蛋白质的毛细管阵列液相色谱分离及相互作用新方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类基因组计划的完成,生命科学研究进入了后基因组时代,即蛋白质组学的研究。蛋白质组学中有两条技术路线:一条是基于肽段的"bottom-up",另一条是基于蛋白质水平的"top-down"。基于蛋白质水平的分离鉴定能够获得蛋白质完整的信息,使蛋白质的定量、蛋白与蛋白相互作用以及翻译后修饰研究更加高效可靠。因此,对蛋白质水平的分离鉴定成为近几年的研究主流方向。然而,蛋白质比肽段复杂得多。如何采用高效、高通量、高分辨的分离手段,实现对一个复杂蛋白质组在蛋白质水平上的有效分离给色谱工作者提出了一个新的挑战。构建高通量的阵列式多维液相色谱平台成为极具潜力的大规模蛋白质组学样品分析的关键。
     在蛋白质组学研究中,阐明蛋白质间的相互作用是最有挑战性而又重要的任务之一。研究蛋白质相互作用的方式和程度,将有助于蛋白质功能的分析、疾病致病机理的阐明和治疗以及新型药物的开发等众多难题的解决,因此,确定蛋白质间相互作用关系、绘制相互作用图谱已成为蛋白质组学研究的热点。现有的技术研究周期长、成本高、代价昂贵,限制了对蛋白质相互作用高通量、高效的研究。
     本论文针对蛋白质组学研究领域的热点难点问题,研制了新型的蛋白质捕集柱,搭建了蛋白质水平分离的两维阵列式毛细管液相色谱平台,建立了基于蛋白质固定与蛋白质荧光标记的研究蛋白质相互作用的新方法,对正常及高脂大鼠的鼠肝提取蛋白进行了基于质谱的无标记定量分析。全文共分五章,主要内容如下:
     第一章,文献综述。本章总结了整体柱的发展概况及整体柱在微分离分析领域的应用,概述了多维液相色谱技术在蛋白质组学领域的进展,介绍了蛋白质相互作用的研究方法。阐述了本论文的选题意义。
     第二章,商品捕集柱以及我们已研制的捕集柱主要用于肽水平样品的捕集,无法满足蛋白质水平的样品馏分高效捕集与洗脱。论文采用溶胶凝胶法制备了新型的蛋白质捕集柱并成功地对实际鼠肝蛋白质进行了高效捕集与洗脱。首先通过优化溶胶凝胶的配方及改善工艺条件,制得了由薄层溶胶凝胶涂覆的蛋白质捕集柱。柱与柱之间,批次与批次之间重现性好,同时捕集柱保持了较高的机械强度。然后将该捕集柱应用于在线捕集-分离检测的毛细管液相色谱系统,以四种标准蛋白质的混合物为研究对象,考察了捕集柱对标准蛋白质的回收率、最大上样量、柱子的重现性等参数。一根5mm长的捕集柱对标准蛋白质的平均回收率为99.3%,对四种蛋白质混合物的最大上样量为30μg。最后该在线捕集-分离检测的毛细管液相系统成功用于实际鼠肝提取蛋白的在线除盐、捕集,获得了满意的结果。
     第三章,搭建了蛋白质水平分离的阵列式毛细管二维液相色谱分离技术平台,将上述研制的蛋白质捕集柱应用于蛋白的在线除盐、富集,对鼠肝组织的蛋白质组进行了高效分离。在此基础上,采用本实验室发展的靶上酶解技术,对分离后的蛋白质进行酶解,将蛋白质高通量的分离与MALDI-TOF-TOF-MS检测有效的结合起来,从而实现了蛋白质从分离、酶解到鉴定这样一个完整的"top-down"路线分析。该平台以强阴离子交换色谱(SAX)为第一维色谱分离模式,以十八根并行式的反相液相色谱(RPLC)为第二维分离模式,可快速完成进样、除盐富集、分离、酶解及鉴定,实现真正的蛋白质组学研究所需的高通量分析。SAX柱采用阶梯式盐梯度洗脱,蛋白质样品经过0.5mm内径SAX柱分离之后,洗脱下来的馏分通过两个十通阀的切换被依次保留在18根自制蛋白捕集柱的柱头,对样品进行在线除盐、捕集。馏分经捕集柱捕集除盐后,通过一个十八通道分流器,被并行反冲到阵列式的毛细管反相柱上进行第二维分离。样品分析通量提高了18倍。利用自动点样仪将经过RPLC的洗脱液直接收集到MALDI靶板上,点样频率为1分钟/,经过靶上单点酶解之后用MALDI-TOF-TOF-MS鉴定。整个系统对鼠肝蛋白进行了分离鉴定,共鉴定出1030种蛋白质。
     第四章,探索了研究蛋白质相互作用的新方法。将目标蛋白质固定在氨基材料上,将与之发生相互作用的蛋白质进行固相荧光衍生,然后将两者孵育,洗脱后,用荧光显微镜进行检测。应用谷胱甘肽转移酶(GST)及其抗体对该方法的可行性进行了验证,该方法有望应用于研究蛋白质相互作用,实现对大量蛋白质高通量的筛选。首先合成了氨基纳米磁性微球,通过化学反应在氨基磁球上连接上戊二醛,然后将蛋白质连接到戊二醛上,实现了在氨基纳米磁球上固定蛋白质。通过比较蛋白质溶液与材料反应前后对280nm紫外光的吸收强度,可以估算出磁球表面固定蛋白的量。然后采用本实验室发展的固相荧光衍生法,在毛细管中制备了用于蛋白荧光标记的固相载体填充床,以荧光素异硫氰酸酯(FITC)作为荧光衍生试剂,实现了蛋白的固相荧光衍生。并白行填充了毛细管体积排阻色谱柱,对过量荧光试剂进行了有效去除。将固定在氨基材料上的GST与标记上荧光的GST抗体在Tris-HCl缓冲液(pH7.5,100mM NaCl,4℃)中过夜孵育、洗脱后,在荧光显微镜下观察,材料上可见荧光。应用该方法对固定在氨基材料上的人血清蛋白(HSA)与标记上FITC的血浆馏分之间的相互作用进行了初步探索。
     第五章,采用APEX方法,建立了无标记的纳流毛细管液相色谱-电喷雾离子阱串联质谱联用分析鉴定正常及高脂鼠肝组织中的差异蛋白。将20周龄正常及高脂鼠肝组织提取蛋白酶解后的肽段使用强阳离子交换/相纳升级液相色谱(SCX/nano HPLC)进行电喷雾串联质谱分析(ESI-MS-MS)。分析步骤如下:肽段干粉使用60μL上样液(5mM甲酸铵,5%ACN水溶液,pH3.0,第一个浓度的盐梯度)溶解后每次上样19μL。第一维上样流速为20μL/min,洗脱5分钟,未被SCX保留的肽段直接被捕集柱捕集,同时经过捕集柱的盐溶液直接排入废液。经过阀切换,使捕集柱和分析柱相连,同时启动Nano泵进行反相分离,启动质谱采集在线检测肽段。进样器吸取20μL第二种浓度的盐溶液进行第二个盐梯度,重复进行以上步骤。实验共进行10个盐梯度(包括第一次上样的梯度)。盐梯度之后仍会有部分疏水性较强的肽段保留在SCX柱上,为了回收这部分肽段,最后我们添加了一个ACN浓度较高的盐梯度。对串级质谱鉴定的数据库分析后,高脂鼠肝组织中的蛋白与正常鼠肝组织中的相比,含量两倍上调的有21种,两倍下调的有10种。
     综上所述,本论文针对蛋白质组学研究领域的热点难点问题,研制了新型的蛋白质捕集柱并成功应用于实际鼠肝蛋白的捕集,搭建了蛋白质水平分离的两维阵列式毛细管液相色谱平台,建立了基于蛋白质固定与蛋白质荧光标记的研究蛋白质相互作用的新方法。为利用高通量的阵列色谱平台分离复杂的蛋白质组以及研究蛋白质相互作用、蛋白质定量等打下了良好的基础。
The completion of the human genome project has facilitated the entry of biomedical research into the post-genome era-proteomics research. There are two technical routes in proteomics:peptide-centric bottom-up and intact-protein level top-down approaches."Top-down" proteomics can provide more information for intact proteins which can be used to study protein quantitation, protein-protein interactions (PPIs) and posttranslational modifications (PTMs). The strategies based on separation and identification of intact proteins has become the mainstream in proteomic research. However, proteins are more complex than peptides. The efficient and high throughput separation of complex protein mixtures at intact-protein level is a great challenge to the chromatographic field. Construction of high-throughput multi-dimensional array liquid chromatography platform has great potential for large-scale proteomics analysis.
     The elucidation of PPIs is one of the most challenging and important tasks in proteomics research. Study of PPIs can provide important information for understanding protein functions, elucidating disease pathogenesis and developing new drugs. So PPIs analysis has become the focus of proteomics. The current technologies have hindered high throughput screening of PPIs because they are usually time-consuming and expensive. Therefore, it is urgent to develop new strategies for the large-scale study of PPIs.
     We focus on the key and challenging problems in proteome field, a novel kind of intact-protein trapping columns was developed for trapping and desalting of proteins. We established a multidimensional capillary array liquid chromatography platform coupled by MALDI-TOF-TOF identification of intact proteins. And a new method for study of PPIs was proposed. Differential proteomics of normal and fat rat liver proteins was achieved based on label-free proteomics. The research work in this thesis is divided into five chapters.
     In Chapter1, advance and application of monolithic columns were included, development and application of multidimensional liquid chromatography in the field of proteome were introduced, technologies for analyzing PPIs were summarized. The research background was demonstrated.
     In Chapter2, most commercially available precolumns and our previously developed precolumns are mainly employed for trapping peptides, it is urgent to develop intact-protein trapping columns for high efficient trapping and elution of proteins. A new type of monolithic trapping columns with high mechanical strength was prepared by thin-layer sol-gel coating method and applied to trapping intact proteins for on-line capillary liquid chromatography. Hundreds times of trapping/untrapping for intact proteins were carried out. The trapping columns showed long-term stability up to300bar. Recovery, loading capacity and reproducibility of trapping columns were evaluated using four proteins. The recovery of four protein mixtures for the C8monolithic trapping columns was99.3%on average. The loading capacity of5mm×320μm i.d. C8trapping columns for the protein mixtures was30μg. The C8trapping columns were used to trap normal mouse liver intact proteins in a capillary liquid chromatography system. Results demonstrated high efficiency of the monolithic trapping columns for trapping intact proteins for proteomic analysis in on-line capillary liquid chromatography system.
     In Chapter3, we established a capillary two-dimensional array liquid chromatography system for automated, high-throughput analysis of intact proteins, in which one strong-anion-exchange (SAX) chromatographic column was used as the first separation dimension and18parallel capillary reverse-phase liquid chromatographic (RPLC) columns were integrated as the second separation dimension. Proteins eluting from the SAX were trapped and desalted by18parallel intact-protein trapping columns. Then protein fractions were back-flushed simultaneously from18intact-protein trapping columns to capillary RPLC columns. The eighteenplexed capillary array chromatography system is capable of concurrently separating eighteen different samples, resulting in an18-fold increase in analytical throughput. Protein fractions eluting from RPLC columns were spotted onto the MALDI sample plate in1min intervals through an array of capillary tips. On-plate tryptic digestion technique was employed to digest the effluents. Normal mouse liver tissue proteins were analyzed by the fully multiplexed high-throughput two-dimensional liquid chromatography platform coupled by MALDI-TOF-TOF-MS identification. In total,1030proteins were identified, which proved the system's promising potential for intact-protein separation in proteomics.
     In Chapter4, we proposed a new method for PPIs research. Bait protein was immobilized on amino particles, prey protein was labeled by a fluorescent reagent, and then they were incubated, eluted, detected by fluorescence microscopy. GST and its antibody were used to verify the feasibility of the method. First, amino-nano-magnetic microspheres were synthesized, glutaraldehyde was connected with amino of magnetic particles by chemical reaction, and then protein was connected to glutaraldehyde. After protein immobilization procedure was conducted, the UV absorption value of the supernatant solution was measured at280nm to calculate the amount of protein immobilized on the magnetic microspheres. A solid-support reaction was described to realize fluorescent derivatization of proteins. A simple, low-cost homemade capillary C18cartridge was fabricated as the solid-support reactor, protein was captured by this reactor and then labeled by fluorescein isothiocyanate (FITC, isomer I) on solid-support. Unwanted fluorescent intruder (excrescent FITC and products of secondary reactions) were removed from target easily. By incubating immobilized protein and FITC-labeled protein in Tris-HCl buffer (pH7.5,100mM NaCl,4℃), we investigated PPIs. This new method was applied to study PPIs between human serum albumin (HSA) and human plasma fractions.
     In Chapter5, we reported on differential proteomics of normal and fat rat liver proteins. This was achieved by2D-LC-MS/MS-based label-free protein quantification. The peptides were desalted, dried and then resuspended with60μL volume of loading buffer (5mM Ammonium formate containing5%acetonitrile, pH3.0), separated and analyzed by2D strong cation-exchange (SCX)/reversed-phase (RP) nano-scale liquid chromatography/mass spectrometry (2D-nanoLC/MS). The experiments were performed on a Nano Aquity UPLC system connected to an LTQ Orbitrap XL mass spectrometer equipped with an online nano-electrospray ion source. A20μL plug was injected each time to form the salt step gradients. Ten step gradients were carried out. The plugs were loaded onto the SCX column with a loading buffer at a20μL/min flow rate for5min. A19μL peptide sample was loaded onto the SCX column before the gradient plugs were injected. The eluted peptides were captured by a Captrap Peptide column, while salts were diverted to waste. To recover hydrophobic peptides still retained on the SCX column after a conventional salt step gradient, a RP step gradient from15%to50%acetonitrile was applied to the SCX column. After all MS/MS spectrums were identified, we found quantitative differences of31proteins common to two samples, of which,21up-regulated and10down-regulated.
     In summary, this thesis focuses on the key and challenging problems of proteomics. We developed a novel type of intact-protein trapping columns for desalting and trapping of intact-protein. We set up a multidimensional capillary array liquid chromatography platform coupled by MALDI-TOF-TOF identification of intact proteins. And a new method for studying PPIs was proposed.
引文
[1]Wasinger V C, Cordwell S J, Cerpapoljak A. Progress with gene-product mapping of the mollicutes-mycoplasma-genitalium [J]. Electrophoresis,1995,16 (7): 1090-1094.
    [2]Tang J, Gao M X, Deng C H. Recent development of multi-dimensional chromatography strategies in proteome research [J]. J. Chromatogr. B,2008,866 (1-2): 123-132.
    [3]Zhang K L, Wrzesinski K, Fey S J. Assessing CMT cell line stability by two dimensional polyacrylamide gel electrophoresis and mass spectrometry based proteome analysis [J]. J. Proteomics,2008,71 (2):160-167.
    [4]Yusenko M V, Ruppert T, Kovacs G. Analysis of differentially expressed mitochondrial proteins in chromophobe renal cell carcinomas and renal oncocytomas by 2-D gel electrophoresis [J]. Int. J. Biol. Sci.,2010,6 (3):213-224.
    [5]Ruiz-Romero C, Calamia V, Carreira V. Strategies to optimize two-dimensional gel electrophoresis analysis of the human joint proteome [J]. Talanta,2010,80 (4): 1552-1560.
    [6]Cuervo P, de Jesus J B, Junqueira M. Proteome analysis of Leishmania (Viannia) braziliensis by two-dimensional gel electrophoresis and mass spectrometry [J]. Mol. Biochem. Parasitol.,2007,154 (1):6-21.
    [7]Eravci M, Fuxius S, Broedel O. Improved comparative proteome analysis based on two-dimensional gel electrophoresis [J]. Proteomics,2007,7 (4):513-523.
    [8]Lohaus C, Nolte A, Bluggel M. Multidimensional chromatography:A powerful tool for the analysis of membrane proteins in mouse brain [J]. J. Proteome Res.,2007, 6(1):105-113.
    [9]Wang Y, Zhang J, Liu C L. Nano-flow multidimensional liquid chromatography with electrospray ionization time-of-flight mass spectrometry for proteome analysis of hepatocellular carcinoma [J]. Anal. Chim. Acta,2005,530 (2):227-235.
    [10]Gao M X, Yu W J, Zhang Y. Integrated strong cation exchange/capillary reversed-phase liquid chromatography/on-target digestion coupled with mass spectrometry for identification of intact human liver tissue proteins [J]. Analyst,2008, 133(9):1261-1267.
    [11]Zhang J, Xu X Q, Shen H L. Analysis of nuclear proteome in C57 mouse liver tissue by a nano-flow 2-D-LC-ESI-MS/MS approach [J]. J. Sep. Sci.,2006,29 (17): 2635-2646.
    [12]Zou H F, Huang X D, Ye M L. Monolithic stationary phases for liquid chromatography and capillary electrochromatography [J]. J. Chromatogr. A,2002, 954 (1-2):5-32.
    [13]Hjerten S, Liao J L, Zhang R. High-performance liquid-chromatogry on continuous polymer beds [J]. J. Chromatogr. A,1989,473 (1):273-275.
    [14]Svec F, Frechet J M J. Continuous rods of macroporous polymer as high-performance liquid-chromatography separation media [J]. Anal. Chem.,1992,64 (7):820-822.
    [15]Cabrera K, Wieland G, Lubda D. SilicaROD (TM)-A new challenge in fast high-performance liquid chromatography separations [J]. Trac-Trends Anal. Chem., 1998,17(1):50-53.
    [16]邹汉法等.整体柱制备技术的新进展及其在蛋白质组学中的应用[J].色谱,2009,27(5):526-536.
    [17]Kubin M, Spacek P, Chromece.R. Gel permeation chromatography on porous poly (ethylene glycol methacrylate) [J]. Collect Czech Chem Commun,1967,32 (11): 3881-3887.
    [18]Liao J L, Chen N, Ericson C. Preparation of continuous beds derivatized with one-step alkyl and sulfonate groups for capillary electrochromatography [J]. Anal. Chem.,1996,68 (19):3468-3472.
    [19]Coufal P, Cihak M, SuchankovaJ. Methacrylate monolithic columns of 320μ m ID for capillary liquid chromatography [J]. J. Chromatogr. A,2002,946 (1-2): 99-106.
    [20]Lee D, Svec F, Frechet J M J. Photopolymerized monolithic capillary columns for rapid micro high-performance liquid chromatographic separation of proteins [J]. J. Chromatogr. A,2004,1051 (1-2):53-60.
    [21]Holdsvendova P, Coufal P, Suchankova J. Methacrylate monolithic columns for capillary liquid chromatography polymerized using ammonium peroxodisulfate as initiator [J]. J. Sep. Sci.,2003,26 (18):1623-1628.
    [22]Svec F, Frechet J M J. "Molded" rods of macroporous polymer for preparative separations of biological products [J]. Biotechnol. Bioeng.,1995,48 (5):476-480.
    [23]Mallik R, Tao J, Hage D S. High-performance affinity monolith chromatography: Development and evaluation of human serum albumin columns [J]. Anal.Chem.,2004, 76 (23):7013-7022.
    [24]Vaz F A S, de Castro P M, Molina C. External polyacrylate-coating as alternative material for preparation of photopolymerized sol-gel monolithic column [J]. Talanta, 2008,76(1):226-229.
    [25]Wang Q C, Svec F, Frechet J M J. Macroporous polymeric stationary-phase rod as continuous separation medium for reversed-phase chromatography [J]. Anal.Chem., 1993,65 (17):2243-2248.
    [26]Zhang J, Wu S L, Kim J. Ultratrace liquid chromatography/mass spectrometry analysis of large peptides with post-translational modifications using narrow-bore polystyrene-divinylbenzene) monolithic columns and extended range proteomic analysis [J]. J. Chromatogr. A,2007,1154 (1-2):295-307.
    [27]Gusev I, Huang X, Horvath C. Capillary columns with in situ formed porous monolithic packing for micro high-performance liquid chromatography and capillary electrochromatography [J]. J. Chromatogr. A,1999,855 (1):273-290.
    [28]Minakuchi H, Nakanishi K, Soga N. Effect of skeleton size on the performance of octadecylsilylated continuous porous silica columns in reversed-phase liquid chromatography [J]. J. Chromatogr. A,1997,762 (1-2):135-146.
    [29]Yan L J, Zhang Q H, Zhang W B. Hybrid organic-inorganic phenyl monolithic column for capillary electrochromatography [J]. Electrophoresis,2005,26 (15): 2935-2941.
    [30]Knox J H, Grant I H. Electrochromatography in packed tubes using 1.5 to 50 μm silica gels and ODS bonded silica gels [J]. Chromatographia,1991,32 (7-8):317-328.
    [31]Asiaie R, Huang X, Farnan D. Sintered octadecylsilica as monolithic column packing in capillary electrochromatography and micro high-performance liquid chromatography [J]. J. Chromatogr. A,1998,806 (2):251-263.
    [32]Dulay M T, Kulkarni R P, Zare R N. Preparation and characterization of monolithic porous capillary columns loaded with chromatographic particles [J]. Anal. Chem.,1998,70 (23):5103-5107.
    [33]Chirica G, Remcho V T. Silicate entrapped columns-new columns designed for capillary electrochromatography [J]. Electrophoresis,1999,20 (1):50-56.
    [34]Tang Q L, Xin B M, Lee M L. Monolithic columns containing sol-gel bonded octadecylsilica for capillary electrochromatography [J]. J. Chromatogr. A,1999,837 (1-2):35-50.
    [35]Tang Q L, Wu N J, Lee M L. Continuous bed columns containing sol-gel bonded large-pore octadecylsilica for capillary electrochromatography [J]. J.Microcol.Sep., 1999,11 (7):550-561.
    [36]Tang Q L, Lee M L. Capillary electrochromatography using continuous-bed columns of sol-gel bonded silica particles with mixed-mode octadecyl and propylsulfonic acid functional groups [J]. J. Chromatogr. A,2000,887 (1-2):265-275.
    [37]李振莹等.分子印迹液相色谱整体柱[J].化学进展,2008,20(5):747-753.
    [38]Matsui J, Kato T, Takeuchi T. Molecular recognition in continuous polymer rods prepared by a molecular imprinting technique [J]. Anal.Chem.,1993,65 (17): 2223-2224.
    [39]Qin F, Xie C H, Yu Z Y. Monolithic enantiomer-selective stationary phases for capillary electrochromatography [J]. J. Sep. Sci.,2006,29 (10):1332-1343.
    [40]尤慧艳等.毛细管电色谱柱制备技术的进展[J].色谱,2005,23(5):464-469.
    [41]刘照胜等.电色谱整体柱的研究进展[J].化学进展,2003,15(6):462-470.
    [42]Peters E C, Petro M, Svec F. Molded rigid polymer monoliths as separation media for capillary electrochromatography.2. Effect of chromatographic conditions on the separation [J]. Anal. Chem.,1998,70 (11):2296-2302.
    [43]Minakuchi H, Nakanishi K, Soga N. Effect of domain size on the performance of octadecylsilylated continuous porous silica columns in reversed-phase liquid chromatography [J]. J. Chromatogr. A,1998,797 (1-2):121-131.
    [44]Ericson C, Liao J L, Nakazato K. Preparation of continuous beds for electrochromatography and reversed-phase liquid chromatography of low-molecular-mass compounds [J]. J. Chromatogr. A,1997,767 (1-2):33-41.
    [45]Peters E C, Lewandowski K, Petro M. Chiral electrochromatography with a 'moulded' rigid monolithic capillary column [J]. Anal.Commun.,1998,35 (3):83-86.
    [46]Seubert A, Klingenberg A. Sulfoacylated macroporous polystyrene-divinylbenzene:a new type of cation exchanger for the analysis of multivalent metal cations [J]. J. Chromatogr. A,1997,782 (2):149-157.
    [47]Sykora D, Svec F, Frechet J M J. Separation of oligonucleotides on novel monolithic columns with ion-exchange functional surfaces [J]. J. Chromatogr. A,1999, 852(1):297-304.
    [48]Fu H J, Xie C H, Dong J. Monolithic column with zwitterionic stationary phase for capillary electrochromatography [J]. Anal. Chem.,2004,76 (16):4866-4874.
    [49]Bedair M, El Rassi Z. Capillary electrochromatography with monolithic stationary phases-Ⅱ. Preparation of cationic stearyl-acrylate monoliths and their electrochromatographic characterization [J]. J. Chromatogr. A,2003,1013 (1-2): 35-45.
    [50]Xie S F, Svec F, Frechet J M J. Rigid porous polyacrylamide-based monolithic columns containing butyl methacrylate as a separation medium for the rapid hydrophobic interaction chromatography of proteins [J]. J. Chromatogr. A,1997,775 (1-2):65-72.
    [51]Hofstetter H, Hofstetter O, Schurig V. Enantiomer separation using BSA as chiral stationary phase in affinity OTEC and OTLC [J]. J. Microcol. Sep.,1998,10 (3): 287-291.
    [52]Bedair M, El Rassi Z. Affinity chromatography with monolithic capillary columns I. Polymethacrylate monoliths with immobilized mannan for the separation of mannose-binding proteins by capillary electrochromatography and nano-scale liquid chromatography [J]. J. Chromatogr. A,2004,1044 (1-2):177-186.
    [53]Wang Q C, Svec F, Frechet J M J. Macroporous polymeric stationary-phase rod as continuous separation media for reversed-phase chromatography [J]. Anal. Chem., 1993,65 (17):2243-2248.
    [54]Wienkoop S, Glinski M, Tanaka N. Linking protein fractionation with multidimensional monolithic reversed-phase peptide chromatography/mass spectrometry enhances protein identification from complex mixtures even in the presence of abundant proteins [J]. Rapid Commun. Mass Spectrom.,2004,18 (6): 643-650.
    [55]Wienkoop S, Larrainzar E, Niemann M. Stable isotope-free quantitative shotgun proteomics combined with sample pattern recognition for rapid diagnostics [J]. J. Sep. Sci.,2006,29 (18):2793-2801.
    [56]Luo Q Z, Shen Y F, Hixson K K. Preparation of 20 μm i.d. silica-based monolithic columns and their performance for proteomics analyses [J]. Anal. Chem., 2005,77 (15):5028-5035.
    [57]Xie C H, YeML, Jiang X G. Octadecylated silica monolith capillary column with integrated nanoelectrospray ionization emitter for highly efficient proteome analysis [J]. Mol. Cell. Proteomics,2006,5 (3):454-461.
    [58]Premstaller A, Oberacher H, Walcher W. High-performance liquid chromatography-electrospray ionization mass spectrometry using monolithic capillary columns for proteomic studies [J]. Anal. Chem.,2001,73 (11):2390-2396.
    [59]Ivanov A R, Zang L, Karger B L. Low-attomole electrospray ionization MS and MS/MS analysis of protein tryptic digests using 20um i.d. polystyrene-divinylbenzene monolithic capillary columns [J]. Anal. Chem.,2003,75 (20):5306-5316.
    [60]Marcus K, Schafer H, Klaus S. A new fast method for nanoLC-MALDI-TOF/TOF-MS analysis using monolithic columns for peptide preconcentration and separation in proteomic studies [J]. J. Proteome Res.,2007,6 (2): 636-643.
    [61]Xie S, Allington R W, Svec F. Rapid reversed-phase separation of proteins and peptides using optimized 'moulded' monolithic poly(styrene-co-divinylbenzene) columns [J]. J. Chromatogr. A,1999,865 (1-2):169-174.
    [62]Wang Q C, Svec F, Frechet J M J. Reversed-phase chromatography of small molecules and peptides on a continuous rod of macroporous poly(styrene-co-divinylbenzene) [J]. J. Chromatogr. A,1994,669 (1-2):230-235.
    [63]Premstaller A, Oberacher H, Huber C G. High-performance liquid chromatography-electrospray ionization mass spectrometry of single- and double-stranded nucleic acids using monolithic capillary columns [J]. Anal. Chem., 2000,72 (18):4386-4393.
    [64]Oberacher H, Huber C G. Capillary monoliths for the analysis of nucleic acids by high-performance liquid chromatography-electrospray ionization mass spectrometry [J]. Trends Anal.Chem.,2002,21 (3):166-174.
    [65]Jiang X G, Dong J, Wang F J. Automation of nanoflow liquid chromatography-tandem mass spectrometry for proteome and peptide profiling analysis by using a monolithic analytical capillary column [J]. Electrophoresis,2008, 29(8):1612-1618.
    [66]Wang F J, Ye M L, Dong J. Improvement of performance in label-free quantitative proteome analysis with monolithic electrospray ionization emitter [J]. J. Sep. Sci.,2008,31 (14):2589-2597.
    [67]Wang F J, Dong J, Jiang X G. Capillary trap column with strong cation-exchange monolith for automated shotgun proteome analysis [J]. Anal. Chem.,2007,79 (17): 6599-6606.
    [68]Schley C, Swart R, Huber C G. Capillary scale monolithic trap column for desalting and preconcentration of peptides and proteins in one-and two-dimensional separations [J]. J. Chromatogr. A,2006,1136 (2):210-220.
    [69]Gu X, Wang Y, Zhang X M. Large-bore particle-entrapped monolithic precolumns prepared by a sol-gel method for on-line peptides trapping and preconcentration in multidimensional liquid chromatography system for proteome analysis [J]. J. Chromatogr. A,2005,1072 (2):223-232.
    [70]Guan X, Yan G Q, Gao M X. Intact-protein trapping columns for proteomic analysis in capillary high-performance liquid chromatography [J]. J. Chromatogr. A, 2010,1217 (44):6875-6881.
    [71]Feng S, Yang N, Pennathur S. Enrichment of Glycoproteins using Nanoscale Chelating Concanavalin A Monolithic Capillary Chromatography [J]. Anal. Chem., 2009,81 (10):3776-3783.
    [72]Feng S, Pan C S, Jiang X G. Fe3+ immobilized metal affinity chromatography with silica monolithic capillary column for phosphoproteome analysis [J]. Proteomics, 2007,7 (3):351-360.
    [73]Feng S, Ye M L, Zhou H J. Immobilized zirconium ion affinity chromatography for specific enrichment of phosphopeptides in phosphoproteome analysis [J]. Mol. Cell. Proteomics,2007,6 (9):1656-1665.
    [74]Petro M, Svec F, Frechet J M J. Immobilization of trypsin onto "molded" macroporous poly(glycidyl methacrylate-co-ethylene dimethacrylate) rods and use of the conjugates as bioreactors and for affinity chromatography [J]. Biotechnol. Bioeng., 1996,49 (4):355-363.
    [75]Calleri E, Temporini C, Perani E. Development of a bioreactor based on trypsin immobilized on monolithic support for the on-line digestion and identification of proteins [J]. J. Chromatogr. A,2004,1045 (1-2):99-109.
    [76]Calleri E, Temporini C, Perani E. Trypsin-based monolithic bioreactor coupled on-line with LC/MS/MS system for protein digestion and variant identification in standard solutions and serum samples [J]. J. Proteome Res.,2005,4 (2):481-490.
    [77]Palm A K, Novotny M V. Analytical characterization of a facile porous polymer monolithic trypsin microreactor enabling peptide mass mapping using mass spectrometry [J]. Rapid Commun. Mass Spectrom.,2004,18 (12):1374-1382.
    [78]Krenkova J, Bilkova Z, Foret F. Characterization of a monolithic immobilized trypsin microreactor with on-line coupling to ESI-MS [J]. J. Sep. Sci.,2005,28 (14): 1675-1684.
    [79]Duan J C, Sun L L, Liang Z. Rapid protein digestion and identification using monolithic enzymatic microreactor coupled with nano-liquid chromatography-electro spray ionization mass spectrometry [J]. J. Chromatogr. A,2006,1106 (1-2):165-174.
    [80]Gao M X, Zhang P, Hong G F. Novel monolithic enzymatic microreactor based on single-enzyme nanoparticles for highly efficient proteolysis and its application in multidimensional liquid chromatography [J]. J. Chromatogr. A,2009,1216 (44): 7472-7477.
    [81]Feng S, Ye M L, Jiang X G. Coupling the immobilized trypsin microreactor of monolithic capillary with mu RPLC-MS/MS for shotgun proteome analysis [J]. J. Proteome Res.,2006,5 (2):422-428.
    [82]Zhang K, Wu S, Tang X T. A bifunctional monolithic column for combined protein preconcentration and digestion for high throughput proteomics research [J]. J. Chromatogr. B,2007,849 (1-2):223-230.
    [83]Giddings J C. Concepts and comparisons in multidimensional separation [J]. J.High Resolut.Chromatogr.Commun.,1987,10 (5):319-323.
    [84]Wang H, Hanash S. Multi-dimensional liquid phase based separations in proteomics [J]. J. Chromatogr. B,2003,787 (1):11-18.
    [85]Goshe M B, Veenstra T D, Panisko E A. Phosphoprotein isotope-coded affinity tags:Application to the enrichment and identification of low-abundance phosphoproteins [J]. Anal.Chem.,2002,74 (3):607-616.
    [86]Wall D B, Lubman D M, Flynn S J. Rapid profiling of induced proteins in bacteria using MALDI-TOF mass spectrometric detection of nonporous RP HPLC-separated whole cell lysates [J]. Anal.Chem.,1999,71 (17):3894-3900.
    [87]MacCoss M J, McDonald W H, Saraf A. Shotgun identification of protein modifications from protein complexes and lens tissue [J]. Proc. Natl. Acad. Sci. U. S. A.,2002,99 (12):7900-7905.
    [88]Bushey M M, Jorgenson J W. Automated instrumentation for comprehensive two-dimensional high-performance liquid chromatography of proteins [J]. Anal.Chem.,1990,62 (2):161-167.
    [89]Holland H A, Jorgenson J W. Separation of Nanoliter Samples of Biological Amines by a Comprehensive Two-Dimensional Microcolumn Liquid Chromatography System [J]. Anal.Chem.,1995,67 (18):3275-3283.
    [90]Opiteck G J, Lewis K C, Jorgenson J W. Comprehensive on-line LC/LC/MS of proteins [J]. Anal.Chem.,1997,69 (8):1518-1524.
    [91]Wagner K, Miliotis T, Marko-Varga G. An automated on-line multidimensional HPLC system for protein and peptide mapping with integrated sample preparation [J]. Anal. Chem.,2002,74 (4):809-820.
    [92]Bushey M M, Jorgenson J W. Automated instrumentation for comprehensive two-dimensional high-performance liquid-chromatography of proteins [J]. Anal. Chem.,1990,62 (2):161-167.
    [93]Opiteck G J, Jorgenson J W, Anderegg R J. Two-dimensional SEC/RPLC coupled to mass spectrometry for the analysis of peptides [J]. Anal.Chem.,1997,69 (13):2283-2291.
    [94]Link A J, Eng J, Schieltz D M. Direct analysis of protein complexes using mass spectrometry [J]. Nat. Biotechnol.,1999,17 (7):676-682.
    [95]Washburn M P, Wolters D, Yates J R. Large-scale analysis of the yeast proteome by multidimensional protein identification technology [J]. Nat. Biotechnol.,2001,19 (3):242-247.
    [96]Wolters D A, Washburn M P, Yates J R. An automated multidimensional protein identification technology for shotgun proteomics [J]. Anal. Chem.,2001,73 (23): 5683-5690.
    [97]Washburn M P, Ulaszek R, Deciu C. Analysis of quantitative proteomic data generated via multidimensional protein identification technology [J]. Anal.Chem., 2002,74(7):1650-1657.
    [98]Shen Y F, Jacobs J M, Camp D G. Ultra-high-efficiency strong cation exchange LC/RPLC/MS/MS for high dynamic range characterization of the human plasma proteome [J]. Anal.Chem.,2004,76 (4):1134-1144.
    [99]Premstaller A, Oefner P J, Oberacher H. Capillary array high-performance liquid chromatography of nucleic acids and proteins [J]. Anal.Chem.,2002,74 (18): 4688-4693.
    [100]Premstaller A, Oberacher H, RickertA. Multiplex analysis of single-nucleotide extension products on a 16-capillary, denaturing, high-performance liquid chromatography array [J]. Genomics,2002,79 (6):793-798.
    [101]Liu C L, Zhang X M. Multidimensional capillary array liquid chromatography and matrix-assisted laser desorption/ionization tandem mass spectrometry for high-throughput proteomic analysis [J]. J. Chromatogr. A,2007,1139 (2):191-198.
    [102]Feng B B, Patel A H, Keller P M. Fast characterization of intact proteins using a high-throughput eight-channel parallel liquid chromatography mass spectrometry system [J]. Rapid Commun. Mass Spectrom.,2001,15 (10):821-826.
    [103]Fang L, Cournoyer J, Demee M. High-throughput liquid chromatography ultraviolet/mass spectrometric analysis of combinatorial libraries using an eight-channel multiplexed electrospray time-of-flight mass spectrometer [J]. Rapid Commun. Mass Spectrom.,2002,16(15):1440-1447.
    [104]Wu J T. The development of a staggered parallel separation liquid chromatography/tandem mass spectrometry system with on-line extraction for high-throughout screening of drug candidates in biological fluids [J]. Rapid Commun. Mass Spectrom.,2001,15 (2):73-81.
    [105]Van Pelt C K, Corso T N, Schultz G A. A four-column parallel chromatography system for isocratic or gradient LC/MS analyses [J]. Anal.Chem.,2001,73 (3): 582-588.
    [106]Lee H, Griffin T J, Gygi S P. Development of a multiplexed microcapillary liquid chromatography system for high-throughput proteome analysis [J]. Anal. Chem.,2002,74 (17):4353-4360.
    [107]Gu X, Deng C H, Yan G Q. Capillary array reversed-phase liquid chromatography-based multidimensional separation system coupled with MALDI-TOF-TOF-MS detection for high-throughput proteome analysis [J]. J. Proteome Res.,2006,5 (11):3186-3196.
    [108]Fields S, Song O K. A novel genetic system to detect protein protein interactions [J]. Nature,1989,340 (6230):245-246.
    [109]Uetz P, Giot L, Cagney G. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae [J]. Nature,2000,403 (6770):623-627.
    [110]Ito T, Chiba T, Ozawa R. A comprehensive two-hybrid analysis to explore the yeast protein interactome [J]. Proc. Natl. Acad. Sci. U. S. A.,2001,98 (8):4569-4574.
    [111]McMahon S B, Van Buskirk H A, Dugan K A. The novel ATM-related protein TRRAP is an essential cofactor for the c-Myc and E2F oncoproteins [J]. Cell,1998, 94 (3):363-374.
    [112]Dey D, Bochkariov D E, Jokhadze G G. Cross-linking of selected residues in the N- and C-terminal domains of Escherichia coli protein L7/L12 to other ribosomal proteins and the effect of elongation factor Tu [J]. J. Biol. Chem.,1998,273 (3): 1670-1676.
    [113]Rigaut G, Shevchenko A, Rutz B. A generic protein purification method for protein complex characterization and proteome exploration [J]. Nat. Biotechnol.,1999, 17(10):1030-1032.
    [114]Bauer A, Kuster B. Affinity purification-mass spectrometry-Powerful tools for the characterization of protein complexes [J]. Eur.J.Biochem.,2003,270 (4):570-578.
    [115]Gavin A C, Bosche M, Krause R. Functional organization of the yeast proteome by systematic analysis of protein complexes [J]. Nature,2002,415 (6868):141-147.
    [116]Forler D, Kocher T, Rode M. An efficient protein complex purification method for functional proteomics in higher eukaryotes [J]. Nat. Biotechnol.,2003,21 (1): 89-92.
    [117]Biener E, Charlier M, Ramanujan V K. Quantitative FRET imaging of leptin receptor oligomerization kinetics in single cells [J]. Biol. Cell,2005,97 (12): 905-919.
    [118]Yamamoto T, Lamoureux J, Ryan R O. Characterization of low density lipoprotein receptor ligand interactions by fluorescence resonance energy transfer [J]. J. Lipid Res.,2006,47 (5):1091-1096.
    [119]Gottschalk M, Bach A, Hansen J L. Detecting Protein-Protein Interactions in Living Cells:Development of a Bioluminescence Resonance Energy Transfer Assay to Evaluate the PSD-95/NMDA Receptor Interaction [J]. Neurochem. Res.,2009,34 (10):1729-1737.
    [120]Jung S O, Ro H S, Kho B H. Surface plasmon resonance imaging-based protein arrays for high-throughput screening of protein-protein interaction inhibitors [J]. Proteomics,2005,5 (17):4427-4431.
    [121]Remy I, Campbell-Valois F X, Michnick S W. Detection of protein-protein interactions using a simple survival protein-fragment complementation assay based on the enzyme dihydrofolate reductase [J]. Nat. Protoc.,2007,2 (9):2120-2125.
    [122]Hu C D, Chinenov Y, Kerppola T K. Visualization of interactions among bZip and Rel family proteins in living cells using bimolecular fluorescence complementation [J]. Mol. Cell,2002,9 (4):789-798.
    [123]Hu C D, Kerppola T K. Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis [J]. Nat. Biotechnol.,2003,21 (5):539-545.
    [124]Selbach M, Mann M. Protein interaction screening by quantitative immunoprecipitation combined with knockdown (QUICK) [J]. Nat. Methods,2006,3 (12):981-983.
    [125]Tomizaki K, Usui K, Mihara H. Protein-protein interactions and selection: array-based techniques for screening disease-associated biomarkers in predictive/early diagnosis [J]. FEBS J.,2010,277 (9):1996-2005.
    [126]Fabre S, Guisset C, Tatem L. Protein biochip array technology to monitor rituximab in rheumatoid arthritis [J]. Clin. Exp. Immunol.,2009,155 (3):395-402.
    [127]Lee Y, Kang D K, Chang S I. High-throughput screening of novel peptide inhibitors of an integrin receptor from the hexapeptide library by using a protein microarray chip [J]. J. Biomol. Screen,2004,9 (8):687-694.
    [128]Zhu H, Snyder M. Protein chip technology [J]. Curr. Opin. Chem. Biol.,2003,7 (1):55-63.
    [129]Sydor J R, Scalf M, Sideris S. Chip-based analysis of protein-protein interactions by fluorescence detection and on-chip immunoprecipitation combined with μLC-MS/MS analysis [J]. Anal.Chem.,2003,75 (22):6163-6170.
    [130]Zhu H, Bilgin M, Bangham R. Global analysis of protein activities using proteome chips [J]. Science,2001,293 (5537):2101-2105.
    [1]Tang J, Gao M X, Deng C H. Recent development of multi-dimensional chromatography strategies in proteome research [J]. J. Chromatogr. B,2008,866 (1-2):123-132.
    [2]Mitulovic G, Stingl C, Smoluch M. Automated, on-line two-dimensional nano liquid chromatography tandem mass spectrometry for rapid analysis of complex protein digests [J]. Proteomics,2004,4 (9):2545-2557.
    [3]Xiang R, Shi Y, Dillon D A.2D LC/MS analysis of membrane proteins from breast cancer cell lines MCF7 and BT474 [J]. J. Proteome Res.,2004,3 (6): 1278-1283.
    [4]Collier T S, Hawkridge A M, Georgianna D R. Top-down identification and quantification of stable isotope labeled proteins from Aspergillus flavus using online nano-flow reversed-phase liquid chromatography coupled to a LTQ-FTICR mass spectrometer [J]. Anal. Chem.,2008,80 (13):4994-5001.
    [5]Du Y, Parks B A, Sohn S. Top-down approaches for measuring expression ratios of intact yeast proteins using Fourier transform mass spectrometry [J]. Anal. Chem., 2006,78 (3):686-694.
    [6]Tran J C, Doucette A A. Multiplexed Size Separation of Intact Proteins in Solution Phase for Mass Spectrometry [J]. Anal. Chem.,2009,81 (15):6201-6209.
    [7]Karty J A, Running W E, Reilly J P. Two dimensional liquid phase separations of proteins using online fractionation and concentration between chromatographic dimensions [J]. J. Chromatogr. B,2007,847 (2):103-113.
    [8]Liu H J, Berger S J, Chakraborty A B. Multidimensional chromatography coupled to electrospray ionization time-of-flight mass spectrometry as an alternative to two-dimensional gels for the identification and analysis of complex mixtures of intact proteins [J]. J. Chromatogr. B,2002,782 (1-2):267-289.
    [9]Minakuchi H, Ishizuka N, Nakanishi K. Performance of an octadecylsilylated continuous porous silica column in polypeptide separations [J]. J. Chromatogr. A, 1998,828 (1-2):83-90.
    [10]Nakanishi K, Takahashi R, Nagakane T. Formation of hierarchical pore structure in silica gel [J]. J. Sol-Gel Sci. Technol.,2000,17(3):191-210.
    [11]Ishizuka N, Kobayashi H, Minakuchi H. Monolithic silica columns for high-efficiency separations by high-performance liquid chromatography [J]. J. Chromatogr. A,2002,960 (1-2):85-96.
    [12]Schweitz L, Andersson L I, Nilsson S. Capillary electrochromatography with molecular imprint-based selectivity for enantiomer separation of local anaesthetics [J]. J. Chromatogr. A,1997,792 (1-2):401-409.
    [13]Svec F. Organic polymer monoliths as stationary phases for capillary HPLC [J]. J. Sep. Sci.,2004,27 (17-18):1419-1430.
    [14]Preinerstorfer B, Lindner W, Lammerhofer M. Polymethacrylate-type monoliths functionalized with chiral amino phosphonic acid-derived strong cation exchange moieties for enantioselective nonaqueous capillary electrochromatography and investigation of the chemical composition of the monolithic polymer [J]. Electrophoresis,2005,26 (10):2005-2018.
    [15]Hosoya K, Hira N, Yamamoto K. High-performance polymer-based monolithic capillary column [J]. Anal. Chem.,2006,78 (16):5729-5735.
    [16]Hemstrom P, Nordborg A, Irgum K. Polymer-based monolithic microcolumns for hydrophobic interaction chromatography of proteins [J]. J. Sep. Sci.,2006,29 (1): 25-32.
    [17]Guiochon G. Monolithic columns in high-performance liquid chromatography [J]. J. Chromatogr. A,2007,1168 (1-2):101-168.
    [18]Tang Q L, Lee M L. Column technology for capillary electrochromatography [J]. Trac-Trends Anal. Chem.,2000,19 (11):648-663.
    [19]Nakanishi K, Minakuchi H, Soga N. Double pore silica gel monolith applied to liquid chromatography [J]. J. Sol-Gel Sci. Technol.,1997,8 (1-3):547-552.
    [20]Tanaka N, Kobayashi H, Ishizuka N. Monolithic silica columns for high-efficiency chromatographic separations [J]. J. Chromatogr. A,2002,965 (1-2): 35-49.
    [21]Motokawa M, Ohira M, Minakuchi H. Performance of octadecylsilylated monolithic silica capillary columns of 530 mu m inner diameter in HPLC [J]. J. Sep. Sci.,2006,29 (16):2471-2477.
    [22]Ikegami T, Horie K, Jaafar J. Preparation of highly efficient monolithic silica capillary columns for the separations in weak cation-exchange and HILIC modes [J]. J. Biochem. Biophys. Methods,2007,70 (1):31-37.
    [23]Lim L W, Hirose K, Tatsumi S. Sample enrichment by using monolithic precolumns in microcolumn liquid chromatography [J]. J. Chromatogr. A,2004,1033 (2):205-212.
    [24]Lim L W, Okouchi Y, Takeuchi T. On-line preconcentration of trace carcinogenic polycyclic aromatic hydrocarbons (PAHs) in microcolumn liquid chromatography via large volume injection [J]. Talanta,2007,72 (5):1600-1608.
    [25]Wang F J, Dong J, Jiang X G. Capillary trap column with strong cation-exchange monolith for automated shotgun proteome analysis [J]. Anal. Chem.,2007,79 (17): 6599-6606.
    [26]Schley C, Swart R, Huber C G. Capillary scale monolithic trap column for desalting and preconcentration of peptides and proteins in one-and two-dimensional separations [J]. J. Chromatogr. A,2006,1136 (2):210-220.
    [27]Marcus K, Schafer H, Klaus S. A new fast method for nanoLC-MALDI-TOF/TOF-MS analysis using monolithic columns for peptide preconcentration and separation in proteomic studies [J]. J. Proteome Res.,2007,6: 636-643.
    [28]Gu X, Wang Y, Zhang X M. Large-bore particle-entrapped monolithic precolumns prepared by a sol-gel method for on-line peptides trapping and preconcentration in multidimensional liquid chromatography system for proteome analysis [J]. J. Chromatogr. A,2005,1072 (2):223-232.
    [29]Asiaie R, Huang X, Farnan D. Sintered octadecylsilica as monolithic column packing in capillary electrochromatography and micro high-performance liquid chromatography [J]. J. Chromatogr. A,1998,806 (2):251-263.
    [30]Dulay M T, Kulkarni R P, Zare R N. Preparation and characterization of monolithic porous capillary columns loaded with chromatographic particles [J]. Anal. Chem.,1998,70 (23):5103-5107.
    [31]Ratnayake C K, Oh C S, Henry M P. Characteristics of particle-loaded monolithic sol-gel columns for capillary electrochromatography-Ⅰ. Structural, electrical and band-broadening properties [J]. J. Chromatogr. A,2000,887 (1-2): 277-285.
    [32]Tang Q L, Lee M L. Capillary electrochromatography using continuous-bed columns of sol-gel bonded silica particles with mixed-mode octadecyl and propylsulfonic acid functional groups [J]. J. Chromatogr. A,2000,887 (1-2): 265-275.
    [33]Qu Q S. Tang X Q, Wang C Y. Preparation of particle-fixed silica monoliths used in capillary electrochromatography [J]. J. Sep. Sci.,2006,29 (13):2098-2102.
    [34]Bakry R, Stoggl W M, Hochleitner E O. Silica particles encapsulated poly(styrene-divinylbenzene) monolithic stationary phases for mu-high performance liquid chromatography [J]. J. Chromatogr. A,2006,1132 (1-2):183-189.
    [35]Qu Y, Moons L, Vandesande F. Determination of serotonin, catecholamines and their metabolites by direct injection of supernatants from chicken brain tissue homogenate using liquid chromatography with electrochemical detection [J]. J. Chromatogr. B,1997,704 (1-2):351-358.
    [36]Zhang X M, Huang S. Single step on-column frit making for capillary high-performance liquid chromatography using sol-gel technology [J]. J. Chromatogr. A,2001,910(1):13-18.
    [37]Gu X, Deng C H, Yan G Q. Capillary array reversed-phase liquid chromatography-based multidimensional separation system coupled with MALDI-TOF-TOF-MS detection for high-throughput proteome analysis [J]. J. Proteome Res.,2006,5 (11):3186-3196.
    [1]Mitulovic G, Stingl C, Smoluch M. Automated, on-line two-dimensional nano liquid chromatography tandem mass spectrometry for rapid analysis of complex protein digests [J]. Proteomics,2004,4 (9):2545-2557.
    [2]Xiang R, Shi Y, Dillon D A.2D LC/MS analysis of membrane proteins from breast cancer cell lines MCF7 and BT474 [J]. J. Proteome Res.,2004,3 (6): 1278-1283.
    [3]Wang H, Hanash S. Intact-protein based sample preparation strategies for proteome analysis in combination with mass spectrometry [J]. Mass Spectrom. Rev. 2005,24 (3):413-426.
    [4]Gygi S P, Corthals G L, Zhang Y. Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology [J]. Proc. Natl. Acad. Sci. U. S. A.,2000,97 (17):9390-9395.
    [5]Mann M, Hendrickson R C, Pandey A. Analysis of proteins and proteomes by mass spectrometry [J]. Annu. Rev. Biochem.,2001,70:437-473.
    [6]Cho K, Kim J Y, Lee J H. High throughput analysis of proteome by multidimensional liquid chromatography with monolithic column and MALDI mass spectrometry [J]. Mol. Cell. Proteomics,2004,3 (10):S280-S280.
    [7]Jin W H, Dai J, Li S J. Human plasma proteome analysis by multidimensional chromatography prefractionation and linear ion trap mass spectrometry identification [J]. J. Proteome Res.,2005,4 (2):613-619.
    [8]Zhang Y, Shi R, Meng Q. A new strategy of multidimensional liquid chromatography coupled with ES1-MS/MS for profiling mitochondria Proteome of human fetal liver [J]. Mol. Cell. Proteomics,2004,3 (10):S312-S312.
    [9]Peng J M, Elias J E, Thoreen C C. Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis:The yeast proteome [J]. J. Proteome Res.,2003,2 (1): 43-50.
    [10]Gao M X, Deng C H, Yu W J. Large scale depletion of the high-abundance proteins and analysis of middle- and low-abundance proteins in human liver proteome by multidimensional liquid chromatography [J]. Proteomics,2008,8 (5):939-947.
    [11]Murphy R E, Schure M R, Foley J P. Effect of sampling rate on resolution in comprehensive two-dimensional liquid chromatography [J]. Anal.Chem.,1998,70 (8): 1585-1594.
    [12]Monnig C A, Jorgenson J W. On-column sample gating for high-speed capillary zone electrophoresis [J]. Anal.Chem.,1991,63 (8):802-807.
    [13]Premstaller A, Oefner P J, Oberacher H. Capillary array high-performance liquid chromatography of nucleic acids and proteins [J]. Anal.Chem.,2002,74 (18): 4688-4693.
    [14]Premstaller A, Oberacher H, Rickert A. Multiplex analysis of single-nucleotide extension products on a 16-capillary, denaturing, high-performance liquid chromatography array [J]. Genomics,2002,79 (6):793-798.
    [15]Lee H, Griffin T J, Gygi S P. Development of a multiplexed microcapillary liquid chromatography system for high-throughput proteome analysis [J]. Anal.Chem.,2002, 74 (17):4353-4360.
    [16]Gu X, Deng C H, Yan G Q. Capillary array reversed-phase liquid chromatography-based multidimensional separation system coupled with MALDI-TOF-TOF-MS detection for high-throughput proteome analysis [J]. J. Proteome Res.,2006,5 (11):3186-3196.
    [17]Yu W J, Li Y, Deng C H. Comprehensive two-dimensional separation in coupling of reversed-phase chromatography with capillary isoelectric focusing followed by MALDI-MS identification using on-target digestion for intact protein analysis [J]. Electrophoresis,2006,27 (11):2100-2110.
    [18]Zheng S P, Yoo C, Delmotte N. Monolithic column HPLC separation of intact proteins analyzed by LC-MALDI using on-plate digestion:an approach to integrate protein separation and identification [J]. Anal.Chem.,2006,78 (14):5198-5204.
    [19]Yoo C, Zhao J, Pal M. Automated integration of monolith-based protein separation with on-plate digestion for mass spectrometric analysis of esophageal adenocarcinorna human epithelial samples [J]. Electrophoresis,2006,27 (18): 3643-3651.
    [20]Li Y, Yan B, Deng C. On-plate digestion of proteins using novel trypsin-immobilized magnetic nanospheres for MALDI-TOF-MS analysis [J]. Proteomics,2007,7 (20):3661-3671.
    [21]Vitorino R, Guedes S, Tomer K. On-plate digestion using a commercial microfraction collector for nano-HPLC matrix-assisted laser desorption/ionization tandem time-of-flight protein analysis [J]. Anal. Biochem.,2008,380 (1):128-130.
    [22]Gao M X, Yu W J, Zhang Y. Integrated strong cation exchange/capillary reversed-phase liquid chromatography/on-target digestion coupled with mass spectrometry for identification of intact human liver tissue proteins [J]. Analyst,2008, 133(9):1261-1267.
    [1]Speers A E, Wu C C. Proteomics of integral membrane proteins-theory and application [J]. Chem. Rev.,2007,107 (8):3687-3714.
    [2]Fields S, Song O K. A novel genetic system to detect protein protein interactions [J]. Nature,1989,340 (6230):245-246.
    [3]Rual J F, Venkatesan K, Hao T. Towards a proteome-scale map of the human protein-protein interaction network [J]. Nature,2005,437 (7062):1173-1178.
    [4]Stelzl U, Worm U, Lalowski M. A human protein-protein interaction network:A resource for annotating the proteome [J]. Cell,2005,122 (6):957-968.
    [5]Uetz P, Hughes R E. Systematic and large-scale two hybrid screens [J]. Curr. Opin. Microbiol.,2000,3 (3):303-308.
    [6]Rigaut G, Shevchenko A, Rutz B. A generic protein purification method for protein complex characterization and proteome exploration [J]. Nat. Biotechnol.,1999, 17(10):1030-1032.
    [7]Volkel P, Le Faou P, Angrand P O. Interaction proteomics:characterization of protein complexes using tandem affinity purification-mass spectrometry [J]. Biochem. Soc. Trans.,2010,38:883-887.
    [8]Xu X L, Song Y, Li Y H. The tandem affinity purification method:An efficient system for protein complex purification and protein interaction identification [J]. Protein Expr. Purif,2010,72 (2):149-156.
    [9]Burckstummer T, Bennett K L, Preradovic A. An efficient tandem affinity purification procedure for interaction proteomics in mammalian cells [J]. Nat. Methods,2006,3 (12):1013-1019.
    [10]Vaquez-martin A, Colomer R, Menendez J A. Protein array technology to detect HER2 (erbB-2)-induced 'cytokine signature' in breast cancer [J]. Eur. J. Cancer,2007, 43(7):1117-1124.
    [11]Nishizuka S. Profiling cancer stem cells using protein array technology [J]. Eur. J. Cancer,2006,42 (9):1273-1282.
    [12]Jung S O, RoHS, Kho B H. Surface plasmon resonance imaging-based protein arrays for high-throughput screening of protein-protein interaction inhibitors [J]. Proteomics,2005,5 (17):4427-4431.
    [13]Sakanyan V. High-throughput and multiplexed protein array technology: protein-DNA and protein-protein interactions [J]. J. Chromatogr. B,2005,815 (1-2): 77-95.
    [14]石羽杰,王玮,霍克克.蛋白质芯片技术的新进展[J].科技导报,2005,23(9):59-62.
    [15]刘康栋,赵建龙.蛋白质芯片技术进展[J].中国生物工程杂志,2004,24(12):48-52.
    [16]MacBeath G, Schreiber S L. Printing proteins as microarrays for high-throughput function determination [J]. Science,2000,289 (5485):1760-1763.
    [17]Li Y, Yan B, Deng C H. Efficient on-chip proteolysis system based on functionalized magnetic silica microspheres [J]. Proteomics,2007,7 (14):2330-2339.
    [18]Kim K, Yu J, Min H. Online monitoring of immunoaffinity-based depletion of high-abundance blood proteins by UV spectrophotometry using enhanced green fluorescence protein and FITC-labeled human serum albumin [J]. Proteome Sci.,2010, 8.
    [19]Dang F Q, Chen Y. Capillary electrophoresis of FITC labeled amino acids with laser-induced fluorescence detection [J]. Sci. China Ser. B-Chem.,1999,42 (6): 663-669.
    [20]Wang L Y, Bao J, Wang L. One-pot synthesis and bioapplication of amine-functionalized magnetite nanoparticles and hollow nanospheres [J]. Chem.Eur.J.,2006,12 (24):6341-6347.
    [21]Zhang X M, Huang S. Single step on-column frit making for capillary high-performance liquid chromatography using sol-gel technology [J]. J. Chromatogr. A,2001,910(1):13-18.
    [22]Qian Tao M X G, Xiang Min Zhang. Solid-support fluorescent derivatization of picomoles of protein at low concentration with FITC [J]. Talanta,2011,84 (2): 457-461.
    [1]Hanash S. Disease proteomics [J]. Nature,2003,422 (6928):226-232.
    [2]Adkins J N, Varnum S M, Auberry K J. Toward a human blood serum proteome-Analysis by multidimensional separation coupled with mass spectrometry [J]. Mol. Cell. Proteomics,2002,1 (12):947-955.
    [3]Aebersold R, Mann M. Mass spectrometry-based proteomics [J]. Nature,2003, 422 (6928):198-207.
    [4]Cravatt B F, Simon G M, Yates J R. The biological impact of mass-spectrometry-based proteomics [J]. Nature,2007,450 (7172):991-1000.
    [5]Issaq H J, Veenstra T D. Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE):advances and perspectives [J]. Biotechniques 2008,44 (5):697-700.
    [6]Witzel K, Surabhi G K, Jyothsnakumari G. Quantitative proteome analysis of barley seeds using ruthenium(II)-tris-(bathophenanthroline-disulphonate) staining [J]. J. Proteome Res.,2007,6 (4):1325-1333.
    [7]Iliuk A, Galan J, Tao W A. Playing tag with quantitative proteomics [J]. Anal. Bioanal. Chem.,2009,393 (2):503-513.
    [8]Wang G H, Wu W W, Zeng W H. Label-free protein quantification using LC-coupled ion trap or FT mass spectrometry:Reproducibility, linearity, and application with complex proteomes [J]. J. Proteome Res.,2006,5 (5):1214-1223.
    [9]Zhu W H, Smith J W, Huang C M. Mass Spectrometry-Based Label-Free Quantitative Proteomics [J]. J. Biomed. Biotechnol.,2010.
    [10]Elte J W F, Blickle J F. Thiazolidinediones for the treatment of type 2 diabetes [J]. Eur. J. Intern. Med.,2007,18 (1):18-25.
    [11]Kahn S E, Hull R L, Utzschneider K M. Mechanisms linking obesity to insulin resistance and type 2 diabetes [J]. Nature,2006,444 (7121):840-846.
    [12]Liu H J, Finch J W, Luongo J A. Development of an online two-dimensional nano-scale liquid chromatography/mass spectrometry method for improved chromatographic performance and hydrophobic peptide recovery [J]. J. Chromatogr. A,2006,1135(1):43-51.
    [13]Lu P, Vogel C, Wang R. Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation [J]. Nat. Biotechnol.,2007,25 (1):117-124.
    [14]Vogel C, Marcotte E M. Calculating absolute and relative protein abundance from mass spectrometry-based protein expression data [J]. Nat. Protoc.,2008,3 (9): 1444-1451.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700