除草剂咪唑乙烟酸对玉米根系的对映体选择性抑制及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农业有机化合物广泛存在于环境中,其手性对映异构体在生物有效性、环境安全性等方面存在不可忽视的差异性,已越来越引起人们的重视。作为我国除草剂支柱产品的咪唑啉酮类除草剂是典型的具有手性结构的农药,其对映体对靶标酶乙酰乳酸合成酶(ALS)的离体活性表现出对映体选择性抑制。然而,酶活抑制的手性差异性机理尚未被揭示,对映体对植株的差异性抑制研究也尚未见报道。为此,本文首先建立了最具代表性的咪唑啉酮除草剂咪唑乙烟酸(IM)对映体在高效液相色谱(HPLC)上的手性分离条件。在得到对映体制备样的基础上,通过对咪唑乙烟酸的对映异构体以及外消旋体作用于玉米幼苗和拟南芥幼苗的研究,一方面观察作为土施农药,其对首要作用部位根系的生长形态、亚显微结构和根毛发生发育的选择性影响,以及植物体内生长调节物质的响应与根毛的形成、发育之间的相互关系;另一方面,研究其对靶标酶乙酰乳酸合成酶活性抑制的对映体选择性差异及机理。从这两方面探明和揭示IM对映体对植物的对映体选择性抑制及机理。本文取得的主要研究结果如下
     在高效液相色谱上,采用Chiralpak OJ手性柱,以正己烷/乙醇/乙酸(75/25/0.5,v/v/v)为流动相,基线分离得到IM的对映体。并采用HPLC-CD联用技术,确定对映体的出峰次序和CD光谱图。通过八区律确定了IM两个对映体的绝对构型分别为S-(+)-IM和R-(-)-IM。同时以所建立的对映体分离方法制备了对映体标样。
     通过除草剂IM对映体(浓度为100,200,400和800μgL-1)作用于玉米和拟南芥幼苗的试验发现,IM显著抑制植株地上部和根系的生长,使植株表现出明显的毒害症状,包括叶子萎黄、生长停滞以及根尖溃烂等。IM对生长的抑制作用呈对映体选择性,R-(-)-IM的毒害作用最强,S-(+)-IM的生长抑制作用最弱,外消旋的抑制能力介于左右旋之间。
     当处理浓度为100,200,400和800μgL-1,IM对玉米根系形态呈对映体选择性影响,根直径增粗,而根表面积和体积显著减小,侧根数也显著减少,根系活力显著下降。
     200和400μgL-1IM对映体分别选择性抑制玉米和拟南芥根毛的生长,根毛长度明显变短,数量显著减少,根毛细胞破损。通过转基因拟南芥DR5:GFP观察根部的生长素水平发现,IM处理降低了生长素含量,在受抑制强烈的R-(-)-IM中,根毛中荧光强度比s-(+)-IM处理的弱,表明生长素含量低。添加外源生长素处理,可缓解根毛生长的抑制状况。根中生长素含量的降低是IM毒害根毛生长的重要原因。
     400μgL-1 IM处理对根冠细胞器亚显微结构具有对映体选择性毒害作用,导致根尖细胞核呈不规则形状,而且核仁消失,其他细胞器数量减少,个体变小其中,线粒体膜解体,线粒体嵴也变得模糊不清;内质网膜断裂;高尔基体膜囊肿胀,小液泡消失。IM处理还导致细胞膜和细胞壁增粗,纤维化,失去弹性,其中平衡石的亚显微结构的破坏导致根系横向生长。
     施入土壤或残留的除草剂对植株的对映体选择性毒害首先表现在对根系的快速抑制,其通过对根系形态结构的改变、对根细胞内部结构的破坏、对根系和根毛生长的抑制以及生理活性抑制,最终导致对植株的毒害。
     IM对离体和活体ALS酶活性均存在对映体选择性抑制,R-(-)-对映体的抑制作用最强,S-(+)-对映体的抑制作用最弱,(±)-IM介于左右旋之间。离体酶活性抑制情况比较复杂,随着处理浓度变化,左右旋抑制差异呈规律性变化,当IM浓度为40μg L-1时,R-(-)-对映体对离体酶活的抑制率达到5.6%,而S-(+)-对映体对酶活仅有微弱的抑制,抑制率为0.2%,右旋和左旋抑制能力相差25倍之多。随着浓度的升高,抑制作用越加显著,左右旋的差异也逐渐减少。浓度升高至200μg L-1,R-(-)-IM的抑制率为28.9%,S-(+)-和(±)-IM为3.8%和19.8%。R-(-)-对映体和S-(+)-对映体的抑制率差异降低至7倍。当IM浓度低于1 mg L-1,S-(+)-IM的抑制作用上升缓慢,而R-(-)-IM的抑制却已很强烈,1 mg L-1时已经达到70.4%。随着的浓度呈倍数升高,S-(+)-对映体的抑制作用也显著提高,在5mg L-1和25 mg Lq,S-(+)-,R-(-)-和(±)-IM三者都对酶活有很高的抑制,左右旋的差异仅为1倍多。;100,200,400和800μg L-1的IM处理后,左右旋对活体酶活抑制的差异在2倍左右,与植株生长抑制情况一致。表明活体酶活与生长情况有更大的相关性。分子对接实验表明IM对映体与ALS相互作用存在立体选择性.,R-(-)-IM才是与ALS结合的优势构型。因此R-(-)-IM比S-(+)-IM对ALS的抑制作用更强。
     农药的手性研究、单一光学活性异构体生产上的突破,是减少生态环境污染和推行绿色农业的必然要求。为此,在手性层面上深入研究对映异构体的活性、作用机理等问题具有重要现实意义。本文通过对咪唑乙烟酸的对映体以及外消旋体作用于玉米和拟南芥幼苗根系及靶标酶的研究,探明和揭示IM对映体对植物的对映体选择性抑制及机理,为客观评价咪唑啉酮类除草剂的生物活性、生产上如何防治或降低残留除草剂对后茬作物的毒害以及开发新型单一旋光性除草剂提供理论依据。
The enantioselectivety of the chiral agricultural organic compounds widespread in the environment has received more and more extensive understanding and became one of the focus researches. Imidazolinones, as a pillar of China's herbicide products, are a class of pesticides with typical chiral structure. It has been reported that the imidazolinones enantioselectively inhibited the acetolactate synthase (ALS), however, the mechanism of the enantioselective inhibition on anzyme has not been revealed; and the enantioselective phytotoxicity has not yet reported. In this study, imazethapyr (IM), one of the imidazolinones, which is chiral and is number one among all of the imidazolinones in sales, was chosed in this article as a model herbicide. Enantiomeric pure IM was eperated by High Performance Liquid Chromatography (HPLC). On this basis, enantioselective phytotoxicity of IM on plant roots growth were determined by measuring changes in the root morphology, subcellular structure and root hair growth of tender maize and Arabidopsis thaliana seedlings. As IM is a soil-applied herbicide, the radicle is the first organ to contact the herbicide in the soil. Exploring the relationship between plant growth regulators responses and root hair development and the mechanism of enantioselective inhibition of IM on acetolactate synthase activity so as to explore and reveal the mechanism of enantioselective phytotoxicities. The main findings of the paper are as follows:
     The IM enantiomers were baseline separated by HPLC on chiral column Chiralpak OJ with the mobile phase of hexane/ethanol/acetic acid solution (75/25/0.5 by volume). Circular dichroism (CD) detectors were used to determine the elution order and CD spectra of the enantiomers. The absolute configuration of IM enantiomers was identified as S-(+)-IM and R-(-)-IM by the octant rule from force-field calculations and CD spectra.
     Plant growth was enantioselectively inhibited by IM enantiomers at the concentration of 100,200,400 and 800μg L-1. Visible crop injury symptoms were observed, including chlorosis of leaves, reduced plant growth, and putrescence on the root tips.R-(-)-IM was the most effective inhibitor in the damage of maize and Arabidopsis thaliana growth in comparison to the S-(+)-IM and racemate mixtures at equal concentrations. The inhibition ability of racemate was between the R and S enantiomer.
     The maize root morphology was enantioselectively affected by the IM at the concentration of 100,200,400 and 800μg L-1. Root diameter was increased; the number of root tips, the root volume and surface area were significantly decreased. IM also enantioselectively decreased root activity.
     IM Enantioselectively inhibited the growth of root hairs of maize and Arabidopsis at 200 and 400μg L-1, respectively. Root hair length was shortened, the number of root hair significantly was reduced, and cell membranes were damaged. The observation of hormone levels in transgenic Arabidopsis DR5::GFP showed that the auxin content was involved in root hair growth inhibition rate. Exogenous auxin treatment alleviated the growth inhibition of root hair.
     Ultrastructural studies revealed that IM at the concentration of 400μgL-1 had adverse effects on cell organelles in maize root caps:cell nucleuses were irregular, and nucleoluses were disappeared; other cell organelles were damaged by a reduction in number and size; mitochondrial membranes were disintegrated, mitochondrial cristae became blurred; endoplasmic reticulum membranes were ruptured; the dictyosomers were severely swollen, small vacuoles were disappeared; membranes and cell walls became thicker and showed the phenomenon of fibrosis, and lacked flexibility. The ultrastructure of the statocyte seriously damaged, releasing the starch grains into the cytoplasm, so that the root cap would no longer be able to respond correctly to gravity, resulting in a transverse growth of the root.
     Enantioselective toxicity of herbicide on the plants after applied into the soil first reflects in the rapid inhibition of root. The changing of root morphology, the destruction of the internal structure of root cells, root hair growth suppression and physical activity inhibition ultimately lead to plant toxicity.
     IM enantioselectively suppressed the in vitro and in vivo ALS activity of maize leaves. R-(-)-IM was more active than S-(+)-IM. The in vivo ALS activity study showed only a 2-fold difference between R-(-)-IM and S-(+)-IM at the concentration of 100,200,400 and 800μg L-1 which is accordance with the previous established difference in retarding the plant growth of maize. Quite different from the in vivo study, the in vitro study showed that the difference in inhibition between the enantiomers fell sharply as concentration increased. At the lowest concentration of 40μg L-1,R-(-)-IM appeared 25 times more active than S-(+)-IM, but only 7 times at 200μg L-1. At the highest concentration of 25 mg L-1, in vitro ALS activity was almost completely inhibited by S-(+)-IM, there was only 1.1times differences between S-(+)-IM and R-(-)-IM. In the study of molecular docking, the combination of the IM with ALS shows chiral discrimination. R-(-)-IM could bind to ALS in its preferred orientation. The different interaction modes of the R-(-)-and the S-(+)-IM with ALS obtained from molecular docking provide a structural explanation for the more potent activity of the R-(-)-IM in contrast to the S-(+)-IM.
     Because of the very different biological properties that selectively interacting with biological systems, enantiomers of chiral coumpounds can be regarded as different substances. The enantioselectivity in efficacy, environmental safety and other aspects can not be ignored. Realization of the major breakthrough of chiral pesticides researches and production of a single optically active isomer are the inevitable requirements for reducing environmental pollution and the implementation of green agriculture. The study provides indicative values for the objective evaluation of imida.zolinone herbicides in environmental effects, for the prevention of the succeeding crop from the poisoning of residual herbicides, for directing research into the manufacture of sole optically active herbicides with high efficiency and low side-effects.
引文
1. Aichele T M, Penner D. Adsorption, desorption and degradation of Imidazolinones in Soill [J]. Weed Technology,2005,19(1):154-159.
    2. Ali I, Gupta V K, Aboul-Enein H Y. Chirality:A challenge for the environmental Scientists [J]. Current Science,2003,84(2):152-156.
    3. Anderson P C, Hibberd K A. Evidence for interaction of an imidazolinone herbicide with leucine, valine, and isolucine metabolism [J]. Weed Science,1985, 33:479-483.
    4. Bates T R, Lynch J P. Plant growth and phosphorous accumulation of wild type and two root hair mutants of Arabidopsis thaliana (Brassicaceae) [J]. American Journal of Botany,2000,87:958-963.
    5. Baum S F, Karanastasis L, Rost T L. Morphogenetic effect of the herbicide cinch on Arabidopsis thaliana root development [J]. Journal of Plant Growth Regulation, 1998,17(2):107-114.
    6. Bibikova T, Gilroy S. Root Hair development [J]. Journal of Plant Growth Regulation,2003,21(4):383-415.
    7. Blaser H U, Buser H P, Coers K et al. The Chiral Switch of Metolachlor:The Development of a Large-Scale Enantioselective Catalytic Process. Chimia,1999, 53:275-280.
    8. Butkus E, Stoncius S, Zilinskas A. Determination of absolute configuration of bicyclo[3.3.1]nonane-2,7-dione by circular dichroism spectroscopy and chemical correlation [J]. Chirality,2001,13(10):694-698.
    9. Caccamese S, Caruso C, Parrinello N et al. High-performance liquid chromatographic separation and chiroptical properties of the enantiomers of naringenin and other flavanones [J]. Journal of Chromatography A,2005, 1076(1-2):155-162.
    10. Caccamese S, Principato G, Jokela R et al. Chiral HPLC separation and CD spectra of the enantiomers of the alkaloid tacamoine and related compounds [J]. Chirality,2001,13:691-693.
    11. Cai X Y, Liu W P, Sheng G Y. Enantioselective degradation and ecotoxicity of the chiral herbicide diclofop in three freshwater alga cultures [J]. Journal of Agricultural and Food Chemistry,2008,56(6):2139-2146.
    12. Camilleri P, Gray A, Weaver K et al. Herbicidal diphenyl ethers:Stereochemical studies using enantiomers of a novel diphenyl ether phthalide [J]. Journal of Agriculture and Food Chemistry,1989,37 (22):519-523.
    13. Castiglioni E, Biscarini P, Abbate S. Experimental aspects of solid state circular dichroism [J]. Chirality,2010,21(1):28-36.
    14. Copeland R A. Enzymes:a practical introduction to structure, mechanisms and data analysis. New York:John Wiley & Sons.2000,149-150.
    15. Couderchet M, Bocion P F, Chollet R et al. Biological activity of two stereoisomers of the n-thienyl chloroacetamide herbicide dimethenamid [J]. Pesticide Science,1997,50(3):221-227.
    16. Desiderio C, Polcaro C M, Padiglioni P et al. Enantiomeric separation of acidic herbicides by capillary electrophoresis using vancomycin as chiral selector [J]. J Chromatography A,1997,781(1-2):503-513.
    17. Dobbelaere S, Vanderleyden J, Okon Y Plant growth-promoting effects of diazotrophs in the rhizosphere [J]. Crit. Rev. Plant Sci.,2003,22:107-149.
    18. Dyer W E, Fay P K. The effect ofchlorsulfuron soil residues on 11 crops,36 months after herbicide application. West Soc. Weed Sci. Res. Rep., Weed Science Society of America, Champaign, IL.1984,226.
    19. Dym O, Xenarios I, Ke H et al. Molecular docking of competitive phosphodiesterase inhibitors [J]. Molecular Pharmacology,2002,61:20-25.
    20. Easson L. Stedman E. Studies on the relationship between chemical constitution and physiological action. V. Molecular dissymmetry and physiological activity [J]. Biochemical Jounal,1933,27:1257-1266.
    21. Eleftheriou E P, Bekiari E. Ultrastructural effects of the herbicide chlorpropham (CIPC) in root tip cells of wheat [J]. Plant and Soil,2000,226:11-19.
    22. Fahmy A, Wagner G. TreeDock:A tool for protein docking based on minimizing van der Waals energies [J]. J. Am. Chem. Soc.,2002,124 (7):1241-1250.
    23. Fayez K A, Gerken I, Kristen U. Ultrastructural responses of root caps to the herbicides chlorsulfuron and metsulfuron methyl [J]. Plant and Soil,1994,161: 1-8.
    24. Fayez K A, Kristen U. The influence of herbicides on the growth and proline content of primary roots and on the ultrastructure of root caps [J]. Environmental and Experimental Botany,1996,36(1):71-81.
    25. Ferrara G, Loffredo E, Senesi N. Phytotoxic, clastogenic and bioaccumulation effects of the environmental endocrine disruptor bisphenol. A in various crops grown hydroponically [J]. Planta,2006,223:910-916.
    26. Fohse D, Classen N, Jungk A. Phosphorus efficiency of plants.2. significance of root radius, root hairs and cation-anion balance for phosphorus influx in seven plant species [J]. Plant Soil,1991,132:261-272.
    27. Gahoonia T S, Nielsen N E, Lyshede O B. Phosphorus (P) acquisition of cereal cultivars in the field at three levels of P fertilization [J]. Plant Soil,1999,211: 269-281.
    28. Gaina V, Svegzdiene D, Rakleviciene D et al. Kinetics of amyloplast movement in cress root statocytes under different gravitational loads [J]. Advances in Space Research.2003,31(10):2275-2281.
    29. Garrison A W. Probing the enantioselectivity of CHIRAL pesticides [J]. Environment Science Technology,2006,40(1):16-23.
    30. Gasparrini F, Misiti D, Villani C. High-performance liquid chromatography chiral stationary phases based on low-molecular-mass selectors [J]. Journal of Chromatography A,2001,906(1-2):35-50.
    31. Gaston S, Ribas-Carbo M, Busquets S et al. Changes in mitochondrial electron partitioning in responseto herbicides inhibiting branched-chain amino acid biosynthesis insoybean [J]. Plant Physiology,2003,133:1351-1359.
    32. Grichar W J, Ocumpaugh W R. Bundleflower (Desmanthus bicornutus) response to postemergence herbicides [J]. Weed Technology,2007,21(4):1089-1092.
    33. Gridley T, Soriano P, Jaenisch R. Insertional mutagenesis in mice [J]. Trends in Genetics,1987,3:162-166.
    34. Grieneisen V A, Xu J, Maree A F M et al. Auxin transport is sufficient to generate a maximum and gradient guiding root growth. Nature,2007,449:1008-1013.
    35. Grossmann K, Tresch S, Plath P. Triaziflam and diaminotriazine derivatives affect enantioselectively multiple herbicide target sites [J]. Zeitschrift fur Naturforschung,2001,56(7-8):559-569.
    36. Gunsolus J L, Curran W S. Herbicide mode of action and injury symptoms. Urbana.2007,1-21.
    37. Guo K, Kong W W, Yang Z M. Carbon monoxide promotes root hair development in tomato [J]. Plant Cell and Environment,2009,32(8):1033-1045.
    38. Hallahan B J, Camilleri P, Smith A, Bowyer J R. Mode of action studies on a chiral diphenyl ether peroxidizing herbicide, correlation between differential inhibition of protoporphyrinogen Ⅸ oxidase activity and induction of tetrapyrrole accumulation by the enantiomers [J]. Plant Physiology,1992,100:1211-1216.
    39. Han L, Guo B Y, Feng J H et al. Study on the enantioselective degradation of imazethapyr in soil by CE [J]. Chromatographia,2008,68(11-12):1071-1073.
    40. Harada N, Nakanishi K. The excition chirality method and its application to configurational and conformational studies of natural products [J]. Accounts of Chemical Research,1972,5(8):257-263.
    41. Hassan S, Roger J, Bernard R. Multiresidue methods using solid-phase extraction techniques for monitoring priority pesticides, including triazines and degradation products, in ground and surface waters. Journal of Chromatography A,2000, 885(1-2):217-236.
    42. Hawes M C, Gunawardena U, Miyasaka S, Zhao X. The role of root border cells in plant defense [J]. Trends in Plant Science,2000,5:128-133.
    43. Hirano Y, Hijii N. Effects of low pH and aluminum on root morphology of Japanese red cedar saplings [J]. Environmental Pollution,1998,101(3):339-347.
    44. Hoffman J C, Vaughn K C. Flupoxam induces classic club root morphology but is not a mitotic disrupter herbicide [J]. Pesticide Biochemistry and Physiology,1996, 55(1):49-53.
    45. Hund A, Fracheboud Y, Soldati A et al. Cold tolerance of maize seedlings as determined by root morphology and photo synthetic traits [J]. European Journal of Agronomy,2008,28(3):178-185.
    46. Hutta M, Rybar I, Chalanyova M. Liquid chromatographic method development for determination of fungicide epoxiconazole enantiomers by achiral and chiral column switching technique in water and soil [J]. Journal of Chromatography A, 2002,959(1-2):143-152.
    47. Imai K, Kojima H, Numata T et al. Chiral effects of (R)-/(S)-1-(a-methylbenzyl)-3-(p-tolyl) urea on the free amino acid levels in the root tips of rice and wheat [J]. Weed Biology and Management,2009,9(1):87-92.
    48. Itoh S and Barber S A. Phosphorus uptake by six plant species as related to root hairs [J]. Agronomy Journal,1983,75(3):457-461.
    49. Ivanov V B. Critical size of the cell and its transition to division. Ontogenez,1971, 524-553.
    50. Jungk A. Root hairs and the acquisition of plant nutrients from soil [J]. Journal of Plant Nutrition and Soil Science,2001,164:121-129.
    51. Jursik M, Soukup J, Venclova V. Herbicide mode of actions and symptoms of plant injury by herbicides:inhibitors of photosynthesis [J]. Listy Cukrovarnicke A Reparske,2010,126(2):48-54.
    52. Koher H P E, Angst W, Giger W et al. Environmental fate of chiral pollutants-the necessary of considering stereochemistry [J]. Chimia,1997,51(12):947-951.
    53. Kohler H P E, Nickel K, Zipper C. Effect of chirality on the microbial degradation and the environmental fate of chiral pollutants. In:Schink B (ed.), Advances in microbial ecology. Kluwer, New York,2000,201-231.
    54. Kojima H, Hitomi Y, Numata T, Tanaka C, Imai K, Omokawa H. Analysis of gene expression in rice root tips treated with R-1-a-methylbenzyl-3-p-tolylurea using PCR-based suppression subtractive hybridization [J]. Pesticide Biochemistry and Physiology,2009,93(2):58-64.
    55. Koltai H, Dor E, Hershenhorn J et al. Strigolactones'effect on root growth and root-hair elongation may be mediated by auxin-efflux carriers [J]. Journal of Plant Growth Regulation,2010,29(2):129-136.
    56. Kopittke P A, Dart P J, Menzies N W. Toxic effects of low concentrations of Cu on nodulation of cowpea (Vigna unguiculata) [J]. Environmental Pollution,2007, 145(1):309-315.
    57. Koshland Jr D E. Case of the hidden assumptions [J]. Biochemistry and Molecular Biology Education,2002,30:27-29.
    58. KovganKo N V, Sokolov S N, Survilo V L et al. Circular dichroism spectra of 5-and 7-bromo-6-ketosteroids [J]. Chemistry of Natural Compounds,2004,4(1): 45-49.
    59. Kundelchuk O P, Tarasenko L V, Blume Y B. Influence of amiprophosmethyl on the root cell structure in the herbicide-sensitive and-resistant lines of nicotiana plumbaginifolia [J]. Russian Journal of Plant Physiology,2002,49(3):381-386.
    60. Kurihara N, Miyamoto J, Paulson G D et al. Chirality in synthetic agrochemicals: bioactivity and safety consideration [J]. Pure Applied Chemistry,1997,69(9): 1335-1348.
    61. Kwit M, Gawronski J, Sbircea L et al. Circular dichroism spectra, optical rotations and absolute configurations of cis-dihydrodiol metabolites of quinoline and derivatives:The role of the nitrogen atom [J]. Chirality,2010,21(1):37-47.
    62. Langzagorta J M A., Torre C, Aller P. The effect of butyrate on cell cycle progression in Allium cepa root meristems [J]. Plant Physiology,1988,72: 775-781.
    63. Lao W, Gan J. High-performance liquid chromatographic separation of imidazolinone herbicide enantiomers and their methyl derivatives on polysaccharide-coated chiral stationary phases [J]. Journal of Chromatography A, 2006,1117(2):184-193.
    64. LaRossa R A, Van Dyk T K, Smulski D R. Toxic accumulation of a-ketobutyrate caused by inhibition of the branched-chain amino acid biosynthetic enzyme acetolactate synthase in Salmonella typhimurium [J]. Journal of Bacteriology, 1987,169:1372-1378.
    65. Lewis D L, Garrison A W, Wommack K E et al. Influence of environmental changes on degradation of chiral pollutants in soils [J]. Nature,1999,401(6756): 898-901.
    66. Leyser H M, Pickett F B, Dharmasiri S, Estelle M (1996) Mutations in the AXR3 gene of Arabidopsis result in altered auxin response including ectopic expression from the SAUR-AC1 promoter. Plant J.,10:403-413.
    67. Li M, Qin C, welti R et al. Double knockouts of phospholipases D1 and D2 in Arabidopsis affect root elongation during phosphate-limited growt h but do not affect root hair patterning [J]. Plant Physiology.,2006,140:761-770.
    68. Lin K D, Xu C, Zhou S S et al. Enantiomeric separation of imidazolinone herbicides using chiral high-performance liquid chromatography [J]. Chirality, 2007,19(3):171-178.
    69. Liu W P, Gan J Y, Schlenk D et al. Enantioselectivity in environmental safety of current chiral insecticides [J]. Proceedings of the National Academy of Sciences USA,2005,102(3):701-706.
    70. Liu W P, Ye J, Jin M Q. Enantioselective phytoeffects of chiral pesticides [J]. Journal of Agricultural and Food Chemistry,2009,57 (6):2087-2095.
    71. Los M. (5-oxo-2-imidazolin-2-yl)-arylcarboxylates:Anew class of herbicides. In: Magee P S, Kohn G K, Menn J J (eds.). Pesticide Synthesis Through Rational Approaches. Washington, DC, USA:American Chemical Society,1984,29-44.
    72. Lynch J. Root Architecture and Plant Productivity [J]. Plant Physiology,1995, 109(1):7-13.
    73. Matell M. Stereochemical studies on plant growth regulators. VII. Optically active a-(2-methyl-4-chlorophenoxy)-propionic acid and a-(2,4-dichlorophenoxy)-n-butyricacidandtheir steric relations [J]. Ark Kemi,1953,6:365-373.
    74. McCourt J A, Pang S S, King-Scott J et al. Herbicide-binding sites revealed in the structure of plant acetohydroxyacid synthase [J]. Proceedings of the National Academy of Sciences USA,2006,103:569-573.
    75. Merkl N, Schultze-Kraft R, Infante C. Phytoremediation in the tropics-influence of heavy crude oil on root morphological characteristics of graminoids [J]. Environmental Pollution,2005,138(1):86-91.
    76. Miasaka S C, Hawes M C. Possible role of root border cells in detection and avoidance of aluminium toxicity [J]. Plant Physiol.,2001,125:1978-1987.
    77. Michel C, Pierre F B, Reynold C, Seckinger K, Boger P. Biological activity of two stereoisomers of the N-Thienyl chloroacetamide herbicide dimethenamid [J]. Pesticide Science,1997,50(3):221-227.
    78. Moore M T, Huggett D B, Huddleston G M et al. Herbicide effects on typha latifolia (Linneaus) germination and root and shoot development [J]. Chemosphere,1999,38(15):3637-3647.
    79. Morris G M, Goodsell D S, Huey R, et al. Autodock Version 3.05 user manual, 2000.
    80. Muller T A, Kohler H P E. Chirality of pollutants-effects on metabolism and fate [J]. Applied Microbiol Biotechnology,2004,64:300-316.
    81.Nakahira K, Uchiyama M, Ikai T et al. Effect of (R)-(+)-and (S)-(-)-quizalofop-ethyl on lipid metabolism in excised corn stem-basemeristems [J]. Pesticide Science,1988,13(2):269-276.
    82. Nederkoorn P H J, van Gelder E M, den Kelder G M D O et al. The agonistic binding site at the histamine H-2 receptor.2. Theoretical investigations of histamine binding to receptor models of the seven alpha-helical transmembrane domain [J]. J Comput. Aid. Mol. Des.,1996,10:479-489.
    83. Nielsen K L, Lynch J P, Jablokow A G et al. Carbon cost of root systems:an architectural approach [J]. Plant and Soil,1994,165(1):161-169.
    84. Ogston A G. Interpretation of experiments on metabolic processes, using isotopic tracer elements [J]. Nature,1948,163:963.
    85. Okada K, Shimura Y. Genetic analyses of signaling in flower development using Arabidopsis. Plant Molecular Biology,1994,26:1357-1377.
    86. Okamoto Y, Kaida Y. Resolution by high-performance liquid chromatography using polysaccharide carbamates and benzoates as chiral stationary phases [J]. Journal of Chromatography A,1994,666(1-2):403-419.
    87. Omokawa H, Kawata Y, and Konnai M. Interaction between optical isomerism and plant pharmacological action, change of modes of action and chirality of 1-(a-methylbenzyl)-3-p-tolylurea. Pesticide Science,1993,37(1):107-112.
    88. Omokawa H, Konnai M. Inhibition of Echinochloa crus-galli var. frumentacea seeding root elongation by chiral 1,3,5-triazines in the dark [J]. Pesticide Science, 1992,35(1):83-86.
    89. Omokawa H, Konnai M. PSII inhibitory activity of 2, 4-diamino-6-chloro-s-triazine with a chiral sec-butyl and/or a-methylbenzyl group [J]. Agricultural and Biological Chemistry,1990,54 (9):2373-2378.
    90. Omokawa H, Murata H, Kobayashi S. Chiral response of Oryzeae and Paniceae plants in a-methylbenzyl-3-p-tolyl ureaagar medium. Pesticide Management Science,2003,60 (1):59-64.
    91. Omokawa H, Ryoo J H. Enantioselective response of rice and barnyard millet on root growth inhibition by optically activea-methylbenzyl phenylureas [J]. Pesticide Biochemistry and Physiology,2001,70(1):1-6.
    92. Omokawa H, Takeuchi M, Konnai M. Rhizome-induction activity of chiral 2-a-methylbenzylamino-4-alkylamino-6-chloro-1.3.5-triazines in Cyperus serotinus Rotb [J]. Pesticide Science,1992,35(1):87-90.
    93. Omokawa H, Takeuchi M. Reverse chiral discrimination relationships between the inhibitory activity of 1,3,5-triazines on photosystem II and light-independent root growth [J]. Pesticide Biochemistry and Physiology,1994,50 (2):129-137.
    94. Ottenschlager I, Wolff P, Wolverton C et al. Gravity-regulated differential auxin transport from columella to lateral root cap cells. Proceedings of the National Academy of Sciences USA,2003,100:2987-2991.
    95. Pan J W, Ye D, Wang L L et al. Root border cell development is a temperature insensitive and Al-sensitive process in barley [J]. Plant Cell Physiology,2004,45: 751-760.
    96. Qian H F, Hu H J, Mao Y Y et al. Enantioselective phytotoxicity of the herbicide imazethapyr in rice [J]. Chemosphere,2009,76(7):885-892.
    97. Rahman A, Hosokawa S, Oono Y, Amakawa T, Goto N, Tsurumi S. Auxin and ethylene response interactions during Arabidopsis root hair development dissected by auxin influx modulators. Plant Physiology,2002,130:1908-1917.
    98. Rao M S, Olson A J. Modelling of factor Xa-inhibitor complexes:a computational flexible docking approach [J]. Proteins,1999,34:173-183.
    99. Ray T B. Site of action of chlorsulfuron-inhibition of valine and isolucine biosynthesis in plants [J]. Plant Physiology,1984,75:827-831.
    100. Reid R J, Field L D, Pitman M S. Effects of external pH, fusicoccin and butyrate on the cytoplasmic pH in barley root tips measured by 31P-nuclear magnetic resonance spectroscopy [J]. Planta,1985,166:341-347.
    101. Roland K, Heimich H. Chiral Environmental pollutants-trace analysis and ecotoxicology [J]. Waste Management,2003,23(3):287-289.
    102. Rost T L, Hess F D. Analysis of the mitotic index in root tip meristems as a tool to determine herbicide cellcycle specificity. In:Boger P, Sandmann G (eds.) Target Assays for Modern Herbicides and Related Phytotoxic Compounds. Lewis Publishers, Ann Arbor, MI,1993,101-119.
    103. Royuela M, Gonzalez A, Gonzalez E M et al. Physiological consequences of continuous, sublethal imazethapyr supply to pea plants [J]. Journal of Plant Physiology,2000,157(3):345-354.
    104. Ryoo J H, Kuramochi H, Omokawa H. Enantioselective herbicidal activity of chirala-methylbenzylphenylureas against cyperaceae and echinochloa paddy weeds [J]. Bioscience, Biotechnology and Biochemistry,1998,62(11): 2189-2193.
    105. Sabik H, Jeannot R, Rondeau B. Techniques for monitoring priority pesticides, including triazines and degradation products, in ground and surface waters [J]. Journal of Chromtography A,2000,885:217-236.
    106. Santelia D, Vincenzetti V, Azzarello E et al. MDR-like ABC transporter AtPGP4 is involved in auxin-mediated lateral root and root hair development [J]. FEBS Letters,2005,579(24):5399-5406.
    107. Scarponi L, Alla M M N, Martinetti L. Consequences on nitrogen metabolism in soybean (Glycine max L.) as a result of imazethapyr action on acetohydroxy acid synthase [J]. Journal of Agricultural Food and Chemistry,1995,43(3): 809-814.
    108. Schiefelbein J W. Constructing a plant cell. The genetic control of rot hair development [J]. Plant Physiology,2000,124:1525-1531.
    109. Schneiderheinze J M, Armstrong D W, Berthod A. Plant and soil enantioselective biodegradation of racemic phenoxyalkanoic herbicides [J]. Chirality,1999,11(4):330-337.
    110. Shallenberger R S, Acree R E. Molecular theory of sweet taste [J]. Nature,1967, 216:480-482.
    111. Shaner D L, Anderson P C, Stidham M A. Imidazolinones-potent inhibiters of acetohydroxyacid synthase [J], Plant Physiology,1984,76:545-546.
    112. Shaner D L, Reider M L. Physiological responses of corn (Zea mays) to AC 243, 997 in combination with valine, leucine, and isoleucine [J]. Pesticede Biochemistry Physiology,1986,25:248-257.
    113. Shaner D L, Singh B K. Acetohydroxyacid synthase inhibitors. In:Roe R M, Burton J D, Kuhr R J et al. Herbicide activity:toxicology, biochemistry and molecular biology. Amsterdam, the Netherlands:IOS Press,1997,69-110.
    114. Sheldon A R, Menzies N W. The effect of copper toxicity on the growth and root morphology of Rhodes grass (Chloris gayana Knuth.) in resin buffered solution culture [J]. Plant and Soil,2005,278(1-2):341-349.
    115. Shimabukuro R H, Hoffer B L. Enantiomers of diclofop-methyl and their role in herbicide mechanism of action [J]. Pesticide Biochemistry and Physiology,1995, 51(1):68-82.
    116. Singhl B K, Shaner D L. Biosynthesis of branched chain amino acids:from test tube to field [J]. Plant Cell,1995,7:935-944.
    117. Smith D M, Daniel K G, Wang Z et al. Docking studies and model development of tea polyphenol proteasome inhibitors:applications to rational drug design [J]. Proteins,2004,54:58-70.
    118. Sokolov V I, Zefirov N S. Enantioselectivity in 2-point binding:the model of rocking tetrahedron [J]. Dokl. Akad. Nauk. SSSR.1991,319:1382-1383.
    119. Soltani N, Gillard C L, Swanton C J et al. Response of white bean (Phaseolus vulgaris) to imazethapyr [J]. Crop Protection,2008,27(3-5):672-677.
    120. Soltani N, Robinson E, Shropshire C et al. Otebo bean (Phaseolus vulgaris) sensitivity to pre-emergence herbicides [J]. Crop Protection,2006,25(5): 476-479.
    121. Splivallo R, Fischer U, Gobel C et al. Truffles regulate plant root morphogenesis via the production of auxin and ethylene [J]. Plant Physiology,2009,150(4): 2018-2029.
    122. Stalikas C D, Konidari C N. Analytical methods to determine phosphonic and amino acid group-containing pesticides [J]. Journal of Chromatography A,2001, 907(1-2):1-19.
    123. Stidham M A, Singh B K. Imidazolinone-acetohydroxyacid synthase interactions. In, Shaner D L, O'Connor S L (eds.). The imidazolinone herbicides. Boca Raton, FL, CRC Press,1991,71-90.
    124. Suami T, Hough L. Molecular mechanisms of sweet taste.3. Aspartame and its non-sweet isomers [J]. Food Chemistry,1993,46:235-238.
    125. Subramanyan J, Rangaswamy N S. Effects of dichlobenil on two tip growth systems-pollen tube and root hair [J]. National Academy Science Letters-India, 1999,22(7-8):113-118.
    126. Sunohara Y, Shirai S, Wongkantrakorn N et al. Sensitivity and physiological responses of Eleusine indica and Digitaria adscendens to herbicide quinclorac and 2,4-D [J]. Environmental and Experimental Botany,2010,68(2):157-164.
    127. Takahashi H, Inoue Y. Stage-specific crosstalk between light, auxin, and ethylene during low-pH-induced root hair formation in lettuce (Lactuca sativa L.) seedlings [J]. Journal of Plant Growth Regulation,2008,56(1):31-41.
    128. Tan S, Evans R, Singh B. Herbicidal inhibitors of amino acid biosynthesis and herbicide tolerant crops [J]. Amino Acids,2006,30:195-204.
    129. Tanaka C, Itagaki M, Arai S, Omokawa H. Triticeae plants preferentially responded to S-1-a-methylbenzyl-3-p-toly-lurea in root growth and tetrazolium reduction assays [J]. Weed Biology and Management,2005,5 (2):62-68.
    130. Teng NJ, Wang J, Chen T et al. Elevated CO2 induces physiological, biochemical and structural changes in leaves of Arabidopsis thaliana. New Phytologist,2006,172:92-103.
    131. Topiol S, Sabio M. Interactions between eight centers are required for chiral recognition [J]. Journal of the American Chemical Society,1989,111: 4109-4110.
    132. Tranel P J, Wright T R. Resistance of weeds to ALS inhibiting herbicides:what have we learned? [J]. Weed Science,2002,50:700-712.
    133. USEPA. Pesticide industry sales and usage. [EB/OL]. (2004). http://www.epa.gov/oppbead1/pestsales/.
    134. Vance C P, Uhde-Stone C, Allan D L. Phosphorus acquisition and use:critical adaptations by plants for securing a nonrenewable resource [J]. New Phytologist, 2003,157:423-447.
    135. Wang T, Wenslow R M Jr. Effects of alcohol mobile-phase modifiers on the structure and chiral selectivity of amylose tris (3,5-dimethylphenylcarbamate) chiral stationary phase [J]. Journal of Chromatography A,2003,1015(1-2): 99-110.
    136. Whittington J, Jacobsen S, Rose A. Optically pure(-) clethodim, compositions and methods for controlling plant.2001, US Patent 6,300,281 B1.
    137. Williiams A. Opportunities for chiral agrochemicals [J]. Pesticide Science,1996, 46(1):3-9.
    138. Yang G, Liu H, Yang H. QSAR and 3D-QSAR analysis of structurally diverse ALS inhibitors:sulfonylureas and triazolopyrimidine-2-sulfonamides [J]. Pesticide Science,1999,55:1143-1150.
    139. Yashima E. Polysaccharide-based chiral stationary phases for high-performance liquid chromatographic enantioseparation [J]. Journal of Chromatography A, 2001,906(1-2):105-125.
    140. Yong J W H, Wong S C and Letham D S et at. Effects of elevated CO2 and nitrogen nutrition on cytokinins in the xylem sap and leaves of cotton. Plant Physiol.,2000,124(2):767-779.
    141. Yuk-Kiu N G, Moore R. Root growth, secondary root formation and root gravitropism in carotenoid-deficient seedlings [J]. Annals of Botany,1985,55: 387-394.
    142. Zhou Q Y, Liu W P, Zhang Y S, Liu K. Action mechanisms of acetolactate synthase-inhibiting herbicides [J]. Pesticide Biochemistry and Physiology,2007, 89(2):89-96.
    143. Zhou Q Y, Zhang N, Zhang C et al. Molecular mechanism of enantioselective inhibition of imazethapyr enantiomers on acetolactate synthase [J]. Journal of Agriculture and Food Chemistry,2010,58(7):4202-4206.
    144. Zhu J, Kaeppler S M, Lynch J P. Mapping of QTL controlling root hair length in maize(Zea mays L.)under phosphorus deficiency [J]. Plant Soil,2005,270: 299-310.
    145. Zhu M, Ahn S M, Atsumoto H. Inhibition of growth and development of root border cells in wheat by Al [J]. Physiol. Plant, 2003,117:359-367.
    146. Zsila F, Gergely A, Szasz G. Conformation study on ketamine by circular dichroism and ultraviolet spectroscopy [J]. Chirality,1999,11(4):280-285.
    147.蔡妙珍,刘鹏,徐根娣等.大豆根缘细胞对Al3+毒害的响应[J].中国农业科学,2007,42(2):271-276.
    148.曹洪恩,吴鸣虎,王红玲.手性除草剂糖草酯的合成研究[J].咸宁学院学报,2007,27(6):72-73.
    149.陈胜文,林坤德,席萌等.高效液相色谱-圆二色检测法分析甲霜灵的对映体纯度[J].分析化学,2006,34(4):525-528.
    150.陈胜文.手性农药圆二色光谱表征.[浙江大学学位论文],杭州,浙江大学.2005,33-62.
    151.褚志义.生物合成药物学[M].北京:化学工业出版社,2000,700.
    152.段爱霞,陈晶,刘宏德等.分子对接方法的应用与发展[J].分析科学学报,2009,25(4):473-477.
    153.黄春艳,杨绍义.咪唑啉酮类除草剂对后茬作物安全性研究初报[J].农药学学报,2001,3(2):29-34.
    154.蒋木庚,王鸣华,杨春龙等.新型旋光性农药的研究与展望[J].农药,2000,39(12):1-3.
    155.蒋育澄,李淑妮,翟全国.手性药物的酶催化不对称定向合成[J].化学教育,2008,12:9-12.
    156.李海屏.20世纪80年代以来世界除草剂新品种开发进展及特点(续)[J].农业科学与管理,2004,25(5):26-29,39.
    157.李海屏.20世纪80年代以来世界除草剂新品种开发进展及特点(一)[J].农业科学与管理,2004,25(4):28-31.
    158.李孟军,王长春.植物的向性运动及机理简介[J].生物学通报,2003,38(5):23-24.
    159.李旭坤,刘凤玲.手性农药的合成技术[J].山东化工,2001,30(4):22-26.
    160.刘维屏,金美青,蔡喜运等.禾草灵的作用机制及环境生态效应研究进展[J].农药学学报,2008,10(4):383-391.
    161.刘维屏,叶璟,张安平,钱海丰.植物与手性化合物的对映体选择性相互作用[J].应用生态学报,2008,19(2):441-448.
    162.刘莹,盖钧镒,吕彗能.作物根系形态与非生物胁迫耐性关系的研究进展[J].植物遗传资源学报,2003,4(3):265-269.
    163.任雪玲,陈婷婷,张楠等.乙酰乳酸合成酶抑制剂的分子生物学和晶体学基础.杂草科学,2009,2:9-13
    164.沈晓霞,倪长春.咪唑啉酮类除草剂耐受性作物的过去,现状和未来(上)[J].世界农药,2005,27(5):9-13.
    165.宋倩,梅向东,宁君,袁会珠.除草剂的主要作用靶标及作用机理[J].农药,2008,47(10):703-705.
    166.苏少泉.除草剂中的手性化合物[J].现代农药,2005,4(5):1-5.
    167.田芹,毕承路,任丽萍等.高效液相色谱圆二色检测技术在手性化合物分析中的应用[J].分析化学,2006,34(3):427-432.
    168.汪小兰.有机化学,北京:高等教育出版社,1997,78-79.
    169.王化岑,刘万代,王晨阳.超高产小麦根系生长规律与垂直分布状态研究[J].中国农学通报,2002,18(2):6-7.
    170.王立德,廖红,王秀荣,严小龙.植物根毛的发生、发育及养分吸收[J].植物学通报,2004,21(6):649-659.
    171.王维,杨建昌,朱庆森.控水条件下水稻旱育秧苗的形态生理特征[J].江苏农业研究,2001,22(1):16-20,52.
    172.吴立军.旋光谱和圆二色散谱在有机化学中的应用[J].沈阳药学院学报,1989,6(4):293-296.
    173.张帆,田甜,金宗来等.新型除草剂丙酯草醚对油菜幼苗生长与根尖细胞活性的影响[J].中国农业科学,2009,42(10):3522-3529.
    174.张志勇,王素芳,汤菊香等.植物根系形态建成研究进展[J].2009(3):14-15,27.
    175.郑卓.手性农药与手性技术(一)[J].精细与专用化学品,2001a,23:3-6.
    176.郑卓.手性农药与手性技术(二)[J].精细与专用化学品,2001b,24:7-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700