基于缺口管阵列技术的微流控非均相免疫分析系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
免疫分析是利用抗原和抗体之间的特异性相互作用对待测物进行检测的一种方法,具有很高的特异性和灵敏度,在临床检验、生化分析、环境监测、食品安全等领域的应用十分广泛。其中,非均相免疫分析,尤其是酶联免疫吸附测定法(Enzyme-linked immunosorbent assay,ELISA),是当前临床及实验室医学领域进行定量检测占主导地位的分析技术。然而,常规的免疫分析方法,特别是ELISA,孵育时间长,多采用手工操作,分析过程繁琐费时,试样和试剂的消耗量过大,限制了其进一步发展和实际应用。微流控学是上世纪九十年代发展起来的在微米级结构中操控纳升至皮升级流体的科学和技术。微流控分析系统由于其独特的微尺度效应,具有反应时间短、分析速度快、试剂和样品消耗少、易集成化和自动化等优点。将微流控分析技术与免疫分析结合,在微流控芯片的微通道内进行免疫分析操作,能有效降低系统的试样试剂消耗、提高分析速度和通量、实现分析系统的集成化和自动化。
     第一章对各种微流控免疫分析技术及其研究进展进行了综述,尤其对微流控非均相免疫分析方法及自动化的微流控非均相免疫分析系统的研究进展进行了重点介绍。
     第二章发展了一种基于毛细管和缺口管阵列技术的微流控非均相免疫分析系统。以缺口管阵列作为试样和试剂储液池,以毛细管阵列作为取样探针和免疫反应通道,以重力作为驱动力,采用直线滑台自动控制缺口管阵列的移动,实现多通道免疫反应操作的完全自动化。该系统被成功地应用于人IgG分析,在10min内同时完成了对9个IgG样品的同步分析。系统对IgG的检测限为1.0μg/mL,分析重现性为1.8%(RSD,n=9),每次测定试剂和试样消耗为1.1μL。该系统具有结构简单、液体操控自动化、试样和试剂消耗低、易于实现阵列化的特点,为临床检验分析的自动化及高通量化提供了一种新途径。
     第三章发展了一种基于缺口管阵列和微蠕动泵的聚二甲基硅氧烷(PDMS)免疫分析芯片。其中,建立了一个基于微型齿轮蠕动泵的液流驱动系统,具有结构简单、容易搭建、驱动可靠、流量可调(0.21-4.4μL/min)的优点。将蠕动泵与缺口管阵列配合,初步在PDMS芯片上实现多通道的人IgG的非均相免疫分析。系统对试样及试剂的消耗约0.4μL,对IgG的检测限为1.0μg/mL,可对5个样品进行同步分析,总分析时间约8 min。
Immunoassay is a well-established analysis technique with high specificity and sensitivity based on specific interaction between antigen and antibody,and has been widely used in clinical diagnosis,biochemical analysis,environment monitoring and food safety control.Heterogeneous immunoassay,especially enzyme-linked immunosorbent assay(ELISA),is the most important and widely-used quantitative method in the field of clinical medicine.However,in most of the traditional immunoassays,the operations are usually carried out manually,which are tedious and time-consuming,and the consumption for sample and reagent is among several hundreds of microliters.
     Microfluidics is the science and technology that manipulate small(nL-pL scale) amount of fluids inμm-scale channels and microfluidic systems.Microfluidic analytical systems have the advantages of fast analysis,low sample/reagent consumption and potential for integration and automation.The combination of microfluidic technique with immunoassay provides significant improvements in analysis speed and throughput,sample/reagent consumption,and integration and automation of the system.
     In chapter 1,the progress in microfluidic immunoassay systems,especially in automated heterogeneous immunoassay,is reviewed.
     In chapter 2,an automated microfluidic immunoassay system was developed based on capillary and slotted-vial arrays,in which fully automated operation for multi-step immunoassay was achieved.The system was applied in the immunoassay of human IgG.The assay for nine human IgG samples was achieved within 10 min. The limit of detection for IgG was 1.0μg/mL.The precision of the system was 1.8% (RSD,n=9).The sample and reagent consumption was 1.1μL for each cycle.
     In chapter 3,a microfluidic immunoassay system was developed based on slotted-vial array,microperistaltic pump and PDMS chip.The peristaltic pump with a micro-gear was used for liquid driving in six microchannels in PDMS chip,which had advantages of simple structure,ease of building,good reliability and adjustable flow rate range from 0.21μL/min to 4.4μL/min.The feasibility of the system was demonstrated in a preliminary immunoassay for human IgG.The assay for five IgG samples was achieved within 8 min.The sample/reagent consumption was only 0.4μL,and the limit of detection was 1.0μg/mL IgG.
引文
[1]鞠熀先,邱宗荫,丁世家等.生物分析化学.北京:科学出版社,2007.
    [2]Whitesides G M.The origins and the future of microfluidics.Nature 2006,442,368-373.
    [3]方肇伦等编著.微流控分析芯片.北京:科学出版社,2003.
    [4]贾宏新,吴志勇,方肇伦.微流控芯片免疫分析方法研究进展.分析化学2005,33,1489-1493.
    [5]王立凯,冯喜增.微流控芯片技术在生命科学研究中的应用.化学进展2005,17,482-498.
    [6]陶义训主编.免疫学和免疫学检验(第二版).北京:人民卫生出版社,1997.
    [7]Koutny L B,Schmalzing D,Taylor T A,Fuchs M.Microchip electrophoretic immunoassay for serum cortisol.Anal.Chem.1996,68,18-22.
    [8]Von Heeren F,Verpoorte E,Manz A,Thormann W.Micellar electrokinetic chromatography separations and analyses of biological samples on a cyclic planar microstructure.Anal.Chem.1996,68,2044-2053.
    [9]Chiem N,Harrison D J.Microchip-based capillary electrophoresis for immunoassays:analysis of monoclonal antibodies and theophylline.Anal.Chem.1997,69,373-379.
    [10]Schmalzing D,Koutny L B,Taylor T A,Nashabeh W,Fuchs M.Immunoassay for thyroxine(T4) in serum using capillary electrophoresis and micromachined devices.J.Chromatogr.B 1997,697,175-180.
    [11]Bromberg A,Mathies R A.Homogeneous immunoassay for detection of TNT and its analogues on a microfabricated capillary electrophoresis chip.Anal.Chem.2003,75,1188-1195.
    [12]Bromberg A,Mathies R A.Multichannel homogeneous immunoassay for detection of 2,4,6-trinitrotoluene(TNT) using a microfabricated capillary array electrophoresis chip.Electrophoresis 2004,25,1895-1900.
    [13]Lim T,Ohta H,Matsunaga T.Anal.Chem.2003,75,3316-3321.
    [14]Abad-Villar E M,Tanyanyiwa J,Fernandez-Abedul M T,Costa-Garcia A,Hauser P C.Detection of human immunoglobulin in microchip and conventional capillary electrophoresis with contactless conductivity measurements.Anal.Chem.2004,76,1282-1288.
    [15]Shin K-S,Kim Y-H,Min J-A,Kwak S-M,Kim S-K,Yang E-G,Park J-H,Ju B-K,Kim T-S,Kang J-Y.Miniaturized fluorescence detection chip for capillary electrophoresis immunoassay of agricultural herbicide atrazine.Anal.Chim.Acta 2006,573-574,164-171.
    [16]Chiem N H,Harrison D J.Microchip systems for immunoassay:an integrated immunoreactor with electrophoretic separation for serum theophylline determination. Clin. Chem. 1998, 44, 591-598.
    [17] Cheng S B, Skinner C D, Taylor J, Attiya S, Lee W E, Picelli G, Harrison D J. Development of a multichannel microfluidic analysis system employing affinity capillary electrophoresis for immunoassay. Anal. Chem. 2001, 73, 1472-1479.
    [18] Wang J, Ibanez A, Chatrathi M P, Escarpa A. Electrochemical enzyme immunoassays on microchip platforms. Anal. Chem. 2001, 73, 5323-5327.
    [19] Herr A E, Hatch A V, Throckmorton D J, Huu M T, Brennan J S, Giannobile W V, Singh A K. Microfluidic immunoassays as rapid saliva-based clinical diagnostics. PNAS. 2007, 104. 5268-5273.
    [20] Roper M G, Shackman J G, Dahlgren G M, Kennedy R T. Microfluidic chip for continuous monitoring of hormone secretion from live cells using an electrophoresis-based immunoassay. Anal. Chem. 2003, 75, 4711-4717.
    [21] Dishinger J F, Kennedy R T. Serial immunoassays in parallel on a microfluidic chip for monitoring hormone secretion from living cells. Anal. Chem. 2007, 79, 947-954.
    [22] Schult K, Katerkamp A, Trau D, Grawe F, Cammann K, Meusel M. Disposable optical sensor chip for medical diagnostics: new ways in bioanalysis. Anal. Chem. 1999,71,5430-5435.
    [23] Rossier J S, Girault H H. Enzyme linked immunosorbent assay on a microchip with electrochemical detection. Lab Chip 2001, 1, 153-157.
    [24] McDonald J C, Metallo S J, Whitesides G M. Fabrication of a configurable, single-use microfluidic device. Anal. Chem. 2001, 73, 5645-5650.
    [25] Juncker D, Schmid H, Drechsler U, Wolf H, Michel B, de Rooij N, Delamarche E. Autonomous microfluidic capillary systems. Anal. Chem. 2002, 74, 6139-6144.
    [26] Morier P, Vollet C, Michel P E, Reymond F, Rossier J S. Gravity-induced convective flow in microfluidic systems: electrochemical characterization and application to enzyme-linked immunosorbent assay tests. Electrophoresis 2004, 25,3761-3768.
    [27] Bernard A, Michel B, Delamarche E. Micromosaic immunoassays. Anal. Chem. 2001, 73, 8-12.
    [28] Cesaro-Tadic S, Dernick G, Juncker D, Buurman G, Kropshofer H, Michel B, Fattinger C, Delamarche E. High-sensitivity miniaturized immunoassays for tumor necrosis factor a using microfluidic systems. Lab Chip 2004, 4, 563-569.
    [29] Wolf M, Juncker D, Michel B, Hunziker P, Delamarche E. Simultaneous detection of C-reactive protein and other cardiac markers in human plasma using micromosaic immunoassays and self-regulating microfluidic networks. Biosens. Bioelectron. 2004, 19, 1193-1202.
    [30] Ziegler J, Zimmermann M, Hunziker P, Delamarche E. High-performance immunoassays based on through-stencil patterned antibodies and capillary systems. Anal. Chem. 2008, 80, 1763-1769.
    [31] Sia S K, Linder V, Parviz B A, Siegel A, Whitesides G M. An integrated approach to a portable and low-cost immunoassay for resource-poor settings. Angew. Chem. Int. Ed. 2004, 43. 498-502.
    [32] He X, Dandy D S, Henry C S. Microfluidic protein patterning on silicon nitride using solvent-extracted poly(dimethylsiloxane) channels. Sensors and Actuators 5.2008,129,811-817.
    [33] Hosokawa K, Omata M, Sato K, Maeda M. Power-free sequential injection for microchip immunoassay toward point-of-care testing. Lab Chip 2006. 6. 236-241.
    [34] Hosokawa K, Omata M, Maeda M. Immunoassay on a power-free microchip with laminar flow-assisted dendritic amplification. Anal. Chem. 2007, 79, 6000-6004.
    [35] Kurita R, Yokota Y. Sato Y, Mizutani F, Niwa O. On-chip enzyme immunoassay of a cardiac marker using a microfluidic device combined with a portable surface plasmon resonance system. Anal. Chem. 2006, 78, 5525-5531.
    [36] Du Z, Cheng K H, Vaughn M W, Collie N L, Gollahon L S. Recognition and capture of breast cancer cells using an antibody-based platform in a microelectromechanical systems device. Biomed. Microdevices 2007, 9, 35-42.
    [37] Weibel D B, Kruithof M, Potenta S, Sia S K, Lee A, Whitesides G M. Torque-actuated valves for microfluidics. Anal. Chem. 2005, 77. 4726-473.
    [38] Henares T G, Funano S I, Terabe S, Mizutani F, Sekizawa R, Hisamoto H. Multiple enzyme linked immunosorbent assay system on a capillary-assembled microchip integrating valving and immuno-reaction functions. Anal. Chim. Acta 2007,589,173-179.
    [39] Eteshola E, Leckband D. Development and characterization of an ELISA assay in PDMS microfuidic channels. Sensors and Actuators B 2001, 72 , 129-133.
    [40] Driskell J D, Kwarta K M, Lipert R J, Porter M D. Low-level detection of viral pathogens by a surface-enhanced raman scattering based immunoassay. Anal. Chem. 2005,77, 6147-6154.
    [41] Torabi F, Reza H, Far M, Danielsson B, Khayyamia M. Development of a plasma panel test for detection of human myocardial proteins by capillary immunoassay. Biosens. Bioelectron. 2007, 22, 1218-1223.
    [42] Yu L, Li C-M, Zhou Q, Luong J H T. Poly(vinyl alcohol) functionalized poly(dimethylsiloxane) solid surface for immunoassay. Bioconjugate Chem. 2007,18,281-284.
    [43] Yu L, Li C-M, Liu Y-S, Gao J, Wang W, Gan Y. Flow-through functionalized PDMS microfluidic channels with dextran derivative for ELISAs. Lab Chip 2009, 9, 1243-1247.
    [44] Sui G, Wang J, Lee C-C, Lu W, Lee S P, Leyton J V, Wu A M, Tseng H-R. Solution-phase surface modification in intact poly(dimethylsiloxane) microfluidic channels. Anal. Chem. 2006, 78, 5543-5551.
    [45] Dodge A, Fluri K, Verpoorte E, de Rooij N F. Electrokinetically driven microfluidic chips with surface-modified chambers for heterogeneous immunoassays. Anal. Chem. 2001, 73, 3400-3409.
    [46] Eteshola E, Balberg M. Microfluidic ELISA: on-chip fluorescence imaging. Biomedical Microdevices 2004, 6, 7-9.
    [47] Ho J A, Huang M-R. Application of a liposomal bioluminescent label in the development of a flow injection immunoanalytical system. Anal. Chem. 2005, 77,3431-3436.
    [48] Hashimoto M, Kaji H, Kemppinen M E, Nishizawa M. Localized immobilization of proteins onto microstructures within a preassembled microfluidic device. Sensors and Actuators B 2008, 128, 545-551.
    [49] Linder V, Verpoorte E, Thormann W, de Rooij N F, Sigrist H. Surface biopassivation of replicated poly(dimethylsiloxane) microfluidic channels and application to heterogeneous immunoreaction with on-chip fluorescence detection. Anal. Chem. 2001, 73, 4181-4189.
    [50] Linder V, Verpoorte E, de Rooij N F, Sigrist H, Thormann W. Application of surface biopassivated disposable poly(dimethylsiloxane)/glass chips to a heterogeneous competitive human serum immunoglobulin G immunoassay with incorporated internal standard. Electrophoresis 2002, 23, 740-749.
    [51] Delehanty J B, Ligler F S. A microarray immunoassay for simultaneous detection of proteins and bacteria. Anal. Chem. 2002, 74, 5681-5687.
    [52] Yang T, Jung S-Y, Mao H, Cremer P S. Fabrication of phospholipid bilayer-coated microchannels for on-chip immunoassays. Anal. Chem. 2001, 73, 165-169.
    [53] Dong Y, Phillips K S, Cheng Q. Immunosensing of staphylococcus enterotoxin B (SEB) in milk with PDMS microfluidic systems using reinforced supported bilayer membranes (r-SBMs). Lab Chip 2006, 6, 675-681.
    [54] Phillips K S, Cheng Q. Microfluidic immunoassay for bacterial toxins with supported phospholipid bilayer membranes on poly(dimethylsiloxane). Anal. Chem. 2005, 77, 327-334.
    [55] Stokes D L, Griffin G D, Vo-Dinh T. Detection of E. coli using a microfluidics-based antibody biochip detection system. Fresenius J Anal. Chem. 2001,369,295-301.
    [56] Bange A, Halsall B H, Heineman W R. Microfluidic immunosensor systems. Biosens. Bioelectron. 2005. 20, 2488-2503.
    [57] Sato K, Tokeshi M, Odake T, Kimura H, Ooi T, Nakao M, Kitamori T. Integration of an immunosorbent assay system: analysis of secretory human immunoglobulin A on polystyrene beads in a microchip. Anal. Chem. 2000, 72, 1144-1147.
    
    [58] Sato K, Tokeshi M, Kimura H, Kitamori T. Determination of carcinoembryonic antigen in human sera by integrated bead-bed immunoasay in a microchip for cancer diagnosis. Anal Chem. 2001, 73, 1213-1218.
    [59] Kiichi Sato, Maho Yamanaka, Hiroko Takahashi, Manabu Tokeshi, Hiroko Kimura. Takehiko Kitamori. Microchip-based immunoassay system with branching multichannels for simultaneous determination of interferon-γ. Electrophoresis 2002, 23: 734-739.
    [60] Sato K, Yamanaka M, Hagino T, Tokeshi M, Kimura H, Kitamori T. Microchip-based enzyme-linked immunosorbent assay (microELISA) system with thermal lens detection. Lab Chip 2004, 4, 570-575.
    [61] Murakamia Y, Endo T, Yamamura S, Nagatanic N, Takamura Y, Tamiya E. On-chip micro-Xow polystyrene bead-based immunoassay for quantitative detection of tacrolimus (FK506). Anal. Biochem. 2004, 334, 111-116.
    [62] Malmstadt N, Hoffman A S, Stayton P S. "Smart" mobile affinity matrix for microfluidic immunoassays. Lab Chip 2004, 4, 412-415.
    [63]Haes A J,Terray A,Collins G E.Bead-assisted displacement immunoassay for staphylococcal enterotoxin B on a microchip.Anal.Chem.2006,78,8412-8420.
    [64]Shin K-S,Lee S-W,Han K-C,Kim S-K,Yang E-K,Park J-H,Ju B-K,Kang J-Y,Kim T-S.Amplification of fluorescence with packed beads to enhance the sensitivity of miniaturized detection in microfluidic chip.Biosens.Bioelectron.2007,22,2261-2267.
    [65]Yasukawa T,Suzuki M,Sekiya T,Shiku H,Matsue T.Flow sandwich-type immunoassay in microfluidic devices based on negative dielectrophoresis.Biosens.Bioelectron.2007,22,2730-2736.
    [66]Peoples M C,Karnes H T.Microfluidic capillary system for immunoaffinity separations of C-reactive protein in human serum and cerebrospinal fluid.Anal.Chem.2008,80,3853-3858.
    [67]Christodoulides N,Tran M,Floriano P N,Rodriguez M,Goodey A,Ali M,Neikirk D,McDevitt J T.A microchip-based multianalyte assay system for the assessment of cardiac risk.Anal.Chem.2002,74,3030-3036.
    [68]Moorthy J,Mensing G A,Kim D,Mohanty S,Eddinton D T,Tepp W H,Johnson E S,Beebe D J.Microfluidic tectonics platform:A colorimetric,disposable botulinum toxin enzyme-linked immunosorbent assay system.Electrophoresis 2004,25,1705-1713.
    [69]朱海霖,陈恒武,周永列.顺序注射可更新表面固相荧光免疫法测定人血清中免疫球蛋白G.分析化学,2004,32,841-846.
    [70]Kakuta M,Takahashi H,Kazuno S,Murayama K,Ueno T,Tokeshi M.Development of the microchip-based repeatable immunoassay system for clinical diagnosis.Meas.Sci.Technol.2006,17,3189-3194.
    [71]Choi J-W,Ahn C H,Bhansali S,Henderson H Y.A new mag-netic bead-based,filterless bio-separator with planar electromagnet surfaces for integrated bio-detection systems.Sens.Actuators B 2000,68,34-39.
    [72]Hayes M A,Polson N A,Phayre A N,Garcia A A.Flow-based microimmunoassay.Anal.Chem.2001,73,5896-5902.
    [73]Wellman A D,Sepaniak M J.Multiplexed,waveguide approach to magnetically assisted transport evanescent field fluoroassays.Anal.Chem.2007,79,6622-6628.
    [74]Choi J-W,Oh K W,Thomas J H,Heineman W R,Halsall H B,Nevin J H, Helmicki A J, Henderson H T, Ahn C H. An integrated microfluidic biochemical detection system for protein analysis with magnetic bead-based sampling capabilities. Lab Chip 2002, 2, 27-30.
    [75] Farrell S, Ronkainen-Matsuno N J, Halsall H B, Heineman W R. Bead-based immunoassays with microelectrode detection. Anal. Bioanal. Chem. 2004, 379, 358-367.
    [76] Herrmann M, Veres T, Tabrizian M. Enzymatically-generated fluorescent detection in micro-channels with internal magnetic mixing for the development of parallel microfluidic ELISA. Lab Chip 2006, 6, 555-560.
    [77] Herrmann M, Veres T, Tabrizian M. Quantification of low-picomolar concentrations of TNF-a in serum using the dual-network microfluidic ELISA platform. Anal. Chem. 2008, 80. 5160-5167.
    [78] Do J, Ahn C H. A polymer lab-on-a-chip for magnetic immunoassay with on-chip sampling and detection capabilities. Lab Chip 2008, 8, 542-549.
    [79] Lacharme F, Vandevyver C. Gijs M A M. Full on-chip nanoliter immunoassay by geometrical magnetic trapping of nanoparticle chains. Anal. Chem. 2008, 80, 2905-2910.
    [80] Kim K S, Park J-K. Magnetic force-based multiplexed immunoassay using superparamagnetic nanoparticles in microfluidic channel. Lab Chip 2005, 5. 657-664.
    [81] Hahn Y K, Jin Z, Kang J H, Oh E. Han M-K, Kim H-S, Jang J-T, Lee J-H, Cheon J. Kim S H, Park H-S. Park J-K. Magnetophoretic immunoassay of allergen-specific IgE in an enhanced magnetic field gradient. Anal. Chem. 2007, 79,2214-2220.
    [82] Hahn Y K, Chang J B, Jin Z, Kim H S, Park J-K. Magnetophoretic position detection for multiplexed immunoassay using colored microspheres in a microchannel. Biosens. Bioelectron. 2009, 24, 1870-1876.
    [83] Sista R S, Eckhardt A E, Srinivasan V, Pollack M G, Palankib S, Pamula V K. Heterogeneous immunoassays using magnetic beads on a digital microfluidic platform. Lab Chip 2008, 8, 2188-2196.
    [84] Sista R, Hua Z, Thwar P, Sudarsan A, Srinivasan V, Eckhardt A, Pollack M, Pamula V. Development of a digital microfluidic platform for point of care testing. Lab Chip 2008, 8, 2091-2104.
    [85] Aguilar Z P, Vandaveer W R, Fritsch I. Self-contained microelectrochemical immunoassay for small volumes using mouse IgG as a model system. Anal. Chem. 2002, 74,3321-3329.
    [86] Ko J S, Yoon H C, Yang H, Pyo H-B, Chung K H, Kim S J, Kim Y T. A polymer-based microfluidic device for immunosensing biochips. Lab Chip 2003, 3,106-113.
    [87] Dong H, Li C M, Zhou Q, Sun J B, Miao J M. Sensitive electrochemical enzyme immunoassay microdevice based on architecture of dual ring electrodes with a sensing cavity chamber. Biosens. Bioelectron. 2006, 22: 621-626.
    [88] Dong H, Li C-M, Zhang Y-F, Cao X-D, Gan Y. Screen-printed microfluidic device for electrochemical immunoassay. Lab Chip 2007, 7, 1752-1758.
    [89] Nashida N, Satoh W, Fukuda J, Suzuki H. Electrochemical immunoassay on a microfluidic device with sequential injection and flushing functions. Biosens. Bioelectron. 2007, 22, 3167-3173.
    [90] Yang C-Y, Brooks E, Li Y, Denny P, Ho C-M, Qi F, Shi W, Wolinsky L, Wu B, Wongbdef D T W, Montemagno C D. Detection of picomolar levels of interleukin-8 in human saliva by SPR. Lab Chip 2005, 5, 1017-1023.
    [91] Mujika M, Arana S, Castano E, Tijero M, Vilares R, Ruano-Lopez J M,. Cruz A, Sainz L, Berganza J. Magnetoresistive immunosensor for the detection of Escherichia coli O157:H7 including a microfluidic network. Biosens. Bioelectron. 2009,24, 1253-1258.
    [92] Soto C M, Martin B D, Sapsford K E, Blum A S, Ratna B R. Toward single molecule detection of staphylococcal enterotoxin B: mobile sandwich immunoassay on gliding microtubules. Anal. Chem. 2008, 80, 5433-5440.
    [93] Hu G, Gao Y, Sherman P M, Li D. A microfluidic chip for heterogeneous immunoassay using electrokinetical control. Microfluid. Nanofluid. 2005, 1, 346-355.
    [94] Gao Y, Sherman P M, Sun Y, Li D. Multiplexed high-throughput electrokinetically-controlled immunoassay for the detection of specific bacterial antibodies in human serum. Anal. Chim. Acta 2008, 606, 98-107.
    [95] Linder V, Verpoorte E, Thormann W, de Rooij N F, Sigrist H. Surface biopassivation of replicated poly(dimethylsiloxane) microfluidic channels and application to heterogeneous immunoreaction with on-chip fluorescence detection. Anal. Chem. 2001, 73, 4181-4189.
    [96] Gao Y, Hu G, Lin F Y H, Sherman P M, Li D. An electrokinetically-controlled immunoassay for simultaneous detection of multiple microbial antigens.Biomed.Microdev.2005,7,301-312.
    [97]Tsukagoshi K,Jinno N,Nakajima R.Development of a micro total analysis system incorporating chemiluminescence detection and application to detection of cancer markers.Anal.Chem.2005,77,1684-1688.
    [98]Wang C-H,Lee G-B.Automatic bio-sampling chips integrated with micro-pumps and micro-valves for disease detection.Biosens.Bioelectron.2005,21,419-425.
    [99]Kartalov E P,Zhong J F,Scherer A,Quake S R,Taylor C R,Anderson W F.High-throughput multi-antigen microfluidic fluorescence immunoassays.BioTech.2006,40,85-90.
    [100]Lee K-H,Su Y-D,Chen S-J,Tseng F-G,Lee G-B.Microfluidic systems integrated with two-dimensional surface plasmon resonance phase imaging systems for microarray immunoassay.Biosens.Bioelectron.2007,23,466-472.
    [101]Luo Y,Yu F,Zare R N.Microfluidic device for immunoassays based on surface plasmon resonance imaging.Lab Chip.2008,8,694-700.
    [102]Kong J,Jiang L,Su X,Qin J,Du Y.Lin B.Integrated microfluidic immunoassay for the rapid determination of clenbuterol.Lab Chip 2009,9,1541-1547.
    [103]Suarez G,Jin Y-H,Auerswald J,Berchtold S,Knapp H F,Diserens J-M,Leterrier Y,Manson J-A E,Voirin G.Lab-on-a-chip for multiplexed biosensing of residual antibiotics in milk.Lab Chip 2009,9,1625-1630.
    [104]Yang S-Y,Lien K-Y,Huang K-J,Lei H-Y,Lee G-B.Micro flow cytometry utilizing a magnetic bead-based immunoassay for rapid virus detection.Biosens.Bioelectron.2008,24,855-862.
    [105]Lee B S,Lee J-N,ark J-M,Lee J-G,Kim S,Cho Y-K,Koa C.A fully automated immunoassay from whole blood on a disc.Lab Chip 2009,9,1548-1555.
    [106]Ahn-Yoon S,DeCory T R,Baeumner A J,Durst R A.Ganglioside-liposome immunoassay for the ultrasensitive detection of cholera toxin.Anal.Chem.2003,75,2256-2261.
    [107]Cho J-H,Paek E-H,Cho I-H,Paek S-H.An enzyme immunoanalytical system based on sequential cross-flow chromatography.Anal.Chem.2005,77,4091-4097.
    [108]Lai S,Wang S,Luo J,Lee L J,Yang S-T,Madou M J.Design of a compact disk-like microfluidic platform for enzyme-linked immunosorbent assay.Anal.Chem.2004,76,1832-1837.
    [109]Nagai H,Narita Y,Ohtaki M,Saito K,Wakida S-I.A single-bead analysis on a disk-shaped microfluidic device using an antigen-immobilized bead.Anal.Sci.2007,23,975-979.
    [110]Linder V,Sia S K,Whitesides G M.Reagent-loaded cartridges for valveless and automated fluid delivery in microfluidic devices.Anal Chem.2005,77,64-71.
    [111]Ohashi T,Mawatari K,Sato K,Tokeshic M,Kitamori T.A micro-ELISA system for the rapid and sensitive measurement of total and specific immunoglobulin E and clinical application to allergy diagnosis.Lab Chip.2009,9,991-995.
    [112]Yakovleva J,Davidsson R,Lobanova A,Bengtsson M,Eremin S,Laurell T,Emneus J.Microfluidic enzyme immunoassay using silicon microchip with immobilized antibodies and chemiluminescence detection.Anal.Chem.2002,74,2994-3004.
    [113]Liu H,Yang Z,Yan F,Xu Y,Ju H.Three-minute-long chemiluminescent immunoassay using dually accelerated immunoreaction by infrared heating and passive mixing.Anal.Chem.2009,81,4043-4047.
    [1]Lai S,Wang S,Luo J,Lee L J,Yang S-T,Madou M J.Design of a compact disk-like microfluidic platform for enzyme-linked immunosorbent assay.Anal.Chem.2004,76,1832-1837.
    [2]鞠熀先,邱宗荫,丁世家等.生物分析化学.北京:科学出版社,2007.
    [3]陶义训主编.免疫学和免疫学检验(第二版).北京:人民卫生出版社,1997.
    [4]Dodge A,Fluri K,Verpoorte E,de Rooij N F.Electrokinetically driven microfluidic chips with surface-modified chambers for heterogeneous immunoassays.Anal.Chem.2001,73,3400-3409.
    [5]Haes A J,Terray A,Collins G E.Bead-assisted displacement immunoassay for staphylococcal enterotoxin B on a microchip.Anal Chem.2006,78,8412-8420.
    [6]Gao Y,Sherman P M,Sun Y,Li D.Multiplexed high-throughput electrokinetically-controlled immunoassay for the detection of specific bacterial antibodies in human serum.Anal.Chim.Acta 2008,606,98-107.
    [7]Kartalov E P,Zhong J F,Scherer A,Quake S R,Taylor C R,Anderson W F.High-throughput multi-antigen microfluidic fluorescence immunoassays.BioTech.2006,40,85-90.
    [8]Luo Y,Yu F,Zare R N.Microfluidic device for immunoassays based on surface plasmon resonance imaging.Lab Chip 2008,8,694-700.
    [9]Yang S-Y,Lien K-Y,Huang K-J,Lei H-Y,Lee G-B.Micro flow cytometry utilizing a magnetic bead-based immunoassay for rapid virus detection.Biosens.and Bioelectron.2008,24,855-862.
    [10]Lee B S,Lee J-N,Park J-M,Lee J-G,Kim S,Cho Y-K,Koa C.A fully automated immunoassay from whole blood on a disc.Lab Chip 2009,9,1548-1555.
    [11]Nagai H,Narita Y,Ohtaki M,Saito K,Wakida S-I.A single-bead analysis on a disk-shaped microfluidic device using an antigen-immobilized bead.Anal.Sci.2007,23,975-979.
    [12]Linder V,Sia S K,Whitesides G M.Reagent-loaded cartridges for valveless and automated fluid delivery in microfluidic devices.Anal Chem.2005,64-71.
    [13]Ohashi T,Mawatari K,Sato K,Tokeshic M,Kitamori T.A micro-ELISA system for the rapid and sensitive measurement of total and specific immunoglobulin E and clinical application to allergy diagnosis.Lab Chip 2009,9,991-995.
    [14]Liu H,Yang Z,Yan F,Xu Y,Ju H.Three-minute-long chemiluminescent immunoassay using dually accelerated irnmunoreaction by infrared heating and passive mixing.Anal.Chem.2009,81,4043-4047.
    [15]Du W B,Fang Q,He Q H,Fang Z L.High-throughput nanoliter sample introduction microfluidic chip-based flow injection analysis system with gravity-driven flows.Anal.Chem.2005,77,1330-1337.
    [16]Du W B,Fang Q,Fang Z L.Microfluidic sequential iniection analysis in a short capillary.Anal,Chem.2006,78,6404-6410.
    [17]Fang Q,Shi X T,Du W B,He Q H,Shen H,Fang Z L.High-throughput microfluidic sample introduction systems.Trends Anal.Chem.2008,27,521-532.
    [18]Zhang T,Fang Q,Du W B,Fu J L.Microfluidic picoliter-scale translational spontaneous sample introduction for high-speed capillary electrophoresis.Anal.Chem.2009,81,3693-3698.
    [19]Ho J A,Huang M R.Application of a liposomal bioluminescent label in the development of a flow injection immunoanalytical system.Anal.Chem.2005,77,3431-3436.
    [20]沈霞 主编.临床免疫学与免疫学检验新技术(第一版).北京:人民军医 出版社,2002.
    [21]王鸿利 主编.实验诊断学(第一版).北京:人民卫生出版社,2001.
    [1]McDonald J C,Metallo S J,Whitesides G M.Fabrication of a configurable,single-use microfluidic device.Anal.Chem.2001,73,5645-5650.
    [2]Bemard A,Michel B,Delamarche E.Micromosaic Immunoassays.Anal.Chem.2001,73,8-12.
    [3]Cesaro-Tadic S,Demick G,Juncker D,Buurman G,Kropshofer H,Michel B,Fattinger C,Delamarche E.High-sensitivity miniaturized immunoassays for tumor necrosis factor a using microfluidic systems.Lab Chip 2004,4,563-569.
    [4]Wolf M,Juncker D,Michel B,Hunziker P,Delamarche E.Simultaneous detection of C-reactive protein and other cardiac markers in human plasma using micromosaic immunoassays and self-regulating microfluidic networks.Biosens.Bioelectron.2004.19,1193-1202.
    [5]Ziegler J,Zimmermann M,Hunziker P,Delamarche E.High-Performance immunoassays based on through-stencil pattemed antibodies and capillary systems.Anal.Chem.2008,80,1763-1769.
    [6]Sia S K,Linder V,Parviz B A,Siegel A,Whitesides G M.An Integrated approach to a portable and low-cost immunoassay for resource-poor settings.Angew.Chem.Int.Ed.2004,43,498-502.
    [7]He X,Dandy D S,Henry C S.Microfluidic protein patterning on silicon nitride using solvent-extracted poly(dimethylsiloxane) channels.Sensors and Actuators B.2008,129,811-817.
    [8]Kurita R,Yokota Y,Sato Y,Mizutani F,Niwa O.On-Chip enzyme immunoassay of a cardiac marker using a microfluidic device combined with a portable surface plasmon resonance system.Anal.Chem.2006,78,5525-5531.
    [9]Henares T G,Funano S I,Terabe S,Mizutani F,Sekizawa R,Hisamoto H.Multiple enzyme linked immunosorbent assay system on a capillary-assembled microchip integrating valving and immuno-reaction functions.Anal.Chim.Acta 2007,589,173-179.
    [10]Yu L,Li C-M,Liu Y-S,Gao J,Wang W,Gan Y.Flow-through functionalized PDMS microfluidic channels with dextran derivative for ELISAs.Lab Chip 2009,9,1243-1247.
    [11]Kartalov E P,Zhong J F,Scherer A,Quake S R,Taylor C R,Anderson W F.High-throughput multi-antigen microfluidic fluorescence immunoassays.BioTech.2006,40,85-90.
    [12]Sui G,Wang J,Lee C-C,Lu W,Lee S P,Leyton J V,Wu A M,Tseng H-R.Solution-phase surface modification in intact poly(dimethylsiloxane)microfluidic channels.Anal.Chem.2006,78,5543-5551.
    [13]Weibel D B,Kruithof M,Potenta S,Sia S K,Lee A.Whitesides G M.Torque-actuated valves for microfluidics.Anal.Chem.2005,77,4726-473.
    [14]Linder V,Sia S K,Whitesides G M.Reagent-loaded cartridges for valveless and automated fluid delivery in microfluidic devices.Anal Chem.2005,77,64-71.
    [15]Hu G,Gao Y,Sherman P M,Li D.A microfluidic chip for heterogeneous immunoassay using electrokinetical control.Microfluid.Nanofluid.2005,1,346-355.
    [16]Linder V,Verpoorte E,de Rooij N F,Sigrist H,Thormann W.Application of surface biopassivated disposable poly(dimethylsiloxane)/glass chips to a heterogeneous competitive human serum immunoglobulin G immunoassay with incorporated internal standard.Electrophoresis 2002,23,740-749.
    [17]Luo Y,Yu F,Zare R N.Microfluidic device for immunoassays based on surface plasmon resonance imaging.Lab Chip 2008,8,694-700.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700