茶树体内茶氨酸合成酶的克隆与异源表达及一氧化氮信号对其调控的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
茶是目前世界上饮用量最大的非酒精类饮料,L-茶氨酸是茶树体内特征性非蛋白质氨基酸,不仅决定了茶的风味还有非常广泛的药理作用。茶氨酸合成酶(Theanine synthetase,TS)不仅是茶氨酸合成的关键酶,也对茶树体内的氮代谢有重大影响。研究表明,茶氨酸合成酶基因序列与谷氨酰胺合成酶(Glutaminesynthetase, GS)基因序列有高度同源性,有可能是谷氨酰胺合成酶基因家族成员,对其进行研究,不仅有利于掌握茶氨酸代谢与调控的规律,也有助于了解茶树体内氮同化与转运的机理。本研究利用RT-PCR的方法克隆了茶树体内茶氨酸合成酶基因(DD410895)与谷氨酰胺合成酶基因(AB115184),通过原核与真核表达进行功能验证,并将原核表达的蛋白纯化以制备多抗;在此基础上,利用生物信息学的手段对TS与GS推导出的蛋白质序列进行结构与功能的分析,并利用系统进化树的方法对它们在GS基因家族中的地位进行聚类分析;利用HPLC检测与Western Blotting相结合的方法对不同NO诱导处理下茶籽苗中TS的表达与茶氨酸的积累进行分析。通过上述研究得到以下结果:
     通过提取茶树根部与叶部总RNA,进行RT-PCR,克隆得到茶树茶氨酸合成酶基因(DD410895)与谷氨酰胺合成酶基因(AB115184)。获得的TS基因长度为1071bp,与已知的茶树TS基因的氨基酸序列有3个氨基酸的差异,与其他植物GS基因具有较高的同源性,获得的GS基因与已知的茶树GS基因的氨基酸序列有1个氨基酸的差异。对两条基因进行原核表达后得到可溶性蛋白,进行酶活力验证,结果表明,表达的TS蛋白能够催化谷氨酰胺与盐酸乙胺合成茶氨酸,而不能催化谷氨酸与盐酸乙胺合成茶氨酸,也不具备GS的催化活力,酶促反应产生的产物用HPLC与ESI-MS进行鉴定,确定为茶氨酸;而表达的GS蛋白明显具有转氨基的催化活力,相较于细菌本身GS催化能力大大增强。
     构建植物双元表达载体pGREEN-35S-TS/GS,导入农杆菌,运用花序侵染法转入拟南芥,分别获得转茶TS和GS基因的转基因拟南芥,通过除草剂Basta对后代进行筛选,并利用PCR的方法对阳性植株进行鉴定。利用载体上的GFP标签对转TS基因的拟南芥根尖细胞进行激光共聚焦显微镜观察,发现融合蛋白主要存在于细胞质中。
     用Expasy软件包和CBS,Swiss-Model,InterProScan等网站的在线分析工具对TS与GS的理化特性,蛋白结构等进行分析与预测。结果表明TS的理论等电点PI=5.52,蛋白质相对分子质量MW=39306.3Da,GS的理论等电点PI=6.13,蛋白质相对分子质量MW=39240.3Da,二者均为易溶、亲水性强的蛋白,不存在跨膜结构。二级结构预测表明二者都是混合型蛋白结构差异不大。氨基酸序列和结构分析显示TS与GS蛋白均包含了一个GS beta-Grasp结构域和一个GS催化结构域,这些功能区在植物的谷氨酰胺合成酶中是保守的,均为Gln-synt结构域。运用软件对蛋白的细胞定位和功能分析表明,TS与GS蛋白主要定位于细胞质内,具有转录、转录调控和信号转导功能的概率较高。运用同源建模软件SWISS-PdbView对TS三维结构进行预测,并以玉米GS蛋白三维结构为模板(编号:2d3a)用metapocket软件对TS蛋白活性中心进行分析,预测出三个酶反应的结合位点,其位置与GS大致相当,但是其所能结合的氨基酸位点有着细微的差别,可能就是二者催化反应差异的原因所在。运用Mega4.1软件构建了GS的系统进化树,表明TS属于GS家族成员,并且可以将山茶属GS蛋白划分为3类。
     利用外源一氧化氮(NO)供体硝普钠(SNP)提供不同浓度的NO处理幼嫩茶籽苗,发现能够明显促进TS的表达和茶氨酸的积累,短期内NO浓度的提高能明显增强茶籽苗体内茶氨酸的含量,但是达到一定的临界值后这种作用不再呈正相关,而处理一段时间后,NO的刺激作用明显被茶籽苗自身生长发育过程所调节,茶氨酸的积累量逐步下降,使用NO清除剂与NOS抑制剂能明显阻断外源NO的刺激作用,但不会影响茶籽苗茶氨酸的合成与代谢的正常通路。说明适当剂量的外源NO可以直接影响TS基因的表达,但尚不明确这种作用是直接作用于蛋白结构上还是与其他信号级联系统共同作用的结果。NO的信号调节作用还对EGCG的合成有明显的关联,不过对其他游离氨基酸与儿茶素代谢的影响并不明显。
Tea is the most consumed non-alcoholic beverages in the world. L-theanine is thecharacteristic and non-protein amino acid in tea plants (Camellia sinensis), which notonly determines the flavor of tea but also has a wide range of pharmacologicalfunctions. Theanine synthetase is a key enzyme in the theanine synthesis, and plays akey role in nitrogen metabolism in tea plants. Previous repots showed that theaninesynthetase gene sequence is highly homologous with glutamine synthetase genesequences. Further studies are needed for our better understanding theaninemetabolism and the mechanism of nitrogen assimilation and transport in tea plants. Inthis study, we cloned theanine synthetase gene (DD410895) and glutamine synthetasegene (AB115184) from tea by RT-PCR, and verified its function through theprokaryotic and eukaryotic expression, and prepared polyclonal antibody throughpurification prokaryotic expression protein. On this basis, we used bioinformaticstools to analyze the structure and function of these proteins, which deduced by TS andGS gene sequences, and using the method of phylogenetic tree to analysis theirlocalization in the GS gene family. Moreover, we analyzed the expression of TS geneand theanine accumulation in tea seedling treated with different NO concentrations,by using the methods of HPLC and Western Blotting techology,respectively. Hereare the detailed results:
     Total RNA of tea roots and leaves were extracted, then theanine synthetase gene(DD410895) and glutamine synthetase gene (AB115184) were cloned by RT-PCR.The length of obtained TS gene was1071bp, which had three amino acid residuesdifferent from the known amino acid sequences of TS gene in tea, and high homologywith GS genes in plants. The obtained GS gene had the only one amino acid differentfrom the known amino acid sequences of GS gene. The two genes were expression inE.coli, and soluble proteins were obtained. Specificities of the enzyme function werefurther verified. These results show that the expressed protein of TS catalyzestheanine synthesis using glutamine and ethylamine hydrochloride, rather thanglutamic acid and ethylamine hydrochloride. Tea TS has no catalytic activity of GS.Theanine,the product of enzymatic reaction, was identified by HPLC and ESI-MS.GS protein has a catalytic activity for amino transportation, which is much greater than the activity of bacteria GS.
     Plant binary expression vectors pGREEN-35S-TS/GS, containing TS or GS cDNAsfused with GFP, were constructed and introduced into Agrobacterium, and furthertransferred into the Arabidopsis by the floral dip method. The transgenic Arabidopsiscontaining TS and GS genes was screened by herbicide Basta. The positive plantswere confirmed by PCR. The fusion protein was observed mainly in the cytoplasmin the root tip cells of the transgenic Arabidopsis by using laser scanning confocalmicroscope.
     The Expasy software packages and some online analysis tools such as CBS,Swiss-Model and InterProScan were used to analyse and predict the physical andchemical properties and the protein structure of TS and GS gene. The results showthat TS theoretical isoelectric point (PI) was5.52, protein molecular weight (MW) is39306.3Da, GS theoretical isoelectric point (PI) is6.13, and protein molecular weight(MW) is39240.3Da. Both of them are soluble, strong hydrophilic proteins, whichhave no transmembrane structure. Secondary structure prediction indicates that theyare all mixed type proteins and little difference between the protein structures. Aminoacid sequence and structural analysis showed that both TS and GS protein includes aGS beta-Grasp domain and a GS catalytic domain, these functional fragments areconserved in glutamine synthetase genes of many plant species and all belong toGln-synt domains. Protein subcellular localization and functional analyses showedthat, TS and GS proteins were localized in the cytoplasm, which have high probabilityto executive some function such as transcription, transcription regulation and signaltransduction. Homology modeling software SWISS-PdbView was used to predictthree-dimensional structure of the TS gene. Moreover, the metapocket software wasused to analyze TS protein active sites through three-dimensional structure of maizeGS protein as a template (No.:2d3a). Three binding sites in the enzyme werepredicted, roughly equivalent to its location with GS, but its sites which couldcombinate amino acid have a slight difference, which is probably the reason for thedifference of the catalytic reaction between the TS and GS. Using Mega4.1software,the phylogenetic tree was built, which indicates that the TS gene belonging to GSfamily members and GS protein of Camellia sinensis can be classified into threecategories.
     High-performance liquid chromatography (HPLC) detector results revealed that nitrogen monoxide (NO) induced the rapid accumulation of L-theanine in the tea rootrather than in the leaves, and the expression of L-theanine synthetase was bothenhanced in both the roots and leaves. HPLC results also revealed the presence of NOinduced the accumulation of catechins as ester-like compounds in the leaves.Application of NO scavengers and pretreatment with NO-metabolism inhibitorsreduced NO-induced L-theanine accumulation, but no significant effect on catechinsynthesis. These results indicated that L-theanine and catechin metabolism areregulated by different mechanisms in young tea seedlings.
引文
[1] Sakato, Y.(1949) The chemical constituents of tea: III. A new amide theanine [J]. NipponNogeikagaku Kaishi,23,262–267.
    [2]宛晓春.茶叶生物化学(第三版)[M]北京:中国农业出版社,2003:32-34,319-350.
    [3] Nakagawa, M. Chemical components and taste of green tea [J]. Japan AgriculturalResearch Quarterly,1975,9(3):156-160.
    [4]刘媛,王健.茶氨酸的最新研究进展[J].中国食物与营养,2007,(10):23-25.
    [5] Juneja, L.R., Chu, D.C., Okubo, T., et al.(1999) L-theanine–a unique amino acid of greentea and its relaxation effect in humans [J]. Trends in Food Science and Technology,10,199–204.
    [6] Kakuda, T., Nozawa, A., Unno, T., et al. Inhibiting effects of theanine on caffeinestimulation evaluated by EEG in the rat [J]. Bioscience Biotechnology and Biochemistry,2000,64:287–293.
    [7] Sved, A.F., Fernstrom, J.D.&Wurtman, R.J. Tyrosine administration reducesblood-pressure and enhances brain norepinephrine release in spontaneously hypertensiverats [J]. Proceedings of the National Academy of Sciences of the United States of America,1979,76:3511–3514.
    [8] Kuhn, D.M., Wolf, W.A.&Lovenberg, W. Review of the role of the central serotonergicneuronal system in blood-pressure regulation [J]. Hypertension,1980,2:243–255.
    [9] Kimura, R.&Murata, T.(1986) Effect of theanine on norepinephrine and serotonin levelsin rat brain [J]. Chemical and Pharmaceutical Bulletin,1986,34:3053–3057.
    [10] Yokogoshi, H., Mochizuki, M.&Saitoh, K. Theanine-induced reduction of brainserotonin concentration in rats [J]. Bioscience, Biotechnology, and Biochemistry,1998,62:816–817.
    [11] Yokogoshi, H., Kato, Y., Sagesaka, Y.M., et al. Reduction effect of theanine onblood-pressure and brain5-hydroxyindoles in spontaneously hypertensive rats [J].Bioscience Biotechnology and Biochemistry,1995,59:615–618.
    [12] Sugiyama, T.&Sadzuka, Y. Combination of theanine with doxorubicin inhibits hepaticmetastasis of M5076ovarian sarcoma [J]. Clinical Cancer Research,1999,5:413–416.
    [13] Sugiyama, T.&Sadzuka, Y. Theanine and glutamate transporter inhibitors enhance theantitumor efficacy of chemotherapeutic agents [J]. Biochimica et Biophysica Acta–Reviews on Cancer,2003,1653:47–59.
    [14] Sugiyama, T.&Sadzuka, Y. Theanine, a specific glutamate derivative in green tea, reducesthe adverse reactions of doxorubicin by changing the glutathione level [J]. Cancer Letters,2004,212:177–184.
    [15] Sadzuka, Y., Sugiyama, T., Suzuki, T., et al. Enhancement of the activity of doxorubicin byinhibition of glutamate transporter [J]. Toxicology Letters,2001,123:159–167.
    [16] Casimir, J., Jadot, J., Renard, M. Separation and characterization of N-ethyl-gamma–glutamine in Xerocomus badius (Boletus ladius)[J]. Biochim Biophys Acta,1960,39:462-468.
    [17] Tsushida, T., Takeo, T. Occurrence of theanine in Camellia japonica and Camellia asanquaseedlings [J]. Agricature Biology Chemistry,1984,48(11):2861-2862.
    [18] Cartwright, R.A., Roberts, E.A.H.&Wood, D.J. Theanine, an amino-acid Nethyl amidepresent in tea [J]. Journal of the Science of Food and Agriculture,1954,5:597–599.
    [19]张星海.茶氨酸制备工艺研究[J].氨基酸和生物资源,2006,(4):47-50.
    [20] YanshouHe, Jean Pierre, D., MarcMeurens.高纯度茶氨酸的合成与特性(英文)[J].茶叶科学,2003,(2):99-104.
    [21] Sasaoka, K., Kito, M. Synthesis of theanine by tea seedling homogenate [J]. AgricatureBiology Chemistry,1964,28(5):313-317.
    [22] Fowden, L. Secondary plant products [M]. In: Stumpf, P.&Conn, E.(eds) TheBiochemistry of Plants. Academic Press, New York,1981.
    [23] Wink, M. Special nitrogen metabolism [M]. In: Dey, P.&Harborne, J.(eds) PlantBiochemistry. Academic Press, San Diego, CA,1997.
    [24] Morot-Gaudry, J.F., Job, D.&Lea, P.J. Amino acid metabolism [M]. In: Lea, P.&Morot-Gaudry, J.(eds) Plant Nitrogen. Springer-Verlag, New York,2001.
    [25] Selvendran, R. R., Selvendran, S. Distribution of some nitrogenous constituents in the teaplant [J]. Journal of the Science of Food and Agriculture,1973,24(2):161-166.
    [26]陈瑛.茶氨酸在茶树体内的分布规律和年变化的研究[J].绍兴文理学院学报,1999,19(5):70-73.
    [27] Takeo, T. Formation of amino acids induced by ammonia application and seasonal levelfluctuation of amino acids contents in tea plant [J]. Chagyo Gijutsu Kenkyu,1979,(56):70-77.
    [28] Britto, D.T.&Kronzucker, H.J. NH4+toxicity in higher plants: a critical review [J].Journal of Plant Physiology,2002,159:567–584.
    [29] Feldheim, W., Yongvanit, P.&Cummings, P.H. Investigation of the presence andsignificance of theanine in the tea plant [J]. Journal of the Science of Food and Agriculture,1986,37:527–534.
    [30] Kito, M., Kokura, H., Izaki, J., et al. Theanine, a precursor of the phloroglucinol nucleus ofcatechins in tea plants [J]. Phytochemistry,1968,7:599–603.
    [31] Tanaka, T., Watarumi, S., Fujieda, M., et al. New black tea polyphenol havingN-ethyl-2-pyrrolidinone moiety derived from tea amino acid theanine: isolation,characterization and partial synthesis [J]. Food Chemistry,2005,93:81–87.
    [32] Takeo, T. Ammonium-type nitrogen assimilation in tea plants [J]. Agricature BiologyChemistry,1980,44(9):2007-2012.
    [33] Konishi, S., Takahashi, E. Metabolism of theanine-N-ethyl-14C and its metabolicedistribution in the tea plant. VI. Metabolism and regulation of theanine and relatedcompounds in the tea plant [J]. Nippon Dojo-Hiryogaku Zasshi,1969,40(11):479-484.
    [34] Konishi, S., Yamaji, R. Metabolism of theanine, glutamine, and asparagine in tea shoots [J].Nippon Dojo Hiryogaku Zasshi,1982,53(3):241-246.
    [35] Mori, S., Hoshina, T. An application of radio-amino acid analyzer to studying the etabolismof glutamate analogs in tea plant (Camellia sinensis)[J]. Nippon Dojo Hiryogaku Zasshi,1983,54(2):109-116.
    [36] Sasaoka, K., Kito, M.&Onishi, Y. Some properties of the theanine synthesizing enzyme intea seedlings [J]. Agricultural and Biological Chemistry,1965,29:984–98
    [37] Takeo, T. L-alanine as a precursor of ethylamine in Camellia sinensis [J]. Phytochemistry,1974,13:1401–1406.
    [38] Takeo, T. Ammonium-type nitrogen assimilation in tea plants [J]. Agricultural andBiological Chemistry,1980,44:2007–2012.
    [39] Wickremasinghe, R.L.&Perera, K.P.W.C. Site of biosynthesis and translocation oftheanine in the tea plant [J]. Tea Quarterly,1972,43:175–179.
    [40] Tsushida, T.&Takeo, T. An enzyme hydrolyzing L-theanine in tea leaves [J]. Agriculturaland Biological Chemistry,1985,49:2913–2917.
    [41] Sasaoka, K., Kito, M.&Inagaki, H. Studies on the biosynthesis of theanine in tea seedlings:synthesis of theanine by the homogenate of tea seedlings [J]. Agricultural Biology andChemistry,1963,27:467–468.
    [42] Sasaoka, K., Kito, M.&Onishi, Y. Synthesis of theanine by pea seed acetone powderextract [J]. Agricultural and Biological Chemistry,1964a,28:318–324.
    [43] Sasaoka, K., Kito, M.&Onishi, Y. Synthesis of theanine by pigeon liver acetone powderextract [J]. Agricultural and Biological Chemistry,1964b,28:325–330.
    [44] Sasaoka, K., Kito, M.&Onishi, Y. Some properties of the theanine synthesizing enzyme intea seedlings [J]. Agricultural and Biological Chemistry,1965,29:984–988.
    [45] Yukitaka, O., Makoto, K. Seiji, S., et al. Protein and cDNA sequences of two theaninesynthetases from Camellia sinensis. JP2006254780(A),2006.
    [46] Deng, W.-W., Ogita, S., Ashihara, H. Biosynthesis of theanine ([gamma]-ethylamino-l-glutamic acid) in seedlings of Camellia sinensis [J]. Phytochemistry Letters,2008,1(2):115-119.
    [47] Soda, K., Uchiyama, K.&Ogata, K. Metabolism of L-theanine D-theanine and relatedcompounds in bacteria. I. Bacterial and enzymatic hydrolysis of L-and D-isomers oftheanine and identification of products [J]. Agricultural and Biological Chemistry,1966,30:541–546.
    [48] Unno, T., Suzuki, Y., Kakuda, T., et al. Metabolism of theanine, gammaglutamylethy-lamide, in rats [J]. Journal of Agricultural and Food ChemistryI,1999,47:1593–1596.
    [49] Wickremasinghe, R.L.&Perera, K.P.W.C. Site of biosynthesis and translocation oftheanine in the tea plant [J]. Tea Q,1972,43:175–179.
    [50] Lea, P.J. Nitrogen metabolism [M]. In: Lea, P.&Leegood, R.(eds) Plant Biochemistry andMolecular Biology. JohnWiley&Sons, New York,1993:155–180.
    [51] Li, Z.C.&Bush, D.R. Delta-pH-dependent amino acid transport into plasma membranevesicles isolated from sugar-beet leaves.1. Evidence for carriermediated, electrogenic fluxthrough multiple transport systems [J]. Plant Physiology,1990,94:268–277.
    [52] Li, Z.C.&Bush, D.R. Delta-pH-dependent amino acid transport into plasma membranevesicles isolated from sugar beet (Beta-Vulgaris L) leaves: evidence for multiple aliphatic,neutral amino acid symports [J]. Plant Physiology,1991,96:1338–1344.
    [53] Rentsch, D., Schmidt, S.&Tegeder, M. Transporters for uptake and allocation of organicnitrogen compounds in plants [J]. FEBS Letters,2007,581:2281–2289.
    [54] Verrey, F., Closs, E.I., Wagner, C.A., et al. CATs and HATs: the SLC7family of aminoacid transporters [J]. Pflugers Archiv–European Journal of Physiology,2004,447:532–542.
    [55] Fischer, W.N., Loo, D.D.F., Koch, W., et al. Low and high affinity amino acidH+-cotransporters for cellular import of neutral and charged amino acids [J]. Plant Journal,2002,29:717–731.
    [56] Okumoto, S., Schmidt, R., Tegeder, M., et al. High affinity amino acid transportersspecifically expressed in xylem parenchyma and developing seeds of Arabidopsis [J].Journal of Biological Chemistry,2002,277:45338–45346.
    [57] Suzuki, H., Izuka, S., Miyakawa, N., et al. Enzymatic production of theanine, an ‘umami’component of tea, from glutamine and ethylamine with bacterial-glutamyltranspeptidase [J].Enzyme and Microbial Technology,2002,31:884–889.
    [58] Yamamoto, S., Wakayama, M.&Tachiki, T. Theanine production by coupled fermentationwith energy transfer employing Pseudomonas taetrolens Y-30glutamine synthetase andbaker’s yeast cells [J]. Bioscience Biotechnology and Biochemistry,2005,69:784–789.
    [59] Tachiki, T., Yamada, T., Mizuno, K., et al. Gamma-glutamyl transfer reactions byglutaminase from Pseudomonas nitroreducens IFO12694and their application for thesyntheses of theanine and gamma-glutamylmethylamide [J]. Bioscience Biotechnology andBiochemistry,1998,62:1279–1283.
    [60] Tachibana, N., Ikeda, T.&Ikeda, K. Changes in nitrogen uptake with aging and underheavy application of nitrogen in tea plants [J]. Japanese Journal of Crop Science,1996,65:8–15.
    [61] Ruan, J.Y., Gerendas, J., Hardter, R., et al. Effect of root zone pH and form andconcentration of nitrogen on accumulation of quality-related components in green teat [J].Journal of the Science of Food and Agriculture,2007,87:1505–1516.
    [62] Okano, K., Chutani, K.&Matsuo, K. Suitable level of nitrogen fertilizer for tea (Camelliasinensis L.) plants in relation to growth, photosynthesis, nitrogen uptake and accumulationof free amino acids [J]. Japanese Journal of Crop Science,1997,66:279–287.
    [63] Matsuura, T.&Kakuda, T. Effects of precursor, temperature, and illumination on theanineaccumulation in tea callus [J]. Agricultural and Biological Chemistry,1990,54:2283–2286.
    [64] Takihara-Matsuura, T., Sakane, I., Kakuda, T., et al. Effects of plant-growth regulators andcarbon-sources on theanine formation in callus-cultures of tea (Camellia sinensis)[J].Bioscience Biotechnology and Biochemistry,1994,58:1519–1521.
    [65] Tsushida, T.&Takeo, T. Occurrence of theanine in Camellia japonica and Camelliasasanqua seedlings [J]. Agricultural and Biological Chemistry,1984,48:2861–2862.
    [66]李娟,刘硕谦,刘仲华等.‘安吉白茶’抑制消减杂交cDNA文库的构建及初步分析[J].中国农学通报,2011,27(04):96-101
    [67] Mathis, R., Gamas, P., Meyer, Y.&Cullimore, J.V. The Presence of GSI-Like Genes inHigher Plants: Support for the Paralogous Evolution of GSI and GSII Genes [J]. Journa ofMolecular Evolution,2002,50:116-122.
    [68] Kumada, Y., Benson, D. R., Hillemann, D., Hosted, T. J., Rochefort, D. A., Thompson, C.J.,Wohlleben, W., et al. Evolution of the glutamine synthetase gene, one of the oldest existingand functioning genes [J]. Proceedings of the National Academy of Sciences of the UnitedStates of America,1993,90:3009-3013.
    [69] Lin, Y., Hwang, C. F., Brown, J. B.&Cheng, C. L.5'proximal regions of Arabidopsisnitrate reductase genes direct nitrate-induced transcription in transgenic tobacco [J]. PlantPhysiology,1994,106:477-484.
    [70] Pesole, G., Gissi, C., Lanave, C.&Saccone, C. Glutamine synthetase gene evolution inbacteria [J]. Molecular Biology and Evolution,1995,12:189-197.
    [71] Cren M., Hirel B. Glutamine synthetase in higher plants: regulation of gene and proteinexpression from the organ to the cell [J]. Plant and Cell Physiology,1999,40:1187-1193.
    [72] Llorca, O., Betti, M., Gonzalez, J.M., et al. The three-dimensional structure of aneukaryotic glutamine synthetase: functional implications of its oligomeric structure [J].Journal of Structural Biology,2006,156:469–479.
    [73] Unno, H., Uchida, T., Sugawara, H., et al. Atomic structure of plant glutamine synthetase–a key enzyme for plant productivity [J]. Journal of Biological Chemistry,2006,281:29287–29296.
    [74] Edwards, J. W., Walker, E. L., Coruzzi, G. M. Cell-specific expression in transgenic plantsreveals nonoverlapping roles for chloroplast and cytosolic glutamine synthetase [J].Proceedings of the National Academy of Sciences of the United States of America,1990,87:3459-3463
    [75] Ochs, G., Schock, G., Trischler, M., Kosemund, K.&Wild, A. Complexity and expressionof the glutamine synthetase multigene family in the amphidiploid crop Brassica napus [J].Plant Molecular Biology,1999,39:395-405.
    [76] Wallsgrove, R. M., Turner, J. C., Hall, N. P., Kendall, A. C.&Bright, S. W. BarleyMutants Lacking Chloroplast Glutamine Synthetase-Biochemical and Genetic Analysis [J].Plant Physiology,1987,83:155-158.
    [77] Peterman, T.K.&Goodman, H.M. The glutamine synthetase gene family of Arabidopsisthaliana: light-regulation and differential expression in leaves, roots and seeds [J].Molecular and General Genetics,1991,230:145-154.
    [78] Salla, M., Ritva, S., Ilkka, P.&Anita, M. Glutamine synthetase isozymes in germinatingbarley seeds [J]. Physiologia Plantarum,1993,88:612-618.
    [79] Cullimore, J. V., Lara, M., Lea, P.J.&Miflin, B.J. Purification and properties of two formsof glutamine synthetase from the plant fraction of Phaseolus root nodules [J]. Planta,1983,157:245-253.
    [80] Cullimore, J.V., Gebhardt, C., Saarelainen, R., Miflin, B.J., Idler, K.B.&Barker, R.F.Glutamine synthetase of Phaseolus vulgaris L: organ-specific expression of a multigenefamily [J]. Journal of Molecular and Applied Genetics,1984,2:589-599.
    [81] Kamachi, K., Yamaya, T., Mae, T.,&Ojima, K. A Role for Glutamine Synthetase in theRemobilization of Leaf Nitrogen during Natural Senescence in Rice Leaves [J]. PlantPhysiology,1991,96:411-417.
    [82] Cullimore JV, Gebhardt C, Saarelainen R, et al. Glutamine synthetase of Phaseolus vulgarisL.: organ-specific expression of a multigene family [J]. Journal of Molecular AppliedGenetics,1984,2:589-599
    [83] Cullimore, J. V., Lara, M., Lea, P.J., Miflin, B. J. Purification and properties of two formsof glutamine synthetase from the plant fraction of Phaseolus root nodules[J]. Planta,1983,157:245-253
    [84] Miflin, B.J.&Habash, D.Z. The role of glutamine synthetase and glutamate dehydrogenasein nitrogen assimilation and possibilities for improvement in the nitrogen utilization ofcrops [J]. Journal of Experimental Botony,2002,53:979-987.
    [85] Brechlin, P., Unterhalt, A., Tischner, R.&Mack, G. Cytosolic and chloroplasticglutamine synthetase of sugarbeet (Beta vulgaris) responds differently to organ ontogenyand nitrogen source [J]. Physiologia Plantarum,2000,108:263-269.
    [86]印莉萍,刘祥林,林忠平.植物谷氨酰胺合成酶基因以及基因表达[J].生物工程进展,2000,15(2):36-41
    [87]李常健,林清华,张楚富.高等植物谷氨酰胺合成酶研究进展[J].生物学杂志,2001,18(4):1-3
    [88] Freman, J., Marquez, A., Wallsgrove, R. M., et al. Molecular analysis of barley mutantsdeficient in chloroplast glutamine synthetase [J]. Plant Molecular,1990,14(3):297-311
    [89] SakamotoA, Ogawa, M., Masumura, T., et al. Three cDNA sequences coding forglutamine synthetase polypeptides in Oryza sativa L.[J]. Plant Molecular Biology,1989,13(5):611-614
    [90] LIN Qing_Hua, LI Chang_Jian, ZHANG Chu Fu. Comparative study of immunologicalproperties on glutamine synthetase isozymes in rice plants [J]. Acta Botanica Sinica,2000,42(5):471-475
    [91] Tingey, S. V., Tsai, F. Y., Edwards, J.W., et al. Chloroplast and cytosolic glutaminesynthetase are encoded by homologous nuclear genes which are differentially expressed invivo [J]. Biology Chemistry,1988,263(20):9651-9657
    [92] Morey, K. J., Ortega, J. L., Sengupta-Gopalan, C. Cytosolic glutamine synthetase insoybean is encloded by a multigene family, and members are regulated in an organ-specificand developmental manner [J]. Plant Physiology,2002,128:182-193.
    [93] Martin, A., Lee, J., Kichey, T., et al. Two cytosolic glutamine synthetase isoforms of maizeare specifically involved in the control of grain production [J]. The Plant Cell,2006,18:3252-3274.
    [94]苏金,朱汝财,伍成祥等.豌豆叶绿体型谷氨酰胺合成酶cDNA的克隆[J].农业生物技术学报,2002,8(4):326
    [95] Paula, A. M. M., Ligia, M. L., Isabel, M. S., et al. Expression of the plastidlocatedglutamine synthetase of Medicago truncatula [J]. Plant Physiology,2003,132(1):390-399
    [96] Stitt, M., Muller, C., Matt, P., et al. Steps towards an integrated view of nitrogenmetabolism [J]. Journal of Experimental Botany,2002,53:959-970.
    [97] Tjaden, G., Edwards, J.W.&Coruzzi, G. M. Cis elements and trans-acting factors affectingregulation of a nonphoto synthetic light-regulated gene for chloroplast glutamine synthetase[J]. Plant Physiology,1995,108:1109-1117.
    [98] Marsolier, M. C., Carrayole, E., Hirel, B. Multiple functions of promoter sequencesinvolved in organ-specific expression and ammonia regulation of a cytosolic soybeanGlutamine synthetase gene in transgenic Lotus corniculatus [J]. The Plant Journal,1993,3:405-414.
    [99] Rana, N., Mohanpuria, P.,&Yadav, S. Expression of tea cytosolic glutamine synthetase istissue specific and induced by cadmium and salt stress [J]. Biologia Plantarum,2008,52:361-364.
    [100] Kumar, R., Taware, R., Gaur, V. S., et al. Influence of nitrogen on the expression ofTaDof1transcription factor in wheat and its relationship with photo synthetic andammonium assimilating efficiency [J]. Molecular Biology Report,2009,36(8):2209-2220.
    [101] Rueda-Lopez, M., Crespillo, R., Canovas, F. M., et al. Differential regulation of twoglutamine synthetase genes by a single Dof transcription factor [J]. Plant Journal,2008,56(1):73-85.
    [102] Ortega, J. L., Temple, S. J., Sengupta-Gopalan C. Constitutive overexpression of cytosolicglutamine synthetase (GS1) gene in transgenic alfalfa demonstrates that GS1may beregulated at the level of RNA stability and protein turnover [J]. Plant Physiology,2001,26:109-121.
    [103] Habash, D. Z., Massiah, A. J., Rong, H. L., et al. The role of cytosolic glutamine synthetasein wheat [J]. Annals of Applied Biology,2001,138:83-89.
    [104] Migge, A., Carrayol, E., Hirel, B., Lohmann, M., Meya, G.&Becker, T. W. Regulation ofthe subunit composition of plastidic glutamine synthetase of the wild-type and of thephytochrome-deficient aurea mutant of tomato by blue/UV-A-or by UV-B-light [J].PlantMolecular Biology,1998,37:689-700.
    [105] Lima, L., Seabra, A., Melo, P., et al. Post-translational regulation of cytosolic glutaminesynthetase of Medicago truncatula [J]. Journal of Experimental Botany,2006,57(11):2751-2761.
    [106] Habash, D. Z., Massiah, A. J., Rong, H. L., et al. The role of cytosolic glutamine synthetasein wheat [J]. Annals of Applied Biology,2001,138:83-89.
    [107] Vincent, R., Fraisier, V., Chaillou, S., Limami, M. A., Deleens, E., Phillipson, B., Douat, C.,et al. Overexpression of a soybean gene encoding cytosolic glutamine synthetase in shootsof transgenic Lotus corniculatus L.plants triggers changes in ammonium assimilation andplant development [J]. Planta,1997,201:424-433.
    [108] Hirel, B., Belinda, P., Erik, M., Akira, S., Caroline, K., Sylvie, F., Anis, L., et al.Manipulating the pathway of ammonia assimilation in transgenic non-legumes and legumes.Journal of Plant Nutrition and Soil Science,1997,160:283-290.
    [109] Migge, A., Carrayol, E., Hirel, B.&Becker, T.W. Leaf-specific overexpression of plastidicglutamine synthetase stimulates the growth of transgenic tobacco seedlings [J]. Planta,2000,210:252-260.
    [110] Gallardo, F., Fu, J., Canton, F.R., Garcia-Gutierrez, A., ANOVAs, F.M.,&Kirby, E.G.Expression of a conifer glutamine synthetase gene in transgenic poplar [J]. Planta,1999,210:19-26.
    [111] FU, J., SAMPALO, R., GALLARDO, F., CáNOVAS, F. M.&KIRBY, E.G. Assembly ofa cytosolic pine glutamine synthetase holoenzyme in leaves of transgenic poplar leads toenhanced vegetative growth in young plants [J].Plant, Cell&Environment,2003,26:411-418.
    [112] Jing, Z. P., Gallardo, F., Pascual, M. B., Sampalo, R., Romero, J., Navarra, A. T. d.&Cánovas, F. M. Improved growth in a field trial of transgenic hybrid poplar overexpressingglutamine synthetase [J]. New Phytologist,2004,164:137-145.
    [113] Man, H. M., Boriel, R., El-Khatib, R.,&Kirby, E.G. Characterization of transgenic poplarwith ectopic expression of pine cytosolic glutamine synthetase under conditions of varyingnitrogen availability [J]. New Phytologist,2005,167:31-39.
    [114] Brugiere, N., Dubois, F., Limami, A. M., et al. Glutamine synthetase in the phloem plays amajor role in controlling proline production [J]. The Plant Cell,1999,11:1995-2011.
    [115] Fuentes, S. I., Allen, D. J., Ortiz-Lopez, A., et al. Over-expression of cytosolic glutaminesynthetase increases photosynthesis and growth at low nitrogen concentrations [J]. Journalof Experimental Botany,2001,52(358):1071-1081.
    [116] Fei, H., Chaillou, S., Hirel, B., Polowick, P., Mahon, J. D.&Vessey, J. K. Effects of theoverexpression of a soybean cytosolic glutamine synthetase gene (GS15) linked toorgan-specific promoters on growth and nitrogen accumulation of pea plants supplied withammonium [J]. Plant Physiology Biochemistry,2006,44:543-550.
    [117]王忠.植物生理学[M].中国农业出版社,北京,2000.
    [118]宋世威,季凯莉,葛体达&黄丹枫.甜瓜对不同形态氮素的吸收动力学研究[J].土壤通报,2009,40:590-593.
    [119] Cren, M.&Hirel, B.Glutamine Synthetase in Higher Plants Regulation of Gene and ProteinExpression from the Organ to the Cell [J]. Plant Cell Physiology.,1999,40:1187-1193.
    [120] Prinsi, B., Negri, A., Pesaresi, P., Cocucci, M.&Espen, L. Evaluation of protein patternchanges in roots and leaves of Zea mays plants in response to nitrate availability bytwo-dimensional gel electrophoresis analysis [J]. BMC Plant Biology,2009,9:113.
    [121] Schjoerring, J. K., Husted, S., Mack, G. The regulation of ammonium translocation inplants [J]. Journal of Experimental Botany,2002,53:883-890
    [122]武维华,张蜀秋,袁明&张军.植物生理学[M].北京:科学出版社,2003:91.
    [123] Hayatsu, M.&Kosuge, N. Autotrophic nitrification in acid tea soils [J]. Soil Science andPlant Nutrition,1993,39:209–217.
    [124] Ishigaki, K. Mineral nutrition of tea plants [J]. Bulletin of the National Research Institute ofTea,1978,14:1–152.
    [125] Hoshina, T. Studies on absorption and utilization of fertilizer nitrogen in tea plants [J].Bulletin of the National Research Institute of Tea,1985,20:1–89.
    [126] Morita, A., Ohta, M.&Yoneyama, T. Uptake, transport and assimilation of N-15-nitrateand N-15-ammonium in tea (Camellia sinensis L.) plants [J]. Soil Science and PlantNutrition,1998,44:647–654.
    [127] Britto, D. T., Siddiqi, M. Y., Glass, A. D., Kronzucker, H. J. Futile transmembrane NH4+cycling: a cellular hypothesis to explain ammonium toxicity in plants [J]. Proceedings ofthe National Academy of Sciences of the United States of America,2001a,98:4255-4263
    [128] Glass, A. D. M., Jon, E. S.&Leon, V. K. Studies of the Uptake of Nitrate in Barley:IV.Electrophysiology [J]. Plant Physiology,1992,99:456-463.
    [129] Miller, A. J.&Smith, S.J. Nitrate transport and compartmentation in cereal root cells [J].Journal of Experimental Botany,1996,47:843-854.
    [130] Zhen, R. G., Koyro, H. W., Leigh, R. A., Tomos, A. D.&Miller, A. J. Compartmentalnitrate concentrations in barley root cells measured with nitrate-selective microelectrodesand by single-cell sap sampling [J]. Planta,1991,185:356-361.
    [131] Aslam, M., Travis, R. L.,&Huffaker, R. C. Comparative kinetics and reciprocal inhibitionof nitrate and nitrite uptake in roots of uninduced and induced barley (Hordeum vulgare L.)seedlings[J]. Plant Physiology,1992,99:1124-1133.
    [132] Glass, A. D. M.,&Siddiqi, M.Y. Nitrogen Absorption by plant roots In Nitrogen nutritionin higher plants [J]. Plant Nitrogen,1995,21-25.
    [133] Liu, K. H.,&Tsay, Y. F. Switching between the two action modes of the dual-affinity nitratetransporter CHL1by phosphorylation [J]. EMBO Journal,2003,22:1005-1013.
    [134] Touraine, B., Daniel-Vedele, F.,&Forde, B.G. Nitrate uptake and its regulation [J]. PlantNitrogen,2001,1-36.
    [135] Nazoa, P., Vidmar, J. J., Tranbarger, T. J., Mouline, K., Damiani, I., Tillard, P., Zhuo, D., etal. Regulation of the nitrate transporter gene AtNRT2.1in Arabidopsis thaliana:responses tonitrate,amino acids and developmental stage [J]. Plant Mol Biol,2003,52:689-703.
    [136] Vidmar, J. J., Zhuo, D., Siddiqi, M. Y., Schjoerring, J. K., Touraine, B.,&Glass, A. D.Regulation of high-affinity nitrate transporter genes and high-affinity nitrate influx bynitrogen pools in roots of barley [J]. Plant Physiology,2002,123:307-318.
    [137] Ono, F., Frommer, W. B.,&von Wiren, N. Coordinated diurnal regulation of low-andhigh-affinity nitrate transporters in tomato [J]. Plant Biology,2000,2:17-23.
    [138] Lejay, L., Tillard, P., Marc, L., Francesc, D.O., Sophie, F., Franoise, D. V.,&Alain, G.Molecular and functional regulation of two NO3-uptake systems by N-and C-status ofArabidopsis plants [J].The Plant Journal,1999,18:509-519.
    [139] Cerezo, M., Tillard, P., Filleur, S., Munos, S., Daniel-Vedele, F.,&Gojon, A. Majoralterations of the regulation of root NO-3uptake are associated with the mutation of Nrt2.1and Nrt2.2genes in Arabidopsis [J]. Plant Physiology,2001,127:262-271.
    [140] Shelden, M. C., Dong, B., de Bruxelles, G. L., Trevaskis, B., Whelan, J., Ryan, P. R., Howitt,S. M., et al. Arabidopsis ammonium transporters, AtAMT1;1and AtAMT1;2, havedifferent biochemical properties and functional roles [J]. Plant and Soil,2001,231:151-160.
    [141] Sohlenkamp, C., Shelden, M., Howitt, S.,&Udvardi, M. Characterization of ArabidopsisAtAMT2, a novel ammonium transporter in plants [J].FEBS Letter,2000,467:273-278.
    [142] Rawat, S. R., Silim, S. N., Kronzucker, H. J., Siddiqi, M. Y.,&Glass, A. D. AtAMT1geneexpression and NH+4uptake in roots of Arabidopsis thaliana: evidence for regulation byroot glutamine levels [J].Plant Journal,1999,19:143-152.
    [143] Hoque, M. S., Masle, J., Udvardi, M. K., Ryan, P. R.,&Upadhyaya, N. M. Over-expressionof the rice OsAMT1-1gene increases ammonium uptake and content, but impairs growthand development of plants under high ammonium nutrition [J]. Functional Plant Biology,2006,33:153-163.
    [144] Yuan, L., Loque, D., Ye, F., Frommer, W. B.,&von-Wiren, N. Nitrogen-DependentPosttranscriptional Regulation of the Ammonium Transporter AtAMT1-1[J]. PlantPhysiology.,2007,43:732-744.
    [145] Vincent, F., Alain, G., Pascal, T.,&Franoise, D.-V. Constitutive expression of a putativehigh-affinity nitrate transporter in Nicotiana plumbaginifolia: evidence forpost-transcriptional regulation by a reduced nitrogen source [J].The Plant Journal,2000,23:489-496.
    [146] Nord-Larsen, P. H., Kichey, T., Jahn, T. P., Jensen, C. S., Nielsen, K. K., Hegelund, J.N.,&Schjoerring, J. K. Cloning,characterization and expression analysis of tonoplast intrinsicproteins and glutamine synthetase in ryegrass (Lolium perenne L.)[J].Plant Cell Report,2009,28:1549-1562.
    [147] Hoff, T., Truong, H.-N.,&Caboche, M. The use of mutants and transgenic plants to studynitrate assimilation [J]. Plant Cell and Environment,1994,17:489-506.
    [148] Tingey, S. V., Tsai, F. Y., Edwards, J. W., Walker, E. L.,&Coruzzi, G.. M. Chloroplast andcytosolic glutamine synthetase are encoded by homologous nuclear genes which aredifferentially expressed in vivo [J]. Journal of Biology Chemistry,1988,263:9651-9657.
    [149] Alderton, W. K., Cooper, C. E., Knowles, R. G. Nitric oxide synthases:structure,function and inhibition [J]. Biochemistry of Journal,2001,357:593-615
    [150] Kuo, W. N., Kuo, T. W., Jones, D. L., Baptise, J. J., Nitric oxide synthaseimmuneoreactivity in bakers yeast, loberst and wheat germ [J]. Archives of Biochemistryand Biophysics,1995,11:73-78
    [151] Sen, S., Cheem, I. R., Nitric oxide synthase and calmodlin immunoreactivity in plantembryonic tissue [J]. Archives of Biochemistry and Biophysics,1995,11:221-227
    [152] Barroso, J. B., Corpas, F. J., Carreras, A., Sandalio, L. M., Valderrama, R., Palma, J. M.,Lupianez, J. A., delRio, L. A., Localization of nitric oxide synthase in plant peroxisomes [J].Journal of Biology Chemistry,1999,274:36729-36733
    [153] Foissner, I., Wendehenne, D., Langebartels, C., Durner, J., In vivo imaging of anelicitor-induced nitric oxide burst in tobacco [J]. Plant Journal,2000,23:817-824
    [154] Huang, J. S., Knopp, J. A., Involvment of nitric oxide in ralstonia solanacearum-inducedhypersensitive reaction in tobacco [J]. Berlin: IRNA and Springer,1998,218~224
    [155] Ribeiro, E. A., Cunha, F. Q., Tamashiro, W., Martins, I. S. Growth phase dependentsubcellular localization of nitric oxide synthase in maize cells [J]. FEBS Letter,1999,445:283-286
    [156] Corpas, F.,Barroso, J.,Carreras, A.,Valderrama, R.,Palma, J., Leon, A., Sandalio, L.,Delrio, L. Constitutive arginine-dependent nitric oxide synthase activity in different organsof pea seedlings during plant development [J]. Planta,2006,224:246-254.
    [157] Lum, H. K., Butt, Y. K. C., Lo, S. C. L. Hydrogen peroxide induce a rapid production ofnitric oxide in mung bean [J]. Biology Chemistry,2002,6:205-213
    [158] Crawford, N. M., Galli, M., Tischner, R., Heimer, Y. M., Okamoto, M., Mack, A. Plantnitric oxide synthase: back to square one ends [J]. Plant Science,2006,11:526-527.
    [159] Yamasaki, H., Sakihama, Y., Takahashi, S. An alternative pathway for nitric oxideproduction in plants: new features of an old enzyme [J].Trends Plant Science,1999,4:128-129.
    [160] Yamamoto-Katou, A., Katou, S., Yoshioka, H., Doke, N., Kawakita, K. Nitratereductase is responsible for elicitin-induced nitric oxide production in Nicotianabenthamiana [J]. Plant Cell Physiology,2006,47:726-735.
    [161] Kolbert, Z., Bartha, B., Erdei, L. Exogenous auxin-nduced NO synthesis is nitratereductase-associated in Arabidopsis thaliana root primordial [J]. Plant Physiology,2008,165:967-975.
    [162] Bright, J., Desikan, R., Hancock, J.T., Weir, I. S., Neill, S. J. ABA-induced NO gene rationand stomatal close in Arabidopsis are dependent on H202synthesis [J]. Plant Journal,2006,45:113-122.
    [163] Moreau, M.,Lee, G. I., Wang, Y., Crane, B. R., Klessig, D. F. AtNOS-A1is afunctional Arabidopsis thaliana cGTPase and not a nitric oxide synthase [J], JournalBiology Chemistry,2008,283:32957-32967.
    [164] Floryszak, W., ieczorek, J., Arasimowicz, M., Milczarek, G., Jelen, H., Jackowiak, H.Only an early nitric oxide burst and the following wave of secondary nitric oxidegeneration enhanced effective defence responses of pelargonium to a necrotrophic pathogen[J]. New Phytologist,2007,175:718-730.
    [165] Stohr, C., Ullrich, W. R. Generation and possible roles of NO in plant roots and theirapoplastic space [J]. Journal of Experimetal Botony,2002,53:2293-2303.
    [166] Weizberg, E., Lunberg, J. O. N. Nonenzymatic nitric oxide production in humans [J]. NitricOxide,1998,2:1~7
    [167] Planchet, E., Gupta, K. J., Sonoda, M., Kaiser, W.M. Nitric oxide emission from tobaccoleaves and cellsus densions:rate limiting factors and evidence for the involvement ofmitochondrial electron transport [J]. Plant Journal,2005,41:732-743.
    [168] Jasid, S., Simontacchi, M., Bartoli, C. G., Puntarulo, S. Chloroplasts as a nitric oxidecellular source, Effect of reactive nitrogen species on chloroplastic lipids and proteins [J].Plant Physiology,2006,142:1246-1255.
    [169] Yamasaki, H., Cohen, M. F. NO signal at the crossroads: polyamine-induced nitric oxidesynthesis in plants?[J]. Trends Plant Science,2006,11:522-524.
    [170]王鹏程,杜艳艳,宋纯鹏.植物细胞一氧化氮信号转导研究进展[J].植物学报ChineseBulletin of Botany,2009,44(5):517-525
    [171] Desikan, R., Cheung, M. K., Bright, J., Henson, D., Hancock, J. T., Neill, S. J. ABA,hydrogen peroxide and nitric oxide signaling in stomatal guard cells [J]. JounalExperemental Botony,2004,55:205-212.
    [172] Courtois, C., Besson, A., Dahan, J., Bourque, S., Dobrowolska, G., Pugin, A.,Wendehenne, D. Nitric oxide signaling in plants:interplays with Ca and protein kinases [J].Jounal Experement Botony,2008,59:155-163.
    [173] Vanlerberghe, G. C., Mcintosh, L. Singal regulating the expression of the nuclear genealternative oxidase of plant mitochondria [J]. Plant Physical,1996,111:589-595
    [174]张文利,沈文飚,叶茂炳,徐朗莱.小麦叶片顺乌头酸对NO和H2O2的敏感性[J].植物生理与分子生物学学报,2002,28:99-104
    [175] Lindermayr, C., Saalbach, G., Bahnweg, G., Durner, J. Diferential inhibition ofArabidopsis methionine adenosyltransferases by protein Synitrosylation [J]. Journal ofBiology Chemistry,2006,281:4285-4291.
    [176] Morot-Gaudry-Talarmain, Y., Rockel, P., Moureaux, T., Quillerl, Leydecker, M., Kaiser,W., Morot-Gaudry, J. Nitrite accumulation and nitric oxide emission in relation to cellularsignaling in nitrite reductase antisense tobacco [J]. Planta,2002,215:708-715
    [177] Asai, S., Ohta, K., Yoshioka, H. MAPK signaling regulates nitric oxide and NADPHoxidase, dependent oxidative bursts in Nicotiana benthamiana [J] Plant Cell,2008,20:1390-1406.
    [178] Durner, J., Wendehenne, D., Klessig, D. F. Defense gene induction in tobacco by nitricoxide, cyclic GMP, and cyclic ADP-ribose [J]. Proceedings of the National Academy ofSciences of the United States of America,1998,95(17):10328-10333
    [179] Klessig, D.F., Durner, J., Noad, R., et al. Nitric oxide and salicylic acid signaling in plantdefense [J]. Proceedings of the National Academy of Sciences of the United States ofAmerica,2000,97(16):8849-8855
    [180] He, Y., Tang, R.H., Hao, Y., et al. Nitric oxide represses the Arabidopsis floralt ransition[J]. Science,2004,305(5692):1968-1971
    [181] Parani, M., Rudrabhatla, S., Myers, R., et al. Microarray analysisof nit ric oxide responsivetranscript s in Arabidopsis [J]. Plant Biotechnology Journal,2004,2(4):359-366
    [182] Polverari, A., Molesini, B., Pezzotti, M., et al. Nitric oxide mediated transcriptionalchanges in Arabidopsis thaliana [J]. Molecular Plant Microbe Interactions,2003,16(12):1094-1105
    [183] Lindermayr, C., Saalbach, G., Durner, J. Proteomic identification of S-nitrosylated proteinsin Arabidopsis. Plant Physiology,2005,137(3):921-930
    [184]刘维仲,张润杰,裴真明,何奕昆.一氧化氮在植物中的信号分子功能研究:进展和展望[J].自然科学研究进展,2008,18(1):10-24.
    [185] Neill, S.J., Desikan, R., Hancock, J. T. Nitric oxide signalling in plants [J]. New Phytologist,2003,159:11-35
    [186] Huang, X., von Rad, U., Durner, J. Nitric oxide induces transcriptional activation of thenitric oxide tolerant alternative oxidase in Arabidopsis suspension cells [J]. Planta,2002,215(6):914-923
    [187] J.萨姆布鲁克, D. W.拉赛尔著,分子克隆实验指南[M].北京:科学出版社,2002
    [188]李平,宛晓春,李健等.茶氨酸的衍生化及毛细管电泳定量技术[J].茶叶科学,2004,24(2):119-123.
    [189]李平,李健,李娟等.茶籽培育及茶氨酸合成酶活力测定条件的研究[J].安徽农业大学学报,2005,32(2):158-161.
    [190] Li, P., Wan, X. C., Zhang, Z. Z. et al. A novel assay method for theanine synthetaseactivity by capillary electrophoresis [J]. Journal Chromatogr, B: Anal Technology BiomedLife Science,2005,819(1):81-84
    [191]王关林,方宏筠主编,植物基因工程原理与技术[M].北京:科学出版社,1998.
    [192]余有本,江昌俊,李叶云. RNA介导的转录后基因沉默[J].植物分子育种,2004,2:259-267
    [193] Chilton, M. D. Agrobacterium gene transfer: progress on a poor man’s vector for maize [J].Proceedings of the National Academy of Sciences of the United States of America,1993,90(8):3119-3120
    [194] Davis, K. L., Martin, E., Turko, IV., et al. Novel effects of nitric oxide [J]. Annual Reviewof Pharmacology and Toxicology,2001,41:203-236.
    [195] Romero-Puertas, M. C., Perazzolli, M., Zago, E. D., et al. Nitric oxide signalling functionsin plant pathogen interactions [J]. Cell Microbiology,2004,6(9):795-803.
    [196] Lanteri, M. L., Pagnussat, G.C., Lamattina, L. Calcium and calcium dependent proteinkinases are involved in nitric oxide and auxin induced adventitious root formation incucumber [J]. Journal of Experiment Botony,2006,57(6):1341-1351.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700