基于磁球放大技术的电化学发光免疫分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文的第一章研究了三联吡啶钌的N-羟基琥珀酰亚胺酯(Ru(bpy)_2(dcbpy)NHS)修饰磁球的构建及其电化学发光(ECL)。首先合成了Ru(bpy)_2(dcbpy)NHS并用红外光谱,紫外光谱,荧光光谱等方法对其进行了表征。然后利用线性扫描伏安法对Ru(bpy)_2(dcbpy)NHS进行了ECL检测,ECL曲线的峰电位为1.25 V。采集到Ru(bpy)_2(dcbpy)NHS ECL的光谱图,峰值在672 nm处。其ECL强度与同浓度的Ru(bpy)_3Cl_2溶液的ECL强度相当。然后构建了Ru(bpy)_2(dcbpy)NHS修饰的生物素包被的磁球(Bio-磁球)及链霉亲和素包被的磁球(SA-磁球)。利用Ru(bpy)_2(dcbpy)NHS上的酰基与链霉亲和素(SA)上的氨基发生偶联发应形成酰胺键,得到SA修饰的Ru(bpy)_2(dcbpy)NHS(Ru(bpy)_2(dcbpy)NHS-SA)。利用生物素与SA的特异性反应,将Bio-磁球与Ru(bpy)_2(dcbpy)NHS-SA连接在一起,得到Ru(bpy)_2(dcbpy)NHS修饰的Bio-磁球。Ru(bpy)_2(dcbpy)NHS修饰SA-磁球的构建利用了磁球上SA的伯胺与Ru(bpy)_2(dcbpy)NHS上的酯基反应形成酰胺键使Ru(bpy)_2(dcbpy)NHS直接与磁球结合。结果表明,Ru(bpy)_2(dcbpy)NHS修饰的这两种磁球可以产生较强的ECL。
     论文的第二章提出了一种新的提高电化学发光免疫分析(ECLIA)灵敏度的方法:基于磁球放大技术的ECLIA方法。在此方法中,我们利用小鼠抗人CA125抗体上的氨基与硅烷化基底上的环氧基的反应将小鼠抗人CA125抗体固定在基底表面。经双抗夹心免疫反应,生物素与SA的特异性反应等形成磁球-抗体-目标抗原-抗体夹心复合体,然后将过量Ru(bpy)_2(dcbpy)NHS-SA与固定在基底上的磁球复合体进行反应,形成了Ru(bpy)_2(dcbpy)NHS标记的磁球复合体,然后进行ECL检测。由于一个磁球上结合了大量的Ru(bpy)_2(dcbpy)NHS,提高了电化学发光效率,从而提高了方法的灵敏度。本章还优化了实验条件(如BSA封闭时间,抗原抗体孵育浓度及孵育时间等)。在最佳条件下,实现了对人卵巢癌抗原CA125的定量测定,该方法的线性浓度范围为5.00×10~(-9)mol/L~1.00×10~(-7)mol/L。
In the chapter one, Ru bis(2, 2'-bipyridine) (2, 2'-bipyridine-4, 4'-dicarboxylic acid) N-hydroxysuccinimide ester (Ru(bpy)_2(dcbpy)NHS) was synthesized and characterized using infrared spectroscopy, ultraviolet-visible absorption spectroscopy, fluorescence spectroscopy and electrochemiluminescence (ECL) spectroscopy. A maximum appeared at 672 nm on the ECL spectrum of Ru(bpy)_2(dcbpy)NHS. In order to fabricate the magnetic beads modified with Ru(bpy)_2(dcbpy)NHS, biotin-coated magnetic beads (bio-MB) or streptavidin-coated magnetic beads (SA-MB) was used. The ECL of the magnetic beads modified was investigated.
     In the chapter two, we developed a new ECL immunoassay method to detect cancer antigen 125 (CA125) using the magnetic beads modified with Ru(bpy)_2(dcbpy)NHS. In this method, the primary antibody (Abi) was immobilized on the sinalized transparent indium-tin oxide (ITO) electrode. Then, the target antigen (Ag, CA125) was bound to Abi through the immunoreaction, followed by conjugating the biotinylated secondary antibody (Ab_2) to Ag. Subsequently, the streptavidin (SA) was conjugated to the Ab_2, followed by binding bio-MB to SA. Finally. Ru(bpy)_2(dcbpy)NHS was labeled to the surface of the MBs. The ECL spectrum of the system fabricated using different Ag concentrations was recorded. The maximum of the intensity on the ECL spectra was used to quantify Ag. The linear range of the method was 5.00×10~(-9)mol/L-1.00×10~(-7)mol/L for CA 125.
引文
[1] Dufford, R. T.; Nightingale, D.; Gaddum, L. W., Luminescence of Grignard Compounds in Electric and Magnetic Fields, and Related Electrical Phenomena. J. Am. Chem. Soc. 1927,49, 1858-1864.
    
    [2] Harvey, N., Luminescence during Electrolysis. J. Phys. Chem. 1929,33,1456-1459.
    
    [3] Mussell, R D.; Nocera, D. G., Effect of long-distance electron transfer on chemiluminescenceefficiencies. J. Am. Chem. Soc. 1988,110, 2764-2772.
    
    [4] Rubinstein, I.; Bard, A. J., Electrogenerated chemiluminescence. 37. Aqueous ecl systems based on tris(2,2'-bipyridine)ruthenium(2+) and oxalate or organic acids. J. Am. Chem. Soc. 1981,103,512-516.
    
    [5] White, H.; Bard, A. J., Electrogenerated chemiluminescence. 41. Electrogenerated chemiluminescence and chemiluminescence of the Ru(2, 2'-bpy)_3~(2+)-S_2O_8~(2+) system in acetonitrile-water solutions. J. Am. Chem. Soc. 1982,104,6891-6895.
    
    [6]李延.张成孝.电化学发光在药物分析中应用的研究进展。西北药学杂志,2006,21(1). 45-47.
    
    [7]鞠熀先,电分析化学与生物传感器技术,p 461-470,科学出版社。
    
    [8]邹桂征.Cdse量子点的电致化学发光行为与生物传感,南京大学博士学位论文,2005. 第一章。
    
    [9] Collinson, M. M.; Wightman, R M., Observation of Individual Chemical Reactions inSolution. Science 1995,268,1883-1885.
    
    [10] Kankare, J.; Dyan, D. E.; Furst, B. J., Cathodic luminescence of oxide covered aluminiumand tantalum electrodes. Can. J. Chem. 1977, 55,1193-1198
    
    [11] Haapakka, K.; Kankare, J.: Kulmala. S.. Feasibility of low-voltage cathodicelectroluminescence at oxide-covered aluminum electrodes for trace metal determinations inaqueous solutions. Anal. Chim. Acta 1985,171,259-267.
    
    [12] Haapakka, K.; Kankare, J.; Puhakka, O., Fluorophor-enhanced cathodic electroluminescence??at an oxide-covered aluminum electrode Anal. Chim. Ada 1988.207.195-210.
    
    [13] Haapakka, K.; Kankare, J.; Lipiainen, K., Determination of polynuclear aromatic hydro-carbons in micellar solution by electrogenerated chemiluminescence. Anal. Chim. Ada 1988,215,341-345.
    
    [14] Kulmala, S.; Kankare, J.; Haapakka, K., Electrogenerated luminescence of terbium(Ⅲ) inaqueous solutions. Anal Chim. Ada 1991,252,65-76.
    
    [15] Kankare, J.; Falden, K.; Kulmala, S.; Haapakka, K., Cathodically induced time-resolved lanthanide(Ⅲ) electroluminescence at stationary aluminum disc electrodes. Anal. Chim. Ada 1992,256,17-28.
    
    [16] Kankare, J.; Haapakka, K; Kulmala, S.; Nanto, V.; Eskola, J.; Takalo, H., Immunoassav bytime-resolved electrogenerated luminescence. Anal. Chim. Ada 1992.266, 205-212.
    
    [17] Koval chuk, E. P.; Reshetnyak, O. V.; Chernyak, A. O.; Kovalyshyn. Y. S.. Electrochemiluminescence on npl-metals: 1. The analysis of chemiluminescent reactions. Eledrochim. Ada. 1999,44,4079-4086.
    
    [18] Kulmala, S.; Helin, M.; Ala-Kleme, T.; Vare, L.; Papkovsky, D.; Korpela, T.; Kulmala. A.. Electrochemiluminescent labels for applications in fully aqueous solutions at oxide-covered aluminium electrodes. Anal. Chim. Ada 1999,386,1-6.
    
    [19] Sung, Y. E.; Gaillard, F.; Bard, A. J., Demonstration of Electrochemical Generation of Solution-Phase Hot Electrons at Oxide-Covered Tantalum Electrodes by Direct Electrogenerated Chemiluminescence. J. Phys. Chem. B 1998,102,9797-9805.
    
    [20] Kulmala, S.; Ala-Kleme, T.; Vare, L; Helin, M; Lehtinen, T., Hot electron-induced electrogenerated luminescence of T1(Ⅰ) at disposable oxide-covered aluminum electrodes Anal. Chim. Ada. 1999,398,41-47.
    
    [21] Fabrizio, E. F.; Prieto, I.: Bard, A. J., Hydrocarbon Cation Radical Formation by Reductionof Peroxydisulfate. J Am. Chem. Soc. 2000,122, 4996-4997.
    
    [22] Kulmala. S.; Kulmala, A.; Ala-Kleme, T.; Pihlaja. J., Primary cathodic steps of electrogenerated chemiluminescence of lanthanide(Ⅲ) chelates at oxide-covered aluminum electrodes in aqueous solution. Anal. Chim Ada 1998, 367,17-31.
    
    [23] Kulmala. S.; Ala-Kleme, T.; Joela, H.; Kulmala. A., Hot electron injection into aqueous electrolyte solution from thin insulating film-coated electrodes. J. Radioanal. Nucl. Chem.??1998,232.91-95.
    
    [24] Kankare, J.; Haapakka, K.; Kulmala, S.: Nanto, V.; Eskola, J.; Takalo, H., Immunoassay by time-resolved electrogenerated luminescence. Anal. Chim. Acta. 1992,266,205-212.
    
    [25]王鹏,袁艺,朱果逸,张密林.电化学发光分析的新进展。分析化学,1999,27,1219-1225。
    
    [26] Sato, Y.; Uosaki, K., Electrochemical and electrogenerated chemiluminescence properties oftris(2,2'-bipyridine)ruthenium(Ⅱ)-tridecanethiol derivative on ITO and gold electrodes. J.Electroanal. Chem. 1995,384,57-66.
    
    [27] Wilson, R.; Kremeskotter, J.; Schiffrin, D. J.; Wilkinson, J. S., Electrochemiluminescencedetection of glucose oxidase as a model for flow injection immunoassays. Biosen. Bioelectron.1996,11,805-810.
    
    [28] Yoshimi, Y.; Naramoto, H.; Miyasaka, T.; Sakai, K., Cathodic Electrochemiluminescence ofLuminol Enhanced by Antibody-Antigen Reaction. J. Chem. Eng. Jpn. 1996,29, 851-857.
    
    [29] Alaklene, T.; Kulmala, S.; Larva, M., Generation of Free Radicals andElectrochemiluminescence at Pulse-polarized Oxide-covered Silicon Electrodes in AqueousSolutions. Acta Chem. Scandinavica 1997, 51, 541-546.
    
    [30] Haapakka, K. E.; Kankare, J. J., The mechanism of the electrogenerated chemiluminescenceof luminol in aqueous alkaline solution. Anal. Chim Acta 1982,138,263-275
    
    [31] Sakrua, S.; Terao, J.. Determination of lipid hydroperoxides by electrochemiluminescence.Anal. Chim. Acta 1992, 262. 59-65.
    
    [32] Sakrua, S.; Terao, J., Comparison of electrochemiluminescence and amperometric detectionof lipid hydroperoxides. Anal. Chim Acta 1992. 262,217-223.
    
    [33] Richter, M. M.; Debad. J. D.; Striplin, D. R.: Crosby, G. A.; Bard, A. J.. ElectrogeneratedChemiluminescence. 59. Rhenium Complexes. Anal. Chem. 1996. 68,4370-4376.
    
    [34] McCord, P.: Bard, A. J.. Electrogenerated chemiluminescence : Part 54. Electrogeneratedchemiluminescence of ruthenium(Ⅱ) 4, 4'-diphenyl-2, 2'-bipyridine and ruthenium(Ⅱ) 4.7-diphenyl-1, 10-phenanthroline systems in aqueous and acetonitrile solutions. J. Electroanal.Chem. 1991,318,91-99.
    
    [35] Michell, P. E.; Fiaccabrino, G. C; de Rooij. N. F.; Koudelka-Hep, M, Integrated sensor forcontinuous flow electrochemilumihescent measurements of codeine with different rutheniumcomplexes. Anal. Chim. Acta. 1999,392,95-103.
    
    [36] Richter, M. M.: Bard, A. J., Electrogenerated Chemiluminescence. 58. Ligand-SensitizedElectrogenerated Chemiluminescence in Europium Labels. Anal. Chem. 1996.68.2641-2650.
    
    [37] Chen, X.; Sato, M., Determination of dansyl amino acids usingtris(2,2'-bipyridyl)ruthenium(Ⅱ) chemiluminescence for post-column reaction detection inhigh-performance liquid chromatography. J. Chromatogr. A 1994,659,111-118.
    
    [38] Kulmala, S.; Kankare, J.; Haapakka, K., Electrogenerated luminescence of terbium(Ⅲ) inaqueous solutions. Anal. Chim Acta 1992,252,65-76.
    
    [39] Zu, Y. B.; Ding, Z.; Zhou, J. F.; Lee, Y.; Bard, A. J., Scanning Optical Microscopy with anElectrogenerated Chemiluminescent Light Source at a Nanometer Tip. Anal. Chem. 2001. 73.2153-2156.
    
    [40] Rubinstein, I.; Martin, C. R.; Bard, A. J., Electrogenerated chemiluminescent determinationof oxalate. Anal. Chem. 1983, 55,1580-1582.
    
    [41] Deniz, E.; Willian, G. B.; Bard, A. J., Electrogenerated chemiluminescent determination oftris(2,2'-bipyridine)ruthenium ion (Ru(bpy)_3~(2+)) at low levels Anal. Chem. 1984. 56.2413-2417.
    
    [42] Zu, Y.; Bard, A. J., Electrogenerated Chemiluminescence. 66. The Role of Direct CoreactantOxidation in the Ruthenium Tris(2,2')bipyridyl/Tripropylamine System and the Effect ofHalide Ions on the Emission Intensity. Anal. Chem. 2000, 72,3223-3232.
    
    [43] Zhang, L.H.; Xu, Z.A.; Dong, S. J., Electrogenerated chemiluminescence biosensor based onRu(bpy)_3~(2+) and dehydrogenase immobilized in sol-gel/chitosan/poly(sodium 4-styrenesulfonate) composite material. Ana. Chim. Acta, 2006, 575(1), 52-56.
    
    [44] Walton, D. J.; Phull, S. S.; Bates, D. M.; Lorimer, J. P.; Mason, T. J., Sonochemicalenhancement of electrochemiluminescence. Ultrasonics, 1992,30,186-191.
    
    [45] Xu, X. H.; Bard, A. J., Immobilization and Hybridization of DNA on an Aluminum(Ⅲ)Alkanebisphosphonate Thin Film with Electrogenerated Chemiluminescent Detection. J. Am.Chem. Soc. 1995,117,2627-2631.
    
    [46] Egashira, N.; Kumasako, H.; Ohga, K., Fabrication of a Fiber-Optic-BasedElectrochemiluminescence Sensor and Its Applicalion to the Determination of Oxalate. Anal.Sci. 1990, 6, 903-904.
    
    [47] Egashira, N.; Kumasako, H.; Kurauchi, Y.; Ohga, K.. Determination of Oxalate in Vegetables??with a Fiber-Optic Electrochemiluminescence Sensor. Anal. Sci. 1992,8,713-714.
    
    [48] Chen, X.; Sato, M., High-Performance Liquid Chromatographic Determination of AscorbicAcid in Soft Drinks and Apple Juice Using Tris(2,2'-bipyridine)ruthenium(Ⅱ)Electrochemiluminescence. Anal. Sci. 1995,11, 749-754.
    
    [49] Chen, X.; Chen, W.; Jiang, Y. Q.; Li, J.; Wang, X. R., Electrogenerated ChemiluminescenceBased on Tris(2, 2'-bipyridyl) Ruthenium(Ⅱ) with Hydroxyl Carboxylic Acid. Microchemical.1998, 59,427-436.
    
    [50] Chen, X.; Sato, M; Lin, Y. J., Study of the Electrochemiluminescence Based onTris(2,2'-bipyridine) Ruthenium(Ⅱ) and Alcohols in a Row Injection System. Microchemical J.1998, 58,13-20.
    
    [51]陈曦,贾丽.佐藤.昌宪.甲醇-联吡啶钌(Ⅱ)体系的电致化学发光研究。化学学报, 1998,56,238-243.
    
    [52] Uchikura, K.; Kinsawa. M., Generation of Chemiluminescence upon Reaction of AlicyclicTertiary Amines with Tris(2,2'-bipyridine)ruthenium(Ⅱ) Using Flow Electrochemical Reactor.Anal Sci. 1991, 7,803-804.
    
    [53] Uchikura, K.; Kirisawa, M.; Sugii, A.. Electrochemiluminescence Detection of PrimaryAmines Using Tris(bipyridine)ruthenium(Ⅲ) after Derivatization with Divinylsulfone. Anal.Sci. 1993,9,121-124.
    
    [54] Noffsinger, J. B.; Danielson. N. D.. Generation of chemiluminescence upon reaction ofaliphatic amines with tris(2,2'-bipyridine)ruthenium(Ⅲ)Anal. Chem. 1987, 59, 865-868.
    
    [55] Uchikura, K.; Kirisawa, M., Chemiluminescence of Tryptophan with ElectrogeneratedTris(2,2'-bipyridine)ruthenium(Ⅲ). Chem. Lett. 1991,8,1373-1376.
    
    [56] Brune, S. N.; Bobbitt, D. R., Effect of pH on the reaction of tris(2,2'-bipyridyl)ruthenium(Ⅲ)with amino-acids: Implications for their detection. Talanta 1991,38,419-424.
    
    [57] Jackson, W. A.; Bobbitt, D. R., Chemiluminescent detection of amino acids using in situgenerated Ru(bpy)~(3+)_3. Anal. Chim. Acta 1994, 285.309-320.
    
    [58] Lee, W. Y.: Nieman, T. A., Evaluation of Use of Tris(2,2'-bipyridyl)ruthenium(Ⅲ) as aChemiluminescent Reagent for Quantitation in Flowing Streams. Anal. Chem. 1995, 67.1789-1796.
    
    [59] Martin, A. F.; Nieman, T. A., Chemiluminescence biosensors using??tris(2.2'-bipyridyl)ruthenium(Ⅱ) and dehydrogenases immobilized in cation exchangepolymers. Biosens. Bioelectron. 1997, 12, 479-489.
    
    [60] Terpetschnig, E. S. Lakowicz, J. R, Fluorescence Polarization Immunoassav of aHigh-Molecular-Weight Antigen Based on a Long-Lifetime Ru-Ligand Complex. Anal.Biochem. 1995,227,140-147.
    
    [61] Terpetschnig, E.; Szmacinski, H.; Malakm, H.; Lakowicz, J. R, Metal-Iigand complexes as anew class of long-lived fluorophores for protein hydrodynamics. J. Biophys. 1995. 68.342-350.
    
    [62] Jing, X. Y.; Li, R M.; Wang, P.; Wang, J.; Yuan, Y.; Zhu, G. Y.. Magnetic Microsphere andIts Use in Biochemical Separation and Analysis. Chinese J. Anal. Chem. 1999.27.1462-1467.
    
    [63] Du, Y; Wei, H.; Kang, J. Z.; Yan, J. L; Yin, X. B.; Yang, X. R; Wang. E. K.. MicrochipCapillary Electrophoresis with Solid-State Electrochemiluminescence Detector Anal. Chem.2005, 77, 7993-7997
    
    [64] Sun, X. P.; Du Y; Dong, S. J.; Wang, E. K., Method for Effective Immobilization ofRu(bpy)_3~(2+) on an Electrode Surface for Solid-State Electrochemiluminescene Detection. Anal.Chem. 2005,77,8166-8169
    
    [65] Miao, W. J.; Bard, A. J., Electrogenerated Chemiluminescence. 72. Determination ofImmobilized DNA and C-Reactive Protein on Au(Ⅲ) Electrodes Using Tris(2, 2'-bipyridyl)-ruthenium(Ⅱ) Labels. Anal. Chem. 2003, 75. 5825-5834
    
    [66]许红霞,基于体积放大技术的单个DAN分子检测。山东大学硕士学位论文,2007.第 一章,p 10。
    
    [67] Uhen, M., Magnetic separation of DNA Nature, 1989,340(6236), 733-734.
    
    [68] Ohara, R.; Ohara, O., A new solid-phase chemical DNA sequencing method which uses streptavidin-coated magnetic beads. [J] .DNA research, 1995, 2(3), 123-128.
    
    [69] Wang, J.; Polsky, R.; Merkoci, A.; et. al., Electroactive beads for ultrasensitive DNA detection. Langmuir, 2003,19,989-991.
    
    [70] Wang , J.; Xu, D.; Erdem, A.; et. al., Genomagnetic electrochemical assays of DNA hybridization . Talanta, 2002, 56,931-934.
    
    [71] Wang, J.; Kawde, A .N.; Erdem, A., Magnetic bead-based label-free electrochemical detection of DNA hybridization. The Analyst, 2001,126,2020-2023.
    
    [72] Wang, J., Droplet based microscillating flow-through PCR chips. Analytical. Chimica.Acta..2003,500,247-250.
    
    [73] Jwa-Min, N.; Stoeva, I.; Mirkin, C. A., Bio-bar-code-based DNA detection with PCR-likesensitivity. J. Am. Chem. Soc, 2004,126,5933 -5935.
    
    [74] Miao, W. J.; Bard, A. J., Electrogenerated Chemiluminescence. 77. DNA Hybridization Detection at High Amplification with [Ru(bpy)_3]~(2+)-Containing Microspheres. Anal. Chem.. 2004, 76,5379-5386.
    
    [75]张灯,陈松月,秦利锋,李蓉,王平,检测大肠杆菌O157:H7的电化学阻抗谱生物传感 器的研究。传感技术学报,2005.18(1),5-9。
    
    [76] Terpetschnig, E.; Szmacinski, H.; Malak, H.; Lakowicz, J. R., Metal-Ligand Complexes as a New Class of Long-Lived Fluorophores for Protein Hydrodynamics. J. Biophysical 1995, 68, 342-350.
    
    [77]闫贵虹,电化学发光免疫分析方法及其在医学中的应用研究,华南师范大学硕士学位 论文,2003,第四章。
    
    [78]王鹏,张文艳,周泓,朱果逸,电化学发光(ECL)在药物和生化分析中的应用。药 物分析杂志,1998,18(6),408-412.
    
    [1] Kondo, A.; Hiroko Kamura, H.; Higashitani, K., Development and application ofthermo-sensitive magnetic immunomicrospheres for antibody purification. Appl microbial.Biotechnol, 1994,41,99-105.
    
    [2] Matsunaga, T.; Kawasaki, M.; Yu, X.; Tsujimura chemiluminescence enzyme immunoassayusing bacterial magnetic particles. Anal. Chem. 1996,68(20), 3551-3554.
    
    [3] Yu, H., Use of an immunomagnetic separation-fluorescent immunoassay (IMS-F1A) for rapidand high throughput analysis of environmental water samples. Anal Chem. Acta., 1998. 376,77-79.
    
    [4] Shi, T. J.; Fredrickson. K.; Balkwill, D. L., Biodegradation of polycyclic aromatichydrocarbons by Sphingomonas strains isolated from the terrestrial subsurface. IndustrialMicrobiology and Biotechnology, 2001,26 (6), 345-347.
    
    [5] Kumar, S.; Balakrishna, K.; Singh, G. P.; et. al., Rapid detection of Salmonella typhi in foodsby combination of immunomagnetic separation and polymerase chain reaction. Microbiologyand Biotechnology, 2005,21 (5), 625-629.
    
    [6] Capuano, F.; Perugini, A. G.; Parisi, A.; et. al., Effect of temperature on betanodavirusinfection in SSN-1 cell line veterinary. Research Communications., 2004. 28 (1). 279-281.
    
    [7]管文军,电致化学发光生物检测技术的新进展。分析化学评述与进展,2004,32(3). 402-406.
    
    [8] Nibolas R.; Hoyle N. R.; Eckert B., Electrochemiluminescence: Leading-edge technology forautomated immunoassay analyte detection. Clin. Chem., 1996,42 (9). 1576-1578.
    
    [9] Miao, W. J.; Bard, A. J., Electrogenerated Chemiluminescence. 72. Determination ofImmobilized DNA and C-Reactive Protein on Au(Ⅲ) Electrodes Using Tris(2, 2'-bipyridyli-ruthenium(Ⅱ) Labels. Anal. Chem. 2003, 75.5825-5834
    
    [10] Satoka A.; Takeshi I.; Takehiro M.; Kiyotake S.. Determination of human serum albumin bychemiluminescence immunoassay with luminol using a platinum-immobilized flow-cell.Analytical Chimica Acta., 2001, 436: 103-108.
    
    [11]闫贵虹,邢达,谭石慈。磁免疫电化学发光检测肺癌血清p53抗体。生物化学与生物物??理进展,2003,30(6),950-954.
    
    [12] Zhou. M.: Roovers, J.; Robertson, G P.; Grover, C. P., Multilabeling Biomolecules at a SingleSite. 1. Synthesis and Characterization of a Dendritic Label for ElectrochemiluminescenceAssays. Anal. Chem. 2003, 75, 6708-6717.
    
    [13] Miao W. J.; Bard A. J. , Electrogenerated Chemiluminescence. 80. C-Reactive ProteinDetermination at High Amplification with [Ru(bpy)_3]~(2+)-Containing Microspheres. Anal. Chem.2004,76,7109-7113.
    
    [14] Zhan, W.; Bard, A. J., Electrogenerated Chemiluminescence. 83. Immunoassay of HumanC-Reactive Protein by Using Ru(bpy)_3~(2+)-Encapsulated Liposomes as Labels. Anal. Chem..2007, 79(2), 459-463.
    
    [15]何智慧,毛细管电泳免疫分析电化学检测及应用.山东大学博士学位论文.2002.85 页。
    
    [16] Van der Burg, M. E. L; Lammes, F. B.; van Puten, W. L. J.; Stoter, G, Ovarian cancer: Theprognostic value of the serum half-life of CA125 during induction chemotherapy. GynecologicOncology, 1998,30(3) 307-312.
    
    [17] Bidart, J.-M.; Thuillier, F.; Augereau, C; C halas,J.; Daver, A.; Jacob, N.: Labrousse, F;Voitot, H., Kinetics of Serum Tumor Marker Concentrations and Usefulness in ClinicalMonitoring. Clin. Chem. 1999,45(10), 1695-1707.
    
    [18]李宣海。巫向前.倪语星,《肿瘤标志物的检测与临床》,人民卫生出版社.北京.1997. 75-76页。
    
    [19] Schlageter, M. H.; Larghero, J.; Cassinat, B. Toubert, M. E., Bonschneck, C. and Rain. J.-D..Multicenter evaluation of human placental alkaline phosphatase as a possible tumor-associatedantigen in serum. Clin. Chem. 1988,34(10), 1995-1999.
    
    [20] Wu, J. T ; Miya, T.; Knight, J. A.; Knight, D. P., Improved specificity of the CA 125 enzymeimmunoassay for ovarian carcinomas by use of the ratio of CA 125 to carcinoembryonicantigen. Clin. Chem. 1988,34(9), 1853-1857.
    
    [21] Reinsberg, J.; Schultes, B.; Wagner, U.; Krebs, D., Monitoring cancer antigen 125 in serum ofovarian cancer patients after administration of 1311-labeled F(ab')2 fragments of OC125antibody Clin. Chem. 1993,39(5), 891-896.
    
    [22] Ryder, K. W.; Oei, T. O., Hull, M. T.; Sample, M.M. Influence of strenuous exercise on??albumin excretion Clin. Chem. 1988 34(12), 2516-2518.
    
    [23] Kang, J. O.; Hudak, W. A.; Keller, N.; Criswell, B. S., Enzyme-linked immunosorbent assay of CA-125 in serum of patients with endometriosis: efficacy in diagnosis. Clin. Chem. 1988 34(12), 1983-1986.
    
    [24]张灯,陈松月,秦利锋,李蓉,王平.检测大肠杆菌O157:H7的电化学阻抗谱生物传感器 的研究。传感技术学报,2005,18(1),5-9。
    
    [25]李菲菲,扫描电化学显微术构建酶图形及全内反射荧光显微术检测鼠IgG,山东大学硕 士学位论文,2007,42页。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700