基于仿真模型的动态响应优化算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在国家“863”高技术研究发展计划项目2006AA04Z121、国家自然科学基金项目50775084资助下,对基于仿真模型的动态响应优化展开研究,主要研究内容包括动态响应优化问题并行化处理、基于时间谱元法的动态响应优化、基于MARS的动态响应优化和基于模糊聚类的全局动态响应优化等问题。
     首先,研究了仿真优化中SQP算法的并行处理与调度策略,提出了SQP并行优化调度策略的抽象调度模型即等式约束离散变量优化模型,从理论上探讨了并行化处理与调度策略的可行性;通过工作池,应用集中式动态负载平衡技术实现并行任务调度。以F14战斗机简易模型动态响应的控制参数优化为例,验证了本方法的有效性。
     其次,研究了基于时间谱元法的系统动态响应优化算法。深入分析了在时间域内离散动态响应,将运动微分方程或方程组转化成代数方程组,精确解出瞬态响应,改善了传统求解动态响应时误差大的缺点,达到谱收敛精度。用高斯-洛巴托-勒让德点法(GLL)和关键点法(KPM)处理时间约束。这样,动态响应优化算法就可以在超曲线或超曲面上找到满足所有时间约束的变化的目标函数。以线性单自由度吸振器设计、线性2自由度弹簧减振器设计和线性5自由度汽车悬挂系统设计为例,引入人工设计变量,详细分析了两种处理约束方法的优缺点,也说明了此方法的正确性。这些内容可为进一步研究动态响应优化提供参考,如在固定端承受振动输入的矩形变截面梁的动态响应优化设计,在不同边界条件下承受垂直平面均布瞬态动载荷作用的弹性梁的动态响应优化设计等。
     第三,利用多变量自适应回归样条(MARS)的特点,提出了结合移动极限策略和置信域方法以及数据驱动且适合基于计算昂贵的黑箱仿真模型的动态响应优化算法。MARS是一个自适应的回归过程,采用了将高维问题简化为低维高精度模型的修改回归分块策略。MLS是在设计空间确定子区间的位置和大小,其不仅反映了函数近似质量,而且反映了优化过程的收敛历史。应用MARS的目的是减小了传统响应面的不利因素,特别是对于高维非线性问题。以高维函数和高维工程问题为例进行测试,结果表明了该方法的可行性和有效性,并且和二次响应面(QRS)在计算效率和精度方面进行了比较。还测试了调用仿真器ANSYS的变截面悬臂梁外形形状优化的问题,并与基于SQP的仿真优化进行了比较;测试了线性2自由度弹簧减振器设计问题和5自由度汽车悬挂系统动态响应优化设计问题,结果说明了移动极限策略和MARS响应而结合的优越性。
     将MARS、数据驱动、置信域法(TRM)与增广拉格朗日方法相结合起来研究动态响应优化算法。当最优点在数据库中或者有很近的点在数据库中时,将用数据库中的点对应的目标函数和约束函数的值代替最优点的目标函数和约束函数的值,而不需要再进行计算昂贵的仿真分析,如果不存在这样的点,只能通过计算昂贵的仿真分析获得最优点的目标函数和约束函数的值。随着优化的进行,数据库越来越成熟,这样更加有利于建立精确的响应面并且快速找到全局最优点。以一个10维工程问题以及线性2自由度弹簧减振器设计和5自由度汽车悬挂系统动态响应优化设计问题为例进行测试,测试结果与文献中提供的数据进行了比较,证明了此方法的可行性和有效性。
     最后,首次将模糊聚类应用于基于仿真模型的全局动态响应优化中,并且取得很好的效果。用近似模型代替密集计算进行分析和仿真,计算速度快。模糊聚类确定采样子区间的位置,最近两次迭代结果决定采样子区域的大小。确定了要采样的子区间后小样本采样,仿真评估目标函数及约束函数,然后构造全局Kriging响应面,再在整个设计域内大样本采样,之后仿真评估全局Kriging响应面,将仿真结果模糊聚类,再确定下一次迭代的子区问,反复迭代直到收敛。在模糊聚类全局动态响应优化中,每一次迭代采用3个聚类中心和它们的几何中心效果较好,这3个中心就是局部最优点或者其附近点,这3个聚类中心的几何中心有更大的概率成为最优点;排序这4个点的函数值,将函数值最小值的点作为本次迭代的最优点。以10个标准全局优化问题和1个线性单自由度吸振器设计问题为例进行测试,并与遗传算法(GA),模拟退火算法(SA),粒子群算法(PSO)和模式追踪算法(MPS)进行比较,证明该方法的精确性和鲁棒性,更重要的是明显减少了昂贵黑箱函数的仿真评估次数。
Supported by the National "863" High-Tech Development Project of China under the grant No.2006AA04Z121 and National Natural Science Fund under the grant No.50775084, the simulation model based dynamic response optimization methods have been studied, which focus on dynamic response optimization problems and parallel processing, time spectral element method based on the dynamic response optimization, MARS based dynamic response optimization techniques and simulation based global dynamic response optimization of fuzzy clustering, and so on.
     Firstly, a parallel processing and scheduling strategy of SQP algorithm in simulation optimization are studied. We propose the abstract scheduling model in parallel optimization problem:a discrete variable optimization model with equality constraints. The thorough theoretical feasibility of parallel algorithm is deeply discussed. The parallel task dispatch is implemented by the centralized dynamic load balancing technology and the work pond. The efficiency of SQP optimization of parallel technique is proved by an example of the dynamic response optimization of control parameters of a simple F14 aircraft model.
     Secondly, the optimization design of systems for dynamic response based on temporal spectral element is studied. This paper makes further exploration of how to discrete-time dynamic response, to convert the movement differential equations into algebraic equations, to obtain exact solutions of transient response, and processes the constraints related to the time using GLL points method and key-point method. The optimization example of spring shock absorber of linear 1-DOF, the spring shock absorber of linear 2-DOF and automotive suspension system of 5-DOF are given, the introduction of artificial design variable, a detailed analysis of the advantages and disadvantages for two methods to deal with constraints of, but also shows the correctness of this method. These can provide a reference to be further optimized dynamic response, such as the dynamic optimization design of the rectangular variable cross-section beam bearing vibration at the fixed end, the dynamic response optimization design of the elastic beam bearing uniform transient load of vertical plane at the different boundary conditions and so on.
     Thirdly, MARS based dynamic response optimization is studies, which combines the global response surface (GRS) based multivariate adaptive regression splines (MARS) with Move-Limit strategy (MLS) and combines augmented Lagrangian method, trust region method and data driven by using characteristics of MARS. MARS is an adaptive regression process, which fits in with the multidimensional problems. And it adopts a modified recursive partitioning strategy to simplify high-dimensional problems into smaller yet highly accurate models. MLS for moving and resizing the search sub-regions is employed in the space of design variables. The quality of the approximation functions and the convergence history of the optimization process are reflected in MLS. The disadvantages of the conventional response surface method (RSM) have been avoided, specifically, highly nonlinear high-dimensional problems. The method is applied to a high-dimensional test function and an engineering problem and ANSYS based tapered beam shape optimization problem, and compared with quadratic response surface (QRS) models in terms of computational efficiency and accuracy. And calculating examples of the linear 2-DOF spring shock absorber suspension design and 5-DOF vehicle dynamic response optimization problems are given to illustrate its feasibility and convergence.
     A data driven based optimization approach combines augmented Lagrangian method, MARS with effective data processing. In the approach, an expensive simulation run is required if and only if a nearby data point does not exist in the cumulatively growing database. Over time the database matures and is enriched as more and more optimizations have been performed. Combining the local response surface of MARS and augmented Lagrangian method improve sequential approximation optimization and reduce simulation times by effective data processing, yet maintain a low computational cost. The approach is applied to a ten dimensional engineering problem, the linear 2-DOF spring shock absorber suspension design and 5-DOF vehicle dynamic response optimization problems to demonstrate its feasibility and convergence and the data provided in literature are compared.
     Finally, fuzzy clustering applied in simulation based dynamic response of global optimization, which gets better result. The approximate model substitutes for the computation-intensive analysis and simulation, which result in fast calculation. The sampling locations determined by fuzzy clustering and the subregion size determined by the iterative results of the latest two events. Simulation and Evaluation of the objective function and constrained functions were implemented after the sampling subregion determined. Then, Kriging response surface was structured and fuzzy clustering was implemented, which were not repeated until the convergence. In the fuzzy clustering based global optimization, three clustering center are used in each iteration, which showed a better effect. Three clustering center may include the optimum points or its nearby points. The geometric center is obtained from the cluster centers, and Sort Descending is implemented which minimum value is the subregion center. The proposed algorithm is tested using 10 benchmark global optimization problems and linear single degree of freedom vibration absorber, and the GA, SA, PSO and MPS algorithms are compared to prove its accuracy, robustness. The number of simulation of Expensive black box functions significantly is significantly reduced.
引文
[1]Fu M. Optimization via simulation:a review. Annals of Operations Research,1994, 53 (1/4):199-247
    [2]Boesel J, Bowden Jr. R. Glover F, et al. Future of simulation optimization. Proc Winter Simulation Conference, Arlington,2001:1466-1469
    [3]A zadivar F. Simulation optimization methodologies. Proc Winter Simulation Conference, Phoenix,1999:93-100
    [4]Songqing Shan, G. Gary Wang. Survey of modeling and optimization strategies to solve high-dimensional design problems with computationally-expensive black-box functions. Struct Multidisc Optim,2010,41:219-241
    [5]Koch PN, Simpson TW, Allen JK, Mistree F. Statistical approximations for multidisciplinary design optimization:the problem of size. J Aircr 1999,36(1): 275-286
    [6]Gu L. A comparison of polynomial based regression models in vehicle safety analysis. Proceedings of 2001 ASME design engineering technical conferences—design automation conference, Pittsburgh, PA,2001,9:9-12
    [7]Alexandrov N, Alter SJ, Atkins HL, Bey KS, Bibb KL, Biedron RT. Opportunities for breakthroughs in large-scale computational simulation and design: NASA/TM-2002-211747
    [8]Papalambros PY, Michelena NF. Model-based partitioning in optimal design of large engineering systems. Multidisciplinary design optimization:state-of-the-art. SIAM, 1997:209-226
    [9]Papalambros PY, Michelena NF. Trends and challenges in system design optimization. In:Proceedings of the international workshop on multidisciplinary design optimization, Pretoria, S.Africa,2000,8:7-10
    [10]K. A. High, R. D. LaRoche. Parallel nonlinear optimization techniques for chemical process design problems. Computers & Chemical Engineering,1995,19(6-7): 807-825
    [11]张帆,邵之江,仲卫涛.化工过程系统优化的分布式并行计算.化工学报,2001,52(5):396-400
    [12]陈忠.关于非线性规划问题的并行算法.长江大学学报(自科),2006,4(12):1-8
    [13]Ling Jiang, Lorenz T.Biegler, V.Grant Fox. Design and optimization of pressure swing adsorption systems with parallel implementation. Computers and Chemical Engineering 2005(29):393-399
    [14]M.H. Kurdi and P.S. Beran. Spectral element method in time for rapidly actuated systems. Journal of Computational Physics,2007(3):1809-1835
    [15]Qian Wang, Jasbir S. Arora. Alternative Formulations for Transient Dynamic Response Optimization.46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference 18-21, Austin, Texas,2005,8
    [16]Dong-Hoon Choi, Hong-Soo Park, Min-Soo Kim.A direct treatment of min-max dynamic response optimization problems. AIAA-93-1352-CP
    [17]Chung-Ho Wang. Dynamic multi-response optimization using principal component analysis and multiple criteria evaluation of the grey relation model. Int J Adv Manuf Technol,2007,32:617-624
    [18]J.Bausa, G. Tsatsaronis. Dynamic Optimization of Startup and Load-Increasing Processes in Power PlantsD Part I:Method. Transactions of the ASME.2001,123(1): 246-250
    [19]Arvind U. Raghunathan, Dharmashankar Subramanian, Lorenz T. Biegler, Tariq Samad. Dynamic Optimization Strategies for Three-Dimensional Conflict Resolution of Multiple Aircraft. Journal of guidance, control, and dynamics.,2004,27(4): 586-594
    [20]Park S, Kapania RK, Kim SJ. Nonlinear transient responseand second-order sensitivity using time finite element method. AIAA J,1999,37(5):613-622
    [21]A.T. Patera. A spectral element method for fluid dynamics; laminar flow in a channel expansion. Journal of Computational Physics,1984,54:468-488
    [22]Kang B-S, Park G-J, Arora JS. A review of optimization of structures subjected to transient loads. Struct Multidisc Optim,2006,31(2):81-95
    [23]Choi W S, Park GJ. Structual optimization using equivalent static loads at all time intervals. Comput Methods Appl Mech Eng,2002,191:2077-2094
    [24]Grandhi RV, Haftka RT, Watson LT. Design oriented identification of critical times in transient response. AIAA Pap,1984:1984-0899
    [25]Li Chen, Zhendong Ding, and Simon Li. Tree-based dependency analysis in decomposition and re-decomposition of complex design problems. ASME J Mech Des.2005,127:12-23
    [26]Altus SS, Kroo IM, Gage PJ. A genetic algorithm for scheduling and decomposition of multidisciplinary design problems. ASME J Mech Des,1996,118:486-489
    [27]Kusiak A, Larson N. Decomposition and representation methods in mechanical design. ASME J Mech Des,1995,117:17-24
    [28]Li S. Matrix-based decomposition algorithms for engineering application:survey and generic framework. Int J Prod Dev,2009,9:78-110
    [29]Michelena NF, Papalambros PY. A hypergraph framework for optimal model-based decomposition of design problems. Comput Optim Appl,1997,8(2):173-196
    [30]Michelena NF, Papalambros PY. A network reliability approach to optimal decomposition of design problems. ASME J Mech Des,1995,117:433-440
    [31]K. L. Clarkson. Las vegas algorithms for linear and integer programming when the dimension is small. Journal of the Association for Computing Machinery,1995, 42:488-499
    [32]Wagner TC, Papalambros PY. A general framework for decomposition analysis in optimal design. Adv Des Autom,1993,2:315-325
    [33]Chen L, Ding Z, Li S. A formal two-phase method for decomposition of complex design problems. ASME J Mech Des,2005,127:184-195
    [34]Suh NP. Axiomatic design:advances and applications. Oxford University Press, New York,2001
    [35]K.J. Craig, Nielen Stander, D.A. Dooge and S. Varadappa. Automotive crashworthiness design using response surface-based variable screening and optimization. Engineering Computations:International Journal for Computer-Aided Engineering and Software,2005,22(1):38-61
    [36]Myers, R.H. and Montgomery, D.C. Response Surface Methodology-Process and Product Optimization Using Designed Experiments,2nd ed., Wiley, New York, NY, 2002
    [37]Peter Craven and Grace Wahba. Smoothing Noisy Data with Spline Functions Estimating the Correct Degree of Smoothing by the Method of Generalized Cross-Validation. Numer. Math,1979,31:377-403
    [38]Wang, G. G. and Simpson, T. W., Fuzzy Clustering Based Hierarchical Metamodeling for Space Reduction and Design Optimization, Engineering Optimization,2004,36(3): 313-335
    [39]Ismail Bin Mohd. Identification of region of attraction for global optimization problem using interval symmetric operator. Applied Mathematics and Computation 2000,110:121-131
    [40]Reddy, S.Y. A Methodology for Early-Stage Exploration of Design Space. The proceedings of the 1996 ASME Design Engineering Technical Conferences and Computers in Engineering Conference, Paper No.96-DETC/DAC1089, August 18-22, Irvine, California,1996
    [41]Koch, P.N., Simpson, T.W., Allen, J.K., Mistree, F. Statistical Approximations for Multidisciplinary Optimization:The Problem of Size. Special Multidisciplinary Design Optimization Issue of Journal of Aircraft,1999,36(1),275-286
    [42]Nguyen, H.S. Discretization of Real Value Attribute:A Boolean Reasoning Approach. Ph.D. thesis, Warsaw University,1997
    [43]Bazan, J.;Nguyen, S.H.; Nguyen, H.S.; Synak, P.; Wroblewski, J. RSES-Rough Set Exploration System, version 1.1, Copyrighto 1994-2000 Logic Group, Institute of Mathematics, Warsaw University, Poland,1994
    [44]Vassili Toropov. Fred van Keulen. Valery Markine. Henk de Boer. Refinements in the multi-point approximation method to reduce the effects of noisy structural responses. AIAA Meeting Papers on Disc,1996,941-951
    [45]J.F. Rodriguez, J. E. Renaud, L. T. Watson. Trust Region Augmented Lagrangian Methods for Sequential Response Surface Approximation and Optimization. Transactions of the ASME,1998,120(3):58-66
    [46]J.F. Rodriguez, J. E. Renaud. Convergence of trust using variable fidelity region augmented Lagrangian approximation data. Structural Optimization,1998,15: 141-156
    [47]Younis, A. A., Xu, R., and Dong, Z., Approximated unimodal Region elimination based global optimization method for engineering design. International Journal of Product Development,2009,9(1/2/3):164-187
    [48]Vinicius V. de Melo, Alexandre C. B. Delbem, Dorival L. P. Junior, Fernando M. Federson.Improving global numerical optimization using a search-space reduction algorithm. Genetic And Evolutionary Computation Conference Proceedings of the 9th annual conference on Genetic and evolutionary computation, London, England,2007
    [49]吴义忠,吴民峰,陈立平.基于Modelica语言的复杂机械系统统一建模平台研究[J].中国机械工程,2006,17(22):2391-2396
    [50]赵建军,丁建完,周凡利,陈立平Modelica语言及其多领域统一建模与仿真机理[J].系统仿真学报,2006,18(2):570-573
    [51]丁建完,陈立平,周凡利.复杂陈述式仿真模型的指标分析.系统仿真学报,2006,18(8):2092-2096
    [52]余俊,周济著.优化方法程序库OPB-2—原理及应用.第一版.武汉:华中理工大学出版社,1997
    [53]Wilkinson,B.,Allen,M著;陈鑫达译.并行程序设计(第二版).北京:机械工业出版社,2005
    [54]黄金贵,陈建二,陈松乔.并行环境下基于多处理机任务的调度模型与调度算法[J].计算机科学,2002,29(4):1-3
    [55]Hochbaum,D.S. ed.. Approximation algorithms for NP-hard problems. London:PWS Publishing Company,1997
    [56]柴山,王健,曹新忠.离散变量优化设计的方向差商法.计算结构力学及其应用,1994,11(3):283-293
    [57]POZRIKIDIS C. Introduction to Finite and Spectral Element Methods Using Matlab, Chapman and Hall/CRC,2005
    [58]PARTER S V. On the Legendre-Gauss-Lobatto Points and Weights. Journal of Scientific Computing,1999,14 (4):347-355
    [59]KURDI M H. AND BERAN P S.. Optimization of Dynamic Response using Temporal Spectral Element Method.46th AIAA Aerospace Sciences Meeting and Exhibit 7-10 January 2008, Reno, Nevada
    [60]HAUG E J, ARORA J S, Applied optimal design:mechanical and structural systems, New York, John Wiley & Sons, Inc,1979
    [61]薛定宇,陈阳泉著.高等应用数学问题的MATLAB求解.北京:清华大学出版社,2004
    [62]Simpson T W, Peplinski J D, Koch P N et al. Metamodels for Computer-based Engineering Design:Survey and Recommendations, Engineering with Computers, 2001(17):129-150
    [63]HSIEH C C AND ARORA J S. Design Sensitivity Analysis and Optimization of Dynamic Response, Computer Methods in Applied Mechanics and Engineering,1984, 43:195-219
    [64]HSIEH C C AND ARORA J S. A Hybrid Formulation for Treatment of Point-Wise State Variable Constraints in Dynamic Response Optimization[J]. Computer Methods in Applied Mechanics and Engineering,1985,48:171-189
    [65]PAENG J K AND ARORA J S. Dynamic Response Optimization of Mechanical System with Multiplier Methods, ASME Journal of Mechanism, Transmission, and Automation in Design,1989,111:73-80
    [66]CHOI D H, PARK H S, KIM M S. A direct treatment of min-max dynamic response optimization problems. AIAA-93-1352-CP
    [67]Schmit L A, Jr, Farshi B. Some approximation concepts for structural synthesis AIAA J.1974,12:692-699
    [68]Schmit L A, Jr, Miura H. Approximation concepts for efficient structural synthesis. NASA CR-2552,1976
    [69]Barthelemy J-F M, Haftka R T. Approximation concepts for optimum structural design—a review. Structural Optimization.1993,5(3),:129-144
    [70]Friedman J H. Multivariate Adaptive Regression Splines, The Annals of Statistics, 1991,19(1):1-67
    [71]Box, G. E. P., and Wilson, K. B. On the Experimental Attainment of Optimum Conditions, Journal of the Roal Statistical Society. Series B(Methodological),1951, 13(1):1-45
    [72]Myers, R. H. and Montgomery, D. Response Surface Methodology:Process and Product Optimization Using Designed Experiments, John Wiley and Sons, Inc., Toronto,2002
    [73]Major Scott T. Crino. Combining MARS with RSM for Simulation-based Design Optimization:[Ph.D. Thesis]. University of Virginia,2006
    [74]Friedman, J. H. Multivariate Adaptive Regression Splines, The Annals of Statistics, 1991,19(1):1-67
    [75]Vassili Toropov. Fred van Keulen. Valery Markine. Henk de Boer. Refinements in the multi-point approximation method to reduce the effects of noisy structural responses AIAA Meeting Papers on Disc,1996,941-951
    [76]Montgomery, D. Design and Analysis of Experiments. John Wiley and Sons, New York,1991
    [77]Taguch G., Yokoyama Y, Wu Y. Taguchi Methods:Design of Experiments. Amer Supplier Inst, Michigan,1993
    [78]Richardson S, Wang S, Jennings L S. A multivariate adaptive regression B-spline algorithm (BMARS) for solving a class of nonlinear optimal feedback control problems. Automatica,2008,44(4):1149-1155
    [79]Loh W L. On Latin Hypercube Sampling. The Annals of Statistics,1996,24(5): 2058-2080
    [80]McKay M D, Beckman R J, Conover W J. A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code. Technometrics,1979,21(2):239-245
    [81]张润楚,王兆军,关于计算机试验的设计理论和数据分析,应用概率统计,1994,10(4):420-435
    [82]邢静忠,王永刚,陈晓霞等ANSYS7.0分析实例与工程应用.北京:机械工业出版社,2004
    [83]Gu, L. A Comparison of Polynomial Based Regression Models in Vehicle Safety Analysis, ASME Design Engineering Technical Conferences-Design Automation Conference (DAC) (Diaz, A., ed.), Pittsburgh, PA, ASME, September 9-12,2001, Paper No. DETC2001/DAC-21063
    [84]L.A. Schmit Jr., B. Farshi, Some approximation concepts for structural synthesis. AIAA J.1974,12 (5):692-699
    [85]L. A. Schmit, Jr., H. Miura, Approximation concepts for efficient structural synthesis, Tech. Report CR-2552, NASA,1976
    [86]Conn, A. R., Gould, N. I. M., and Toint, Ph. L., Global Convergence of a Class of Trust Region Algorithms for Optimization with Simple Bounds, SIAM J. Numer. Ana, 1988,25(2):433-464
    [87]Conn, A, R., Gould, N.1. M., and Toint, Ph. L., Testing a Class of Methods for Solving Minimization Problems with Simple Bounds on the Variables, Mathematics of Computation,1988,50(182):399-430
    [88]Rodriguez J. F., Renaud J. E., Watson L. T. Trust Region Augmented Lagrangian Methods for Sequential Response Surface Approximation and Optimization. Transactions of the ASME.1998,120(3):58-66
    [89]J. F. Rodriguez, J. E. Renaud. Convergence of trust using variable fidelity region augmented Lagrangian approximation data. Structural Optimization,1998,15: 141-156
    [90]Friedman, J. H., Multivariate Adaptive Regression Splines, The Annals of Statistics, 1991,19(1):1-67
    [91]Scott Crino, Donald E. Brown, Global Optimization With Multivariate Adaptive Regression Splines. IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B:CYBERNETICS,2007,37(2),333-340
    [92]Mokhtar S. Bazaraa, C. M. Shetty. Nonlinear Programming Theory and Algorithms. John Wiley & Sons.1979
    [93]DONALD R. JONES, MATTHIAS SCHONLAU, WILLIAM J.WELCH.:Efficient Global Optimization of Expensive Black-Box functions. Journal of Global Optimization,1998,13:455-492
    [94]Schmit, L.A., Jr. Farshi, B. Some approximation concepts for structural synthesis. AIAA J.1974,12:692-699
    [95]Schmit, L.A., Miura, H. Approximation concepts for efficient structural synthesis. NASA CR-2552,1976
    [96]S. Shan and G.G. Wang. Space exploration and global optimization for computationally intensive design problems:a rough set based approach. Struct Multidisc Optim,2004,28:427-441
    [97]Sφren N. Lophaven, Hans Bruun Nielsen, Jacob Sφndergaard. DACE—A MATLAB Kriging Toolbox. Technical University of Denmark,2002
    [98]Sacks J, Welch W J, Mitchell T J, et al. Design and Analysis of computer experiments. Statistical. Science.1989,4(4):409-423
    [99]Sasena M J. Flexibility and efficiency anhancements for constrained global design optimization with kriging approximations:[PhD thesis]. University of Michigan,2002
    [100]Jay D. Martin, Computational Improvements to Estimating Kriging Metamodel Parameters. Journal of Mechanical Design,2009,131(8):084501-084506
    [101]Soren N. Lophaven, Hans Bruun Nielsen, Jacob Sφndergaard. ASPECTS OF THE MATLAB TOOLBOX DACE. Technical University of Denmark.2002
    [102]G. Gary Wang and S. Shan. Review of Metamodeling Techniques in Support of Engineering Design Optimization. J. Mech. Des.2007,129(4):370-380
    [103]Jin, R., Chen, W. and Sudjianto, A. An Efficient Algorithm for Constructing Optimal Design of Computer Experiments. Journal of Statistical Planning and Inferences,2005, 134(1):268-28

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700