyridamole spares the vitamin E and thiols in red blood cells after oxidative stress[J],Cardiovasc Res,2000,47(3):510-514.
    [14]Curtin N.J.,Turner R.N..Dipyridamole2mediated reversal of multi-drug resistance in MRP over expressing human lung carcinoma cells in vitro[J],Euro J Cancer,1999,35 (6):1020-1026.
    [15]王文刚,崔光华,王睿,等.双嘧达莫缓释微丸的研制及其体外释放特性[J],中国医院药学杂志,2002,22(9):528-531.
    [16]Zhang J.,Miller R.B.,Jacobus R..Development and validation of a stability-indicating HPLC method for the determination of degradation products in dipyridamole injection[J],Chromatographia,1997,44(5):247-252.
    [17]Argekar A.P.,Kanjir S.S.,J..Planar Chromatogr Modern TLC.,1996,9(1):65-67.
    [18]Pulgarin J A K,Molina A A..Anal.Biochem,1997,245(1):8-16.
    [19]郑行望,章竹君.流动注射电化学发光测定潘生丁[J],分析化学,1999,27(2):145-148.
    [20]曾向群,林树昌,胡乃非.双嘧达莫在汞电极上的电化学行为和吸附性质[J],药学学报,1994,29(11):856-861.
    [21]杨运发.双嘧达莫在玻碳电极上的阳极伏安法研究[J],分析化学,2001,29(1):28-31.
    [22]董绍俊,车广礼,谢远武.化学修饰电极[M],北京:科学出版社,2003,305-312.
    [23]刘慧宏,万永清,陈显堂,等.固定化辣根过氧化物酶在有机溶剂/水混合溶液中的电化学[J],物理化学学报.2006,Vol.22,No.7:868-872.
    [24]李美仙,李铮,王放放,等.一氯乙酸和三氯乙酸在富勒烯/DDAB膜修饰电极上的电催化[J],分析化学.2005,33(9):1211-1214.
    [25]孙延一,吴康兵,胡胜水.多壁碳纳米管-Nafion化学修饰电极在高浓度抗坏血酸和尿酸体系中选择性测定多巴胺[J],武汉大学学报(理学版),2002,Vol.48,No.6:685-688.
    [26]Manne S.,Cleveland J.P.,Gaub H.E.,et al.Direct Visualization of Surfactant Hemi-micelles by Force Microscopy of the Electrical Double Layer[J],Langmuir,1994,10(12):4409-4413.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700