飞秒激光改性玻璃微结构的化学腐蚀特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
飞秒激光加工技术以其极窄的脉宽与极高的功率密度,可以实现对任何材料的非热熔性加工,具有加工区域小和精度高等优点,在各种材料微细加工中应用日益广泛。采用飞秒激光改性玻璃并结合化学腐蚀的方法可制作光子晶体或微流体芯片,但目前飞秒改性腐蚀机理尚不清楚,如何选择合适的玻璃材料进行改性腐蚀研究也不明确,论文针对这些问题开展深入研究和分析讨论。
     首先,采用Ti:Sapphire激光器发出的800nm,50fs,1KHz脉宽激光,对三种典型玻璃(石英玻璃,Pb硅酸盐玻璃,碲酸盐玻璃)在开放环境中分别进行烧蚀的实验研究。确定了每种玻璃的阈值,烧蚀面积和脉冲能量成线性关系,三种玻璃烧蚀面积都是随脉冲能量和脉冲数量增多而增大;利用CCD成像技术、扫描电镜技术(SEM)对烧蚀孔表面形貌观察,比较不同单脉冲能量、不同脉冲数量及不同玻璃材料的烧蚀形貌,并分析原因。
     在上述研究基础上,利用HF酸腐蚀飞秒激光改性后的三种玻璃,研究了玻璃的化学腐蚀特性,对腐蚀前后材料微观结构进行观测,分析了不同材料的腐蚀速率与脉冲能量、腐蚀时间的关系,从材料组成、显微结构、化学键特征讨论了玻璃改性-腐蚀机理。结果表明:飞秒激光改性后的碲酸盐和Pb硅酸盐玻璃不具有选择性腐蚀特性,而石英玻璃的选择性腐蚀比高于50,选择性腐蚀比足够高,就有可能制作出高深宽比,亚微米孔间距的周期微孔结构;在飞秒激光800nm/50fs条件下,存在最佳脉冲能量范围,使得熔石英玻璃选择性腐蚀比达最高;飞秒激光改性玻璃的选择性腐蚀特性与材料结构有关,分子体积大、网络结构不紧密的材料不具有选择腐蚀特性。
     为改善石英玻璃的结构缺陷,使飞秒激光在石英玻璃中制作的微流通道内壁光滑,进行了热处理和退火的实验研究。在显微镜下观察了热处理后的玻璃表面形貌,研究发现:石英玻璃对温度很敏感,高温会出现析晶现象;表面杂质(比如水)也能促进石英玻璃表面析晶。
Due to ultrashort time duration and ultrahigh peak fluence, the technology of femtosecond laser machining can realize the non-thermal processing of almost any materials, the workspace is very small and the accuracy is very high, it has been widely used in micro-machining with different materials. The femtosecond laser modificating chemical etching technique has a good prospect in the application of Micro Total Analysis System (μ-TAS) and photonic crystal, but the mechanisms of glass modifying-chemical and how to select suitable materials are both unknown, the paper is based on the study of above mentioned questions.
     The ablation of three different typical glass (fused silica, tellurite and lead silicate) has been studied using Ti:Sapphire laser pulses at the wavelength of 800 nm, we report the the measurements of the damage threshold and diameter ablation for three different glass, the ablated diameter increases with increasing laser fluence and shot number, and the reason why laser-induced periodic surface structures grow is analyzed.
     The femtosecond laser modificating-chemical etching technique is used to study the chemical etching character of three different typical glass respectively. The micro-structure development of three samples before and after etching are observed with CCD camera image and scanning electron microscope (SEM). The dependences of etching rate on micro-structure of glasses, pulses energy and etching duration are exhibited. The mechanisms of glass modifying-chemical etching are discussed. The results show: (1) femtosecond laser modified tellurite and lead silicate have no chemical selective etching,but for fused silica the selective etching rate is higher than 50.(2) With the central wavelength of 800nm and the pulse duration of 50fs, when pulses energy is suitable, silica glass can gain the highest selective etching rate. (3) The character of chemical selective etching of femtosecond laser modified glass is largely depends on the matrix local structures, the glass with lager molecule volume has no properties of chemical selective etching, such as tellurite and lead silicate glass.
     To polish the etched microchannel surface, annealing processing is used. The microstructure of the silica glass and the influence of heat-treatment on the structure and the thermal properties of the glass are investigated according to the CCD camera image. The results show that: when temperature gets very high, silica glass is sensitive to it, crystallization can be investigated; Impurity of glass surface can promote crystallization, for example, the crystallization tendency is markedly higher if the glass is wet.
引文
[1] G. Mourou, C. P. J. Barty, M. D. Perry. Ultrahigh-intensity lasers: Physics of the extreme on a tabletop. Phys. Today, 1998, 51(1): 22-28
    [2]王清月,张志刚,柴路等.飞秒纳米光子学与飞秒激光技术.量子电子学报, 2002, 19(6): 556-557
    [3] E. N. Glezer, M. Millsavljevic et al. Three-dimensional optical storage inside transparent materials. Opt. Lett., 1996, 21(15): 2023-2025
    [4] K. Miura, J. Qiu, K. Hirao. Photonwritten optical waveguides in various glasses with ultrashort pulse laser. Appl. Phys. Lett., 1997, 71(17): 3329-3331
    [5] K. Yamakawa, M. Aoyama, S. Matsuoka et al. Generation of 16-fs 10-TW pulses at a 10-Hz repetition rate with efficient Ti:sapphire amplifiers. Opt. Lett., 1998, 7(23): 525-528
    [6] L. Xu, G. Tempea, Ch. Spielmann et al. Continuous-wave mode-locked Ti: sapphire laser focusable to 5×1013W/cm2. Opt. Lett., 1998, 23(10): 789-791
    [7] S. H. Cho, B. E. Bouma, E. P. Ippen et al. low-repetition-rate high-peak-power kerr-lens mode-locked Ti:A1203 laser with a multiple-pass cavity. Opt. Lett., 1999, 24(6): 417-419
    [8] D. Homoelle, S. Wielandy, A. L . Gaeta et al. Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses. Opt. Lett ., 1999, 24(18): 1311-1313
    [9] S. Cho., H. Kumagai, I. Yokota et al. Observation of self-channeling and modification in optical fibers using a high-intensity femtosecond laser. Proceeding of IEEE, 1998, 3343: 510-515
    [10] H. Misawa, S. Juodkazis, H. Sun et al. Formation of photonic crystals by femto- second laser microfabrication. Proceeding of IEEE, 2000, 4088: 29-32
    [11] T. V. Konoenko, S. V. Garnov, S. M. Pimenov et al. Processing of diamond and ceramics by picosecond/nanosecond laser. Proceeding of IEEE, 1998, 3343: 465-459
    [12] G. kamlage, T. bauer, A. ostendorf et al. Deep drilling of metals by femtosecond laser pulses. Appl. Phys. A ., 2003, 77(2): 307-310
    [13] Arnaud Zoubir, Martin Richardson, Clara Rivero et al. Direct femtosecond laserwriting of waveguides in As2S3 thin films. Opt. Lett ., 2004, 29(7): 748-750
    [14] Kaoru Minoshima, AndrewM. Kowalevicz et al. Fabrication of coupled mode photonic devices in glass by nonlinear femtosecond laser materials processing. Opt. Lett ., 2002, 10(15): 645-652
    [15] K. Venkatakrishnan, B. K. A. Ngoi, P. Stanley. Laser writing techniques for photo- mask fabrication using a femtosecond laser. Appl. Phys. A, 2002, 74(4): 493-496
    [16] Phillippe Bada. Micromachining: ultrafast pulses create waveguides and micro- channels. Laser Focus World. 2000, 4(3): 192-196
    [17] Yuki Kondo, Kentaro Nouchi, Tsuneo Mitsuyu. Fabrication of long period fiber grating by focused irradiation of infrared femtosecond laser pulses. Opt. Lett., 1999, 24(10): 646- 648
    [18] E. Fertein, C. Prztgidzjum, H. Delbarre. Refractive index changes of standard telecommunication fiber through exposure to femtosecond laser pulses at 810nm. Appl. Opt., 2001, 40(21): 3506-3508
    [19] Nakaya Takayuki, Qiu Jian-Rong, Zhou Chang-He et al. Fabrication of Dammann Gratings Inside Glasses by a Femtosecond Laser. Chin. Phys. Lett., 2004, 21(6): 1061-1063
    [20] E. Glezer, M. Milosavljevic, L Huang et. al. Three-dimensional optical storage inside transparent materials. Opt. Lett., 1996, 21(24): 2023-2025
    [21] Guanghua Cheng, Yishan Wang, J. D. White et al. Demonstration of high-density three-dimensional storage in fused silica by femtosecond laser pulses. J of Appl. Phys, 2003, 94(3): 1304-1307
    [22] Jan-Hendrik, Klein-Wiele, Peter Simon. Fabrication of periodic nanostructures by phase-controlled multiple-beam interference. Appl. Phys. Lett., 2003, 83(23): 4707- 4709
    [23] Nan Jiang, Jianrong Qiu, John Silcox. Precipitation of nanometer scale Zn crystalline particles in Zn0-B203-Si02 glass during electron irradiation. Appl. Phys. Lett, 2000, 77(24): 3956-3958
    [24] Wataru Watanabe, Taishi Asano, Kazuhiro Yamada. Characteristics of couplers and gratings induced by self-trapped filament of femtosecond laser pulses. Proceedings of SPIE-Commercial and Biomedical Applications of Ultrafast Lasers III, 2003, 4978:155-161
    [25] Saulius Juodkazis, Toshiaki Kondo, Hiroyuki Murata. hree-dimensional recording by femtosecond pulses in dielectrics. Proceedings of SPIE-Photon Processing in micro-electronics and Photonics II, 2003, 4977: 94-107
    [26] K. Venkatakrislnan, N. R. Sivakumar, C. W. Hee. Direct fabrication of surface-relief grating by interferometric technique using femtosecond laser. Appl. Phys. A, 2003, 77(7): 959- 963
    [27] B. Sallel, O. Gobert, P. Meynadier et al. Femtosccond and picosccond laser micro- ablation: ablation efficiency and laser microplasma expansion. Appl. Phys. A, 1999, 69(4): 381-383
    [28] P. PPronko, S. K. Dutta, J. Squrer et al. Maching of Sub-micro Holes using a Femto- second Laser at 800nm. Optic Communications, 1995, 114(2): 106-110
    [29] J. Bonse, P. Rudolph, J. Krueger et al. Femtosecond pulse laser processing of TiN on silicon. Appl. Surf. Sci., 2000, 154(5): 659-663
    [30] Yves Bellouard, Ali Said, Mark Dugan et al. Fabrication of high-aspect ratio micro- fluidic channels and tunnels using femtosecond laser pulses and chemical etching. Opt. Express, 2004, 12(10): 2120-2129
    [31] C. Hnatovsky, R. S. Taylor, E. Simova et al. Polaruzation-selective etching in femto- second laser-assisted microfluidic channel fabrication in fused silica. Opt. Lett., 2005, 30(14): 1867-1868
    [32] Andrius Marcinkeviicius, Saulius Juodkazis, Mitsuru Watanabe et al. Femtosecond laser-assisted three-dimensional microfabrication in silica. Opt. Lett., 2001, 26(5): 277-279
    [33] R. S. Taylor, C. Hnatovsky, Shuhei Tanaka et al. Femtosecond laser fabrication of nanostructures in silica glass. Opt. Lett., 2003, 28(12): 1043-1045
    [34] Ya Cheng, Koji Sugioka, Masashi Masuda et al. 3D microstructuring inside photosensitive glass by use of a femtosecond laser for lab-on-chip applications. Proc. of SPIE., 2003, 4977: 314-323
    [35] Koji S., Ya Cheng, Katsumi M, et al. Femtosecond laser microprocessing with three dimensionally isotropic spatial resolution using crossed-beam irradiation. Opt. Lett., 2006, 31(2): 208-210
    [36]邱海波. ITO导电玻璃和PDMS微芯片毛细管电泳电化学发光检测的研究: [硕士学位论文].长春:中国科学院长春应用化学研究所图书馆, 2004
    [37] Zhi-Yuan Li, Ben-Yuan Gu, Guo-Zhen Yang. Large Absolute Band Gap in 2D Anisotropic Photonic Crystals. Phys. Rew. Lett., 1996, 81(12): 2574-2577
    [38]张晓玉,姚汉民,杜春雷等.二维介质圆柱型光子晶体完全禁带与结构参数的关系.光电子·激光, 2004, 15(7): 835-838
    [39] H.舒尔兹著.玻璃的本质结构和性质.北京:中国建筑工业出版社, 1984. 377
    [40]武汉建筑材料工业学院,华东化工学院,浙江大学.玻璃工艺原理.北京:中国建筑工业出版社, 1981. 166
    [41]白玉章.石英玻璃的生产.北京:中国建工业出版社, 1985. 158-173
    [42]于福禧等.光学玻璃.北京:科学出版社, 1982. 360
    [43]贾宏志.硅酸铅玻璃光敏性及其机理研究: [博士后论文].上海:复旦大学图书馆, 2002
    [44] A. Zoubir, L. Shah. Practical uses of femtosecond laser micro-materials processing. Appl. Phys. A, 2003, 77(2): 311-315
    [45] J. Stanworth. Tellurite Glasses. Soc. Glass Tech., 1952, 36(2): 217-241
    [46] J. S. Wang, E. M. Vogel, E. Snitzer. Tellurite glass: a new candidate for fiber devices. Optical Materials, 1994, 3(3):187-203
    [47]罗丽庆,王海波,林健等.碲酸盐系统玻璃的研究进展.光电子技术与信息, 2005, 18 (1): 1-6
    [48]候志远,刘粤惠,陈东丹等.碲酸盐玻璃化学稳定性的研究.玻璃与搪瓷, 2005, 33 (1): 15-17
    [49] E. N. Glezer , E. Mazur. Ultrafast-laser driven micro-explosions in transparent materials. Appl. Phys. Lett., 1997, 71 (7): 882-884
    [50] Gamaly E. G., Rode A. V., Luther-Davies B. Ablation of solid by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics. Physics of Plasmas, 2002, 9(3): 949-957
    [51] Stuart B. C., Feit M. D., Herman S et al. Nanosecond-to-femtosecond laser-induced breakdown in dielectrics. Phys. Rev. B, 1996, 53(4): 1749-1761
    [52] Perry M. D., Stuart B. C., Banks P. S et al. Ultrashort-pulse laser machining of dielectrics materials. Appl. Phys., 1999, 85(9): 6803-6810
    [53] Lenzner M, KrUger J, Sartania S et al. Femtosecond optical breakdown in dielectrics. Phys. Rev. Lett, 1998, 80(18): 4076-4078
    [54] J. M. Liu. Simple technique for measurements of pulsed Gaussian-beam spot sizes. Opt. Lett., 1982,7(5): 196-198
    [55] W. Kautek, J. Kruger, M. Lenzner et al. Laser ablation of dielectrics with pulse durations between 20fs and 3ps. Appl. Phys. Let., 1996, 69(21): 3146-3148
    [56] S. Guizard, A. Semerok, J. Gaudin et al. Femtosecond laser ablation of transparent dielectrics: measurement and modelisation of crater profiles. Appl. Surf. Sci., 2002, 186(3): 364 -368
    [57] S. Baudach, J. Bonse, J. Kruger et al. Ultrashort pulse laser ablation of polycarbonate and polymethlmethacrylate. Appl. Surf. Sci., 2000, 154(6): 555-560
    [58]季忠刚,邓蕴沛,冷雨新等.飞秒激光多脉冲烧蚀研究进展.激光与光电子学进展, 2003, 40(9): 14-20
    [59]邓蕴沛,贾天卿,冷雨欣等.飞秒激光烧蚀石英玻璃的实验与理论研究.物理学报, 2004, 53(7): 2219-2220
    [60]徐世珍,贾天卿,孙海轶等.飞秒激光在石英玻璃中诱导微爆炸的理论研究.物理学报, 2005, 54 (9): 4147-4150
    [61]王伟平,吕百达,刘仓理.激光辐照下光学元件表面波纹现象研究.激光与光电子学进展, 2002, 39(6): 26-32
    [62] S. K. Sundaram, C. B. Schaffer, E. Mazur. Microexplosions in tellurite glass. Appl. Phys. A, 2003, 76(4): 379-384

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700