灌溉方式对红富士苹果根系水分生理特性影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苹果是世界上栽培面积最广的四大水果之一,我国苹果的栽培面积和产量均居世界第一,但苹果生产区主要分布在我国的干旱半干旱地区,干旱缺水是影响苹果高产优质的重要因素。根系是植物吸收水分、养分的主要器官,当受到土壤水分胁迫时,根系首先感受到并发生生理生化反应,以及传递信号到地上部,使整个植株对水分胁迫做出反应,以适应环境的变化。根系的生长、代谢和活力变化直接影响地上部的生长发育。为此,于2007-2010年以8a生长富2号苹果为试材,通过3/4、1/2、1/4交替灌溉、1/2固定灌溉、常规畦灌和全根系干旱6个处理,对不同灌溉方式下红富士苹果的根系水分生理特性等进行了研究。主要研究结果如下:
     1.不同灌溉方式中,常规畦灌的土壤体积含水量在各时期最高,全年平均为23.20%,与1/2固定灌溉的灌溉区无显著差异,显著高于其他处理;3/4、1/2、1/4根系体积交替灌溉全年平均值分别为19.66%、19.80%、19.98%,三者之间差异不显著,且显著低于常规畦灌和1/2根系体积固定灌溉的灌溉区;1/2根系体积固定灌溉的未灌溉区和全根系干旱处理的年平均土壤体积含水量分别为15.58%和15.83%,极显著低于其他处理。
     2.红富士苹果7月份和8月份的日平均液流速率分别为6.82 cm·h~(-1)、6.12 cm·h~(-1),显著高于其它月份。常规畦灌的树干单位面积液流通量最大,为7.907 kg·cm~(-2)·d~(-1),与3/4交替灌溉无显著差异;同时,3/4交替灌溉的液流通量与1/2交替灌溉和1/2固定灌溉差异不显著;全根系干旱的液流通量最小,为4.857 kg·cm~(-2)·d~(-1),与1/4交替灌溉无显著差异。液流速率与根系土壤体积含水量呈正相关。
     3.不同灌溉方式中,在0~20cm、20cm~40cm、40cm~60cm、60cm~80cm土层中每网格内(20cm×20cm)各类型根系总量分别以1/2交替灌溉、3/4交替灌溉、3/4交替灌溉、全根系干旱最多。全根系干旱各类型根系总量在0~20cm、20cm~40cm、40cm~60cm的均最少,分别为47.3条、94.2条、67.8条,3/4交替灌溉在60cm~80cm土层最少,为25.5条。各处理在4个土层中每网格内(20cm×20cm)根系均以直径<2mm的最多,直径>5mm的最少。不同灌溉方式中,在0~20cm土层,1/2交替灌溉的直径<2mm的根系最多,为127.7条;1/2固定灌溉的灌溉区直径2mm~5mm的根系最多,为19.3条,1/4交替灌溉的直径>5mm根系最多,为0.8条。在20cm~40cm土层中,3/4交替灌溉的直径<2mm的根系最多,为123.1条;3/4交替灌溉的直径2mm~5mm的根系最多,为20.2条;常规畦灌直径>5mm根系最多,为12.5条。在40cm-60cm土层中,1/2交替灌溉的直径<2mm的根系最多,为76.8条;3/4交替灌溉的直径2mm~5mm的根系最多,为10.4条;常规畦灌直径>5mm根系最多;为8.7条。在60~80cm土层中,1/2固定灌溉的未灌溉区的直径<2mm的根系最多,为40.6条;全根系干旱的直径2mm~5mm的根系最多,为6.8条;1/2固定灌溉的未灌溉区>5mm根系最多,为4.6条。不同灌溉方式中,3/4交替灌溉的各类型根系干重总量最大,为57.3 mg·cm~(-3),为常规畦灌的1.34倍,全根系干旱的根系干重总量最小,为24.8 mg·cm~(-3)。1/2交替灌溉的直径<2mm根系最多,为16.1 mg·cm~(-3);1/4交替灌溉的直径2mm~5mm根系最多,为14.3 mg·cm~(-3);3/4交替灌溉的直径>5mm根系最多,为28.1 mg·cm~(-3)。不同灌溉方式中,常规畦灌的根毛长度最小,为0.118 mm,与1/2固定灌溉的灌溉区无显著差异;3/4、1/2、1/4交替灌溉各灌溉部位平均根毛长度分别为0.233 mm、0.244 mm、0.290 mm,显著高于1/2固定灌溉、常规畦灌和全根系干旱,其中1/4交替灌溉的根毛长度最大,为常规畦灌的2.50倍。1/2固定灌溉的未灌溉区和全根系干旱的根毛密度分别为159.2条/mm~3、164.3条/mm~3,两者极显著低于其他灌溉部位;3/4、1/2、1/4交替灌溉各灌溉部位平均根毛密度分别为269.2条/mm~3、287.5条/mm~3、249.1条/mm~3,极显著高于其他处理,其中1/2交替灌溉的未灌溉区根毛密度最大,为常规畦灌的1.58倍。适度干旱可促进根系发育。
     4.不同灌溉方式中,常规畦灌和1/2固定灌溉的灌溉区均有完整细胞结构,细胞核完整,核膜清晰,核质浓厚、均匀,而1/2固定灌溉的未灌溉区与全根系干旱的细胞结构发生明显变化,细胞整体结构不完整,细胞质浓度降低,细胞内含物严重降解,质壁分离明显,细胞质膜局部发生内陷。在3/4、1/2、1/4交替灌溉中除了1/4交替灌溉的未灌溉区细胞核结构不完整,核膜开始解离外,其他部位的根系细胞均具有较高的完整性。
     5.不同灌溉方式中,3/4交替灌溉在各时期的平均根系活力最高,为236.39μg·g~(-1)·h~(-1),与1/2交替灌溉和常规畦灌无显著差异。不同灌溉方式中全根系干旱的根系ABA和IAA含量在各时期均显著高于其他处理,两者的年均值分别为5.977μg·g~(-1)、1.073μg·g~(-1);3/4、1/2、1/4交替灌溉和1/2固定灌溉的根系ABA和IAA含量在各时期的平均值分别为1.97μg·g~(-1)、2.45μg·g~(-1)、2.36μg·g~(-1)、3.41μg·g~(-1)和0.51μg·g~(-1)、0.58μg·g~(-1)、0.69μg·g~(-1)、0.72μg·g~(-1),其中,3/4交替灌溉的根系ABA和IAA含量显著低于其他根系分区处理;根系ABA和IAA含量与土壤相对含水量呈负相关关系。不同灌溉方式中常规畦灌的根系GA_3和ZT含量在各时期均最高,其年均值分别为38.90μg·g~(-1)、0.831μg·g~(-1);3/4、1/2、1/4交替灌溉和1/2固定灌溉的根系GA_3和ZT含量在各时期的平均值分别为34.2μg·g~(-1)、32.5μg·g~(-1)、31.7μg·g~(-1)、28.1μg·g~(-1)和0.64μg·g~(-1)、0.61μg·g~(-1)、0.60μg·g~(-1)、0.52μg·g~(-1),其中,3/4交替灌溉的根系GA_3和ZT含量显著高于其他根系分区处理,1/2和1/4交替灌溉无显著差异;1/2固定灌溉的未灌溉区和全根系干旱的根系GA_3和ZT含量随处理时间的延长逐渐降低;根系GA_3和ZT含量与土壤相对含水量呈正相关关系。不同灌溉方式中全根系干旱的根系脯氨酸和可溶性糖含量在各时期均最高,年均值分别为45.00μg·g~(-1)、879.1μg·g~(-1),1/2固定灌溉的未灌溉区和全根系干旱的脯氨酸和可溶性糖含量随处理时间的延长逐渐增加,均在果实成熟期均达到最高。不同灌溉方式中常规畦灌的根系SOD、POD、CAT活性在各时期均较低,其年均值分别为21.99 OD·g~(-1)、45.25 OD·g~(-1)、8.48 mg·g~(-1),3/4、1/2、1/4交替灌溉的根系SOD、POD、CAT活性均随灌溉体积的减少逐渐增强;1/2固定灌溉的未灌溉区和全根系干旱的SOD、POD、CAT活性显著高于其他灌溉部位,并且随处理时间的延长活性逐渐增强,SOD活性在果实膨大期达到最大值,分别为95.75OD·g~(-1)、108.29 OD·g~(-1),POD、CAT活性在果实成熟期达到最大值,分别为130.13 OD·g~(-1)、134.62 OD·g~(-1)和30.72 mg·g~(-1)、29.37 mg·g~(-1)。不同灌溉方式中全根系干旱的根系MDA含量和相对电导率在各时期均最高,年均值分别为8.9 nmol·g~(-1)、39.9%,其与1/2固定灌溉的未灌溉区随处理时间的延长而升高;3/4、1/2、1/4交替灌溉和1/2固定灌溉的根系MDA含量和相对电导率在各时期的平均值分别为5.22 nmol·g~(-1)、5.27 nmol·g~(-1)、6.51nmol·g~(-1)、6.39nmol·g~(-1)和18.43%、20.69%、19.39%、23.15%,其中1/2与3/4交替灌溉的根系MDA含量无显著差异,1/4、1/2、3/4交替灌溉的相对电导率之间无显著差异。不同灌溉方式中常规畦灌的根系可溶性蛋白质含量在除果实膨大期外的其他时期均最低,其在果实膨大期达到最大值,为1.437 mg·g~(-1);3/4、1/2、1/4交替灌溉和1/2固定灌溉的根系可溶性蛋白质含量在各时期的平均值分别为1.74 mg·g~(-1)、1.69 mg·g~(-1)、1.82 mg·g~(-1)、1.79 mg·g~(-1),3/4和1/2交替灌溉差异不显著。在苹果的根系组织中,分生区和伸长区的细胞中ABA含量最高,干旱胁迫可以导致根细胞中ABA含量明显上升,其中分生区和伸长区细胞最为敏感,而且细胞中的ABA由细胞核和细胞质中逐渐转移到细胞壁、质膜和核膜上;另外,导管细胞的细胞质中也有大量的ABA存在。
     6.不同灌溉方式中,3/4交替灌溉的新梢长度与常规畦灌在整个生长期均无显著差异,两者在6月底以后显著高于其他处理;常规畦灌、3/4、1/2、1/4交替灌溉、1/2固定灌溉、全根系干旱6个处理的新梢长度到9月17日分别为:58.35 cm、56.53 cm、47.13 cm、39.15 cm、45.31 cm、35.60 cm,常规畦灌新梢长度最大,与3/4交替灌溉无显著差异,1/2交替灌溉与1/2固定灌溉差异不显著。到9月25日常规畦灌、3/4、1/2、1/4交替灌溉、1/2根系体积固定灌溉、全根系干旱6个处理的果实体积分别为:258.4 cm~3、244.2 cm~3、240.4 cm~3、209.5 cm~3、215.8 cm~3、169.6 cm~3,3/4交替灌溉和1/2交替灌溉差异不显著,两者的果实体积显著高于1/4交替灌溉、1/2固定灌溉和全根系干旱。
     7.不同灌溉方式中,常规畦灌的果实单株产量最高,为80.12 kg/株,与3/4根系体积交替灌溉无显著差异;1/2交替灌溉的单株产量比常规畦灌低7.10%,但与3/4交替灌溉无显著差异;1/4交替灌溉的单株产量比常规畦灌低18.41%。1/4交替灌溉的可溶性糖含量最高,为13.84%,与1/2交替灌溉无显著差异。可滴定酸含量以常规畦灌最高,为0.3268%,极显著高于1/2交替灌溉和1/2固定灌溉,其中,1/2交替灌溉的可滴定酸含量最低。1/2交替灌溉的糖酸比最高,为44.56,与1/4交替灌溉无显著差异。
Apple is one of the four fruits with the bigget cultivating area in the world, although it ranks first in the world in both cultivated area and production, the apple production area mainly distributed in arid and semi-arid lands in China, drought is the important factor that affect high yield and quality of apple. Roots are the main organs that absorb water and nutrients, which feel first and then occured physiological and biochemical reactions under soil water stress to adapt to the changeable environment, and transmit signals to overground parts. The growth, metabolize, activity changes of roots directly affect the growth and development of overground parts. Field experiment was conducted with 8-year-old Changfu-2 apple trees as test materials to evaluate the effects of different irrigation patterns, i.e, 3/4, 1/2, 1/4 alternate partial root-zone irrigation,1/2 fixed partial root-zone irrigation, conventional border irrigation and non-irrigation on root water physiological characteristics of red Fuji apple. The main results were as follows:
     1.The highest soil volumetric water content was appeared under conventional border irrigation in all period of different irrigation conditions,the yearly average was 23.20%, which had no significant difference with irrigation area of 1/2 alternate fixed root-zone irrigation, and significantly higher than that of others; the yearly average soil volumetric water contents of the 3/4、1/2、1/4 alternate partial root zone irrigation were 19.66%、19.80%、19.98% respectively, there were no significant difference among them, but they were significant lower than that of conventional border irrigation and irrigation area of 1/2 fixed partial root-zone irrigation; the yearly average soil volumetric water contents of no irrigation area of 1/2 fixed partial root-zone irrigation and non-irrigation were15.58% and 15.83% respectively, and very significant lower than that of others.
     2. Daily average stem sap flow flux rate of red Fuji apples in July and August were 6.82 cm·h~(-1)、6.12 cm·h~(-1)respectively, and significant higher than that of other months. Stem unit area sap flow flux of conventional border irrigation was 7.907 kg/(cm~2·d) ,which was the highest and had no significant difference with 3/4 alternate partial root-zone irrigation; 3/4 alternate partial root-zone irrigation had no significant difference with 1/2 alternate partial root-zone irrigation and 1/2 fixed partial root-zone irrigation; Stem unit area sap flow flux of non-irrigation was 4.857 kg/(cm~2·d), which was the lowest and had no significant difference with 1/4 alternate partial root-zone irrigation. There was positive correlation between stem sap flow and soil volumetric water content.
     3.The largest root quantity of every types in each grid(20cm×20cm) at the soil depth of 0~20cm,20cm~40cm,40cm~60cm,60cm~80cm were happened under 1/2 alternate partial root-zone irrigation, 3/4 alternate partial root-zone irrigation, 3/4 alternate partial root-zone irrigation, non-irrigation respectively. The minimum of every root types in each grid at the soil depth of 0~20cm, 20cm~40cm, 40cm~60cm were all happened under non-irrigation, the number of them were 47.3、94.2、67.8, and the minimum root amount at the soil depth of 60cm~80cm was 25.5,which appeared under 3/4 alternate partial root-zone irrigation. The roots with diameter<2mm were the most, and diameter>5mm were the least in each grid(20cm×20cm)at the four soil depths of every irrigation conditions. In the 0~20cm depth, the maximum root amounts with diameter<2mm were appeared under1/2 alternate partial root-zone irrigation, which was 127.7; the most root amounts in diameter from 2mm to 5mm were appeared under irrigation area of 1/2 fixed partial root-zone irrigation, the number of that was 19.3; The most roots with diameter>5mm were happened under1/4 alternate partial root-zone irrigation, the number of that was 0.8. In the soil depth of 20cm~40cm, the maximum roots with diameter<2mm were appeared under 3/4 alternate partial root-zone irrigation, which was 123.1; the most roots in diameter from 2mm to 5mm were appeared under 3/4 alternate partial root-zone irrigation, the number of that was 20.2; The maximum root amount with diameter>5mm was happened under conventional border irrigation, the number of that was 12.5. In the soil depth of 40cm~60cm, the maximum root amount with diameter<2mm were appeared under 1/2 alternate partial root-zone irrigation, which was 76.8; the maximum root amount with diameter from 2mm to 5mm was appeared under 3/4 alternate partial root-zone irrigation, the number of that was 10.4; The maximum root amountwith diameter>5mm was happened under conventional border irrigation, the number of that was 8.7. In the soil depth of 60cm~80cm, the maximum root amount with diameter<2mm was appeared under no irrigation area of 1/2 fixed partial root-zone irrigation, which was 40.6; the maximum root amount in diameter from 2mm to 5mm was appeared under non-irrigation, the number of that was 6.8; The maximum root amount with diameter>5mm was happened under no irrigation area of 1/2 fixed partial root-zone irrigation, the number of that was 4.6. The total root dry weight of every types under 3/4 alternate partial root-zone irrigation was 57.3 mg·cm-3,which was the largest and 1.34 times compared to conventional border irrigation; The lowest of total root dry weight of every types was 24.8 mg·cm-3,which was under non-irrigation. The largest root dry weight with diameter<2mm was under 1/2 fixed partial root-zone irrigation, which was 16.1 mg·cm~(-3), the most root dry weight in diameter from 2mm to 5mm was appeared under1/4 alternate partial root-zone irrigation, which was 14.3 mg·cm~(-3); The most root dry weight with diameter>5mm was happened under 3/4 alternate partial root-zone irrigation, and that of 28.1 mg·cm~(-3). Under different irrigation conditions, the root hair length of conventional border irrigation was 0.118mm, it was the least length and there had no significant difference with 1/2 fixed root-zone irrigation; the root hair lengths of 3/4 ,1/2, 1/4 alternate partial root-zone irrigation were 0.233、0.244、0.290mm respectively, they were significant higher than than that of 1/2 fixed root-zone irrigation, conventional border irrigation and non-irrigation, the root hair length of 1/4 alternate partial root-zone irrigation was the longest among them and it was 2.50 times compared to conventional border irrigation. The root hair densities under no irrigation of 1/2 fixed root zone irrigation and non-irrigation were 159.2 bar/mm~3、164.3 bar/mm~3, both of them were significant lower than that of others; the root hair densities of 3/4 ,1/2, 1/4 alternate partial root-zone irrigation were 269.2 bar/mm~3、287.5 bar/mm~3、249.1 bar/mm~3 respectively, and they were significant higher than that of others, the root hair density under no irrigation of 1/2 alternate partial root-zone irrigation was 291.5 bar/mm~3, it was the biggest and 1.58 times compared to conventional border irrigation. Moderate drought could accelerate the growth of roots.
     4.Under different irrigation conditions, irrigation area of 1/2 fixed root-zone irrigation and conventional border irrigation had the complete cytoarchitecture, the nucleus was intact, the nuclear membrane was clear, nucleus cytoplasm was thick and uniform, but the cytoarchitecture obvious changed under no irrigation of 1/2 fixed root-zone irrigation and non-irrigation, such as cell structure was incomplete, cell cytoplasm concentration reduced, cell inclusions degraded seriously, plasmolysis obviously, plasma membranes retracted. The cell structure of root system had high integrity under 3/4、1/2、1/4 alternate partial root-zone irrigation, except no irrigation area of 1/4 alternate partial root-zone irrigation, which was incomplete and the karyotheca dissociated.
     5.Under different irrigation conditions, the average root activity which under 3/4 alternate partial root-zone irrigation was the highest in all the period, that was 236.39μg/(g·h), and had no significant difference with that of 1/2 alternate partial root-zone irrigation and conventional border irrigation. The average ABA and IAA contents under non-irrigation were 5.977μg·g~(-1),1.073μg·g~(-1)respectively, they were significant higher than that of others; the average ABA and IAA contents in all period under 3/4、1/2、1/4 alternate partial root-zone irrigation and 1/2 fixed root-zone irrigation were1.97μg·g~(-1),2.45μg·g~(-1),2.36μg·g~(-1),3.41μg·g~(-1)and0.51μg·g~(-1),0.58μg·g~(-1),0.69μg·g~(-1),0.72μg·g~(-1)respectively,among them, the average ABA and IAA content of 3/4 alternate partial root-zone irrigation were significantly lower than other partial root-zone irrigations, there existed significant negative correlations among root ABA and IAA contents and the soil volumetric water contents. Root GA_3 and ZT contents under conventional border irrigation were the hightest in all period among the different irrigation patterns, and the contents of them were 38.90μg·g~(-1)、0.831μg·g~(-1); the average GA_3 and ZT contents in all period under 3/4、1/2、1/4 alternate partial root-zone irrigation and 1/2 fixed root-zone irrigation were34.2μg·g~(-1),32.5μg·g~(-1),31.7μg·g~(-1),28.1μg·g~(-1)and 0.64μg·g~(-1),0.61μg·g~(-1),0.60μg·g~(-1),0.52μg·g~(-1)respectively, the average GA_3 and ZT contents under 3/4 alternate partial root-zone irrigation were significant lower than that of other partial root-zone irrigations, there was no no significant difference beteen 1/2 alternate partial root-zone irrigation and 1/4 alternate partial root-zone irrigation; root GA_3 and ZT contents under no irrigation areas of 1/2 fixed root-zone irrigation and non-irrigation decreased gradually with the treated time going on, and there existed positive correlations among root GA_3 and ZT contents and soil volumetric water content. Root proline and soluble sugar contents under non-irrigation were the hightest in all period of different irrigation patterns, the average contents of them were 45.00μg·g~(-1)、879.1μg·g~(-1), the proline and soluble sugar contents under no irrigation areas of 1/2 fixed root-zone irrigation and non-irrigation increased gradually with the treated time going on, and the highest of them were all appeared at fruit maturing.The root SOD、POD、CAT activities under conventional border irrigation were the lowest in all period, and the average activities of SOD、POD、CAT were 21.99 OD·g~(-1)、45.25 OD·g~(-1)、8.48 mg·g~(-1) respectively, they were increased gradually with the irrigated volume reduced under 3/4、1/2、1/4 alternate partial root-zone irrigation; the activities of SOD、POD、CAT under no irrigation areas of 1/2 fixed root-zone irrigation and non-irrigation were significant higher than that of others, and gradually increased with the treated time going on, the maximum of SOD activity under no irrigation areas of 1/2 fixed root-zone irrigation and non-irrigation was appeared at fruit swelling period, the activities of them were 95.75 nmol·g~(-1)、108.29 nmol·g~(-1) respectively, but the maximum of POD、CAT activities appeared at fruit maturing period, and that of them were up to 130.13 OD·g~(-1)、134.62 OD·g~(-1) and 30.72 mg·g~(-1)、29.37 mg·g~(-1) respectively. Under different irrigation conditions, the root MDA content and relative conductivity under non-irrigation were the highest in all period, the average numbers of them were 8.9 nmol·g~(-1)、39.9%, they were increased gradually with the treated time going on; the average MDA content and relative conductivity in all period under 3/4、1/2、1/4 alternate partial root-zone irrigation and 1/2 fixed root-zone irrigation were 5.22 nmol·g~(-1), 5.27nmol·g~(-1), 6.51nmol·g~(-1), 6.39nmol·g~(-1) and 18.43%, 20.69%, 19.39%, 23.15% respectively, the root MDA content under 1/2 alternate partial root-zone irrigation had no significant difference with 3/4 alternate partial root-zone irrigation, and there were no significant difference among 3/4、1/2、1/4 alternate partial root-zone irrigation in root relative conductivity.The root soluble protein contents under conventional border irrigation were lowest during all the periods except fruit swelling period, which up to the maximum at fruit swelling period, that was 1.437 mg·g~(-1); the average root soluble protein contents in all periods under 3/4、1/2、1/4 alternate partial root-zone irrigation and 1/2 fixed root-zone irrigation were1.74 mg·g~(-1)、1.69 mg·g~(-1)、1.82 mg·g~(-1)、1.79 mg·g~(-1) respectively,there was no significant difference beteen 3/4 and 1/2 alternate partial root-zone irrigation. There had the highest ABA content in the meristem cells and elongation zone cells of the apple tree root tissue, and there were less ABA content in the root cap cells and root hair zone cells, the ABA content of root cells could increased obviously under the drought stress, and the meristem cells and elongation zone cells were most sensitive to drought stress, in addition, ABA transfered from nucleus and cytoplasm to cell wall, plasmalemma and karyotheca gradually, moreover, there existed more ABA content in cytoplasm of catheter cells.
     6. Under different irrigation conditions, shoots length under 3/4 alternate partial root-zone irrigation had no significant difference with conventional border irrigation in all period, and they were significant higher than that of others after the end of June; Shoot lengths under conventional border irrigation, 3/4, 1/2, 1/4 alternate partial root-zone irrigation, 1/2 alternate fixed root-zone irrigation and non-irrigation were up to 58.35cm、56.53cm、47.13cm、39.15cm、45.31cm、35.60 cm respectively on Sep.17~th, the shoot length under conventional border irrigation was the longest, there was no significant difference compared to 3/4 alternate partial root-zone irrigation, there was no significant difference between 1/2 alternate partial root-zone irrigation and 1/2 alternate fixed root-zone irrigation. Fruit volumes of conventional border irrigation, 3/4, 1/2, 1/4 alternate partial root-zone irrigation, 1/2 alternate fixed root-zone irrigation and non-irrigation were up to 258.4 cm~3、244.2 cm~3、240.4 cm~3、209.5 cm~3、215.8 cm~3、169.6 cm~3 respectively on Sep.17~(th),there was no significant difference of fruit volumes between 3/4 alternate partial root-zone irrigation and 1/2 alternate partial root-zone irrigation, and they were significant higher thanthat of 1/4 alternate partial root-zone irrigation and 1/2 alternate fixed root-zone irrigation.
     7. Under different irrigation conditions, the highest fruit yield per plant was appeared under conventional border irrigation,which was 80.12 kg, there was no significant difference of that with 3/4 alternate partial root-zone irrigation. Fruit yield per plant of 1/2 alternate partial root-zone irrigation reduced by 7.10% compared to conventional border irrigation, but had no significant difference compared with 3/4 alternate partial root-zone irrigation; Fruit yield per plant of 1/4 lternate partial root-zone irrigation reduced by 18.41% compared to conventional border irrigation. The highest soluble sugar content was appeared under 1/4 alternate partial root-zone irrigation and that was 13.84%, there was no significant difference with 1/2 alternate partial root-zone irrigation. The maximum of titratable acid content was appeared under conventional border irrigation,which was 0.3268% and very significant higher than that of 1/2 alternate partial root-zone irrigation and 1/2 alternate fixed root-zone irrigation, titratable acid content under 1/2 alternate partial root-zone irrigation was the lowest. Sugar-acid ratio under 1/2 alternate partial root-zone irrigation was the highest, which was 44.56, and had no significant difference with 1/4 alternate partial root-zone irrigation.
引文
[1]黄永红,陈学森,冯宝春.果树水分胁迫研究进展[J].山东农业大学学报, 2005, 36 (3):481-484.
    [2]李光晨.果树旱作与节水栽培.1995.[M]北京:中国农业出版社.
    [3]康绍忠.新的农业科技革命与21世纪我国节水农业的发展[J].干旱地区农业研究,1998,16(l):11-17.
    [4]孙景生,康绍忠.我国水资源利用现状与节水灌溉发展对策[J].农业工程学2000,16(2):1-5.
    [5]高峰,许建中.我国农业水资源状况与水价理论分析[J].灌溉排水学报,2003,22(6):27-32
    [6]钱蕴壁,李英能,杨刚,等.节水农业新技术研究.郑州:黄河水利出版社,2002.
    [7]杜尧东,宋丽莉,刘作新.农业高效用水理论研究综述[J].应用生态学报,2003,14(5):808-812
    [8]王友贞,汤广民.节水灌溉与农业可持续发展[J].节水灌溉,2005,(2):33-34.
    [9]康绍忠李永杰21世纪我国节水农业发展趋势及其对策[J].农业工程学,1997, (12):1-7.
    [10]山仑.旱地农业技术发展趋向[J].中国农业科学,2002,35(7):848-855.
    [11]山仑,陈培元.早地农业生理生态基础[M].北京:科学出版社,1998.
    [12]山仑,徐萌.节水农业及其生理生态基础[J].应用生态学报,1991,2(l):70-76.
    [13]Lally R P.Water management and water relations of horticulutral crops[J].HortScience,2000,35(6):1035-1036.
    [14]中国农业年鉴[M].出版地:中国农业出版社,2004.
    [15]康绍忠,张建华,梁宗锁,等.控制性交替灌溉一一种新的农田节水调控思路[J].干旱地区农业研究,1997,15(l):l-6.
    [16]康绍忠,潘英华,石培泽,等.控制性作物根系分区交替灌溉的理论与试验[J].水利学报,2001,(11):80-86.
    [17]梁宗锁,康绍忠,高俊凤.植物对土壤信号的感知、传递及其水分利用的控制[J].干旱地区农业研究,1999,17(2):72-78.
    [18]孙景生,康绍忠,蔡焕杰,等.控制性交替灌溉技术的研究进展[J].农业工程学报,2001,17(4):1-5.
    [19]史文娟,康绍忠,王全九.控制性分根交替灌溉一常规节水灌溉技术的新突破[J].灌溉排水,2000,19(l):32-35.
    [20]梁宗锁,康绍忠,高俊风,等.分根交替渗透胁迫与脱落酸对玉米根系生长和蒸腾效率的影响[J].作物学报,2000,26(2):250-255.
    [21]雷志栋,胡和平,杨诗秀.土壤水研究进展与评述[J].水科学进展,1999,10(3):311-318.
    [22] D.希勒尔.土壤和水—物理原理和过程[M].华孟,叶和才,译.北京:农业出版社,1981:1-4.
    [23]施成熙,粟宗嵩,曹万金,等.农业水文学[M].北京:农业出版社,1984:169-208.
    [24]张超,王会肖.土壤水分研究进展及简要评述[J].干旱地区农业研究,2003,21(4):117-120,125.
    [25]康绍忠,张富仓,梁银丽.玉米生长条件下农田土壤水分动态预报方法的研究[J] .生态学报,1997,17(3):245-251.
    [26]沈振荣,等.水资源科学实验与研究[M].北京:中国科学技术出版社,1992,261-280.
    [27]刘昌明,王会肖,等.土壤—作物—大气界面水分过程与节水调控[M].北京:科学出版社,1999.12-18.
    [28]康绍忠,梁银丽,蔡焕杰,等.旱区水—土—作物关系及其最优调控原理[M].北京:中国农业出版社,1998.84-90.
    [29]魏钦平,王丽琴,曲桂敏.苹果优质丰产新技术[M].北京:农业出版社,1992,47:51-60.
    [30]傅友.果树根剪控根技术研究[J].园艺学报,1993,20(1):346-352.
    [31]杨洪强,接玉玲.果树根系对地上部的调控及其水分利用效率的关系[J].园艺学报, 2001, 28 (增刊): 603-608.
    [32]邓兰生,张承林.不同灌溉施氮肥方式对香蕉根系生长的影响[J].中国土壤与肥料,2007,(6):71-84.
    [33]魏钦平,王丽琴,曲桂敏.苹果优质丰产新技术[M].北京:农业出版社,1992,47,51-60.
    [34]Atkinson C J,Webster A D,Vaughan S.Effects of root restriction on the physiology of apple tree growth[J].Acta Horticulturae,1997,451:587-595.
    [35]Davies W J.Zhang J.Root signals and the regulation of growth and development of plants in drying soil[J].Ann.Rev.Plan Plysiol.Plant Mol Hid,1991,42:55-76.
    [36]樊巍,卢琦.果麦复合系统根系分布格局与生长动态研究[J].生态学报,1999,19(6):860-863.
    [37]陈登文,李社义,高爱琴,等.矮化中间砧苹果树定植方式对根系分布、生长及其果实品质的影响[J].西北林学院学报,2002,17(4):6-8
    [38]赵忠,李鹏,王乃江.渭北黄土高原主要造林树种根系分布特征的研究[J].应用生态学报,2000,11(l):37-39.
    [39]李玉鼎,刘彦宁.宁夏灌区苹果根系生长动态的观察[J].园艺学报,1993,20(4):394-396.
    [40]胡田田,康绍忠,原丽娜等.不同灌溉方式对玉米根毛生长发育的影响[J].应用生态学报,2008,19(6): 1289-1295.
    [41]王立德,廖红,王秀荣,严小龙.植物根毛的发生、发育和养分吸收.植物学通报,2004,21(6):649-659.
    [42]Grierson C,Schiefelbein J.Root Hairs.The Arabidopsis Book[J].American Society of Plant Biologists,2002,1-22.
    [43]C.F.Jordan,Organic farming and agroforestry:Alleycropping for mulch production for organic farms of southeastern United States[J].Agroforestry Systems, 2004,61:79-90.
    [44]G.B.Douglas.Interactions between widely spaced young poplars(Populus spp.)and introduced pasture mixtures[J].Agroforestry Systems,2006,66:165-178.
    [45]K.NUBERG,Effect of shelter on temperate crops:a review to define research for Australian conditions[J].Agroforestry Systems,41:3-34,1998.
    [46]陈立松.水分胁迫对荔枝叶片内源激素含量的影响[J].热带作物学报,1999,20(3):31-35.
    [47]陈杰忠.水分胁迫对札果成花效应及内源激素变化的影响[[J].热带作物学报,2000, 21(2):74-79.
    [48]曲泽洲.植物栽培学总论(第二版)[M].北京:农业出版社,1985: 120-142.
    [49]Jones H G, Lakso A N, Syvertsen J P. Physiological control of water status in temperate and subtropical fruit trees[J]. Horticultural Review, 1985,7:301-344.
    [50]张承林,付子轼。水分胁迫对荔枝幼树根系与梢生长的影响果树学报[J].果树学报,2005,22(4):339-342.
    [51]曲桂敏,李兴国,赵飞,等.水分胁迫对苹果叶片和新根显微结构的影响[J].园艺学报,1999,26(3):147-151.
    [52]刘晓冰,王光华,森田茂纪.根系研究的现状与展望[J].世界农业,2001(9):42-44.
    [53]Davis W .J, Zhang J .Root signals and the regulation of growth and development of plants in drying siol[J]. Ann. Rev. Plant Physiol 1991,42:55-76.
    [54]周云龙.植物生物学[M].北京:高等教育出版社,2001,37-83.
    [55]陈展宇.旱稻抗旱解剖结构及其生理特性的研究[D].吉林:吉林农业大学, 2008.
    [56]刘胜群,宋凤斌.不同耐旱性玉米根系解剖结构比较研究[J].干旱地区农业研究,2007,25(2):86-91.
    [57]杨洪强,黄天栋.水分胁迫对苹果新根多胺和脯氨酸含量的影响[J].园艺学报,1994,21(J):295-296.
    [58]杨文衡,陈景新.果树生长与结实[M].上海:上海科技出版社,1986, 20-29.
    [59]赵领军,张丽军,赵善仓.果树根系与水分关系[J].河北果树,2007,(1)1-2.
    [60]张宇清,朱清科,齐实,等.梯田埂坎立地植物根系分布特征及其对土壤水分的影响[J].生态学报,2005,25(3):500-506.
    [61]李燕,薛立,吴敏.树木抗旱生理及造林技术研究进展[J].山西林业科技,2005,(6):19-25.
    [62]李鲁华,李世清,翟军海等.小麦根系与土壤水分胁迫关系的研究进展[J].西北植物学报,2001,21(1):1-7.
    [63]赵领军,赵善仓.干旱胁迫下苹果根系内源激素含量的变化[J].山东农业科学2007,(2)48-49.
    [64]Davies W J, Zhang J. Root signals and the regulation of growth and development of plants in drying soil[J]. Annu. Rev. Plant Physiol. Mol. Boil., 1991, 42: 55-76.
    [65]Zhang Mingsheng,Xie Bo,Tan Feng.Relationship betw een changes on endogenous horm one of sw eet-potato under w ater stress and drought resistance[J].Scientia Agricultura Sinica,2002,35(5):498-501.
    [66]赵文魁,童建华,谢深喜,等.干旱胁迫对枳橙内源激素含量的影响[J].现代生物医学进展,2008,8(9):1662-1664.
    [67]王清泉,陈云,谢虹等.干旱和氮素交互作用对玉米叶片水势、气孔导度及根部ABA与CTK合成的影响[J].中国农学通报,2004,20(3):210-213.
    [68]Desikan R,Cheung M K,Bright J, et al.ABA, hydrogen peroxide and nitric oxide signaling in stomatal guard cells[J].Journal of Experimental Otany,2004,55:205-212.
    [69]郭丽红,王定康,杨晓虹等.外源乙烯利对干旱胁迫过程中玉米幼苗某些抗逆生理指标的影响[J].云南大学学报(自然科学版),2004,26(4):352-356.
    [70]刘文革,王鸣,阎志红.不同倍性蜜枚西瓜幼苗在低温胁迫下的生理生化特性.果树学报, 2003, 20(1);44-48.
    [71]潘瑞炽.ABA与植物的抗旱和耐旱[J].植物生理学报,1992,(3):312-316.
    [72]王晨阳.干旱胁迫对冬小麦根系活性氧代谢的影响[J].华北农学报,1997,18(4):31-36.
    [73]单长卷,徐新娟,王光远等冬小麦幼苗根系适应土壤干旱的生理学变化[J].植物研究,2007,27(1):55-58.
    [74]张成军.辽东栎林中4种木本植物幼苗对土壤干旱的生理生态响应[D].哈尔滨:东北林业大学, 2003.
    [75]张建锋,邢尚军,郗金标.树木耐盐的生理指标测定[J].东北林业大学学报, 2003, 31(6): 90-93.
    [76]Wodicka L,Dong H,Mittmann M,et al.Genome wide ecpression monitoring in Saccharomyces cerevisiae[J].Nature Biotech,1997,15:1359-1367.
    [77]Heikkla JJ,Papp JET,Schultz GA,et al.Induction of heat shock protein messenger RNA in maize mesocotyls by water stress,abscisic acid and wounding[J].Plant Physiol,2000,76:270-274.
    [78]Ingram J,Bartels D.The molecular basis of dehydration tolerance in plants[J].Annual Review of Plant Physiology and Plant Molecular Biology,2004,47:377-403.
    [79]Kishor PBR,Hong Z,Miao GH,et al.Overexpression of pyrroline-5-Carboxylate Synthetase increase Proline Production and Confers Osmotolerance in Transgenetic Plants[J].Plant Physiol,1995,108:1387-1394.
    [80]何宝坤,李德全.植物渗调蛋白的研究进展[J].生物技术通报,2002,10(2):6-10.
    [81]Rao AH,Karunasree B,Reddy AR.Water stress responsive 23kD polypeptide from rice Seedlings is boiling stable and related to the RAB16 family of poproteins[J].Phydiol,2003,142:88-939.
    [82]Mehdym C.Active oxyzen species in plant defense against pathogens[J].Plant Physio,2004,105: 72-74.
    [83]康绍忠,张建华,石培泽,等.控制性作物根系分区交替灌溉的理论与实验[J].水利学报,2001,11:80-86.
    [84]Kang S Z,Liang Z S,Pan Y H,et al.Alternate furrow irrigation for mailze production in arid[J].Agric Water Management,2000,(45):267-274.
    [85]Kang S Z,Zhang L.An improved water use efficiency for hot pepper grown under controlled alternate drip irrigation on patial roots[J].Scientia Horticulture,2002,89(4):257-267.
    [86]Bates L M,Hall A E.Stomatal closure with soil depletion not as-sociated with changes in bulk leaf water status[J].Occologia,1981,50:62-65.
    [87]Cowan I R.Regulation of water use in relation to carbon gain on higher plants[A]. Lange O L.Physiological Ecology II[C].Springer Berlin,1982,589-614.
    [88]North G B,Nobel P S.Radial hydraulic conductivity of individual root tissues of opuntia ficus-induica(L.)miller as soil moisture varies[J].Annals of Botany(London),1996,(77):133-142.
    [89]梁宗锁,康绍忠,高俊风.分根渗透胁迫与ABA对玉米根系生长和WUE的影响[J].作物学报,2000,2:250-255.
    [90]康绍忠,张建华,梁建生.土壤水分和温度作用对植物根系传导的效应[J].植物生态学报,1999,3:211-219.
    [91]韩艳丽,康绍忠.控制性分根交替灌溉对玉米养分吸收的影响[J].灌溉排水,2001,20(2):5-7.
    [92]Tan C S,Buttery B R.The effect of soil moisture of the root system on transpiration,photosynthesis and internal water relations of peach seedlings [J].J Amer Soe Hort Sci,1982,107:845-849.
    [93]Loveys B R,Stroll M,Dry P R,et al.Partial rootzone drying stimulates stress responses in grapevine to improve water use efficiency while maintaining crop yield and quality[J].Astralian Grapegrower and Winemaker Teehnical issue,1998,414:108-114.
    [94]Growing G,Davies W J,Jones H G.A positive root-sourced signal as an indicator of soil drying in apple,Malus domestica Borkh[J].J Exp Bot,1990,41(233):1535-1540.
    [95]梁宗锁,康绍忠,胡炜等.控制性分根交替灌溉的节水效益[J].农业工程学报,1997,(4):58-63.
    [96]Loveys B R,Dry P R, Stroll M ,et al.Using plant physiology to improve the water use efficiency of horticultural crops[J].Acta Hort,2000,537:187-197.
    [97]李绍华.果树生长发育、产量和果实品质对水分胁迫的敏感期及节水灌溉[J].植物生理学通讯,1993,29.
    [98]邹养军,魏钦平,李嘉瑞,等.苹果不同生育期根系分区灌水的生理效应研究[J].中国农学通报,2005,21 (8):286-291.
    [99]Gowing D.J.,Davies W.J. A positive root-sourced signal as an in dicator of soul drying in apple Malus domestica Bokh.Journal of Experi-mental Botany,1990,41:1535-1540.
    [100]Brian Loveys, Jim Grant, Peter Dry, et al. Progress in the development of partial rootzone drying[J]. http:/ /www.geoflow.com/agriculture/prdi.htm. 2003-10-26.
    [101]Dry P R,Loveys B R.Grapevine shoot growth and stomatal conductance are reduced when part of the root system is dried [J].Vitis,1999,38:151-156·
    [102]Loler.Growth and quality of apples as affected by different irrigation treatments [J].Hort Sci,1985,60:176-181·
    [103]John V P.The influence of controlled water inputs on grape quality in regions of Australia with hot Mediterranean climates[J].Acta Hort,2000,582:101-106.
    [104]程福厚,霍朝忠,张纪英,等.调亏灌溉对鸭梨果实的生长、产量及品质的影响[J].干旱地区农业研究,2002, 18(4): 72-76.
    [105]李光永,王小伟,黄兴法,等.充分灌与调亏滴灌条件下桃树滴灌的耗水量研究[J].水利学报,2001,(9):55-63.
    [106]Mumms R,Sharp R E.Involvement of abscisic acid in controlling plant growth in soils of low water potential[J].Australian Journal of Plant Physiology,1993,20:425-437.
    [107]North G B,Nobel P S.Radial hydraulic conductivity of individnal root tissres of opuntia fieus-induica(L.)miller as soil moisture varies[J].Annals of Botany(London),77,133-142.
    [108]Williamson J G,Coston D C.Planting method and irrigation rate influence vegetative and reproductive growth of peach planted at high density[J].J Amer Soc Hort Sei,1990,115:207-212.
    [109]梁宗锁.分根交替渗透胁迫与脱落酸对玉米根系生长和蒸腾效率的影响[J].果树学报,2000,26:250-255.
    [110]Mingo D J,Davies W J.New irrigation methods to increase water and nutrient use efficiency[J].Proeeedings International Fertiliser Soeiety,2001,468:l-14.
    [111]Davies W J.Regulation of leaf and fruit growth in plants growing in drying soil:exploitation of the plants′chemical signalling system and hydraulic architecture to increase the efficiency of water usein agriculture[J].Journal of Experimental Botany,2000,51(350):1617-1626.
    [112]Loveys B R.Using plant physiology to improve the water use effieiency of horticultural crops[J].Aeta Horticulturae,2000,537(Vol.l):187-197.
    [113]Kang S Z.An improved water-use efficiency for maize grown under regulated deficit irrigation[J].Field crops res,2000,67(3):207-214.
    [114]Caspery H W.water use,growth,and fruit yield of‘Hosui’Asian pears under deficit irrigation[J].J Am Soc Hortie Sei,1994,119(3),383-388.
    [115]Domingo R.Water relations growth and yield of Fino lemon trees under regulated defieit irrigation[J].Irrig sci,1996,16(3):115-123.
    [116]Marsal J.Leaf water relation parameters in almond compared to hazelnut trees during a deficit irrigation period[J].J Am Soe Hortie Sei,1997,122(4):582-587.
    [117]Gowing G,Davies W J,Jones H G.A positive root-sourced signal as an indicator of soil drying in apple Malus x domestica Borkh[J].J.Exp.Bot.,1990,41(233):1535-1540.
    [118]Loveys B R,Dry P R,Stoll M,et al.Using plant physiology to improve the water use efficiency of horticultural crops[J]. Acta Hort.,2000,537:187-197.
    [119]Claudia R,Joao P,Tiago P,et al.Partial rootzone drying:regulation of stomatal aperture and carbon assimilation in field-grown grapevines(Vitis vinifera cv.Moscatel)[J].Functional Plant Biology,2003,30(6):653-662.
    [120]Tiago P,Carlos M L,Rodrigues M L,etal.Partial rootzone drying:effects on growth and fruit quality of field-grown grapevines(Vitis vinifera)[J].Functional Plant Biology,2003,30(6):663-671.
    [121]陈晓流.苹果叶片衰老过程中部分生理指标的研究[J].园艺学报,1995,22(3):239-243.
    [122]Armstlang J W.Effect of water deficit on Coxs orange pippin apple[J].Journal of Horticultural Seienee,1987,(62):416-427.
    [123]曾骤.果树生理学[M].北京,北京农业大学出版社,1992.
    [124]Zhang J,Davies W J.Increased synthesis of ABA in partially dehydrated root tips and ABAtransport from roots to leaves[J].J Exper Bot,1987,38(197):2015-2023.
    [125]Stoll M,Loveys B.Hormonal changes induced by partial root-zone drying of irrigated grapevine[J].Journal of Experimental Botany,2000,51:1627-1634.
    [126]杨洪强,李林光,接玉玲.园艺植物的根系限制及其应用[J].园艺学报,2001,28:589-596.
    [127]伏健民,束怀瑞.春季干旱对金冠苹果不同部位叶片衰老和脱落的影响[J].果树科学,1993,10(2):110-116.
    [128]Williamson J G,Coston D C.Techniques for controlling tree size in a high-density peach orchard[J].Acta Hortie,1989,254:225-230.
    [129]Boland A M.Long-term effects of restricted root volume and regulated deficit irrigationon peach[J].J Am Soe Hortie Sei,2000,125(l):135-142.
    [130]杨洪强,接玉玲.果树根系对地上部的调控及其水分利用效率的关系[J].园艺学报, 2001, 28 (增刊): 603-608.
    [131]李玉鼎,刘彦宁,吴国平,等.宁夏灌区苹果根系生长动态的观察[J].园艺学报, 1993, 20(4):394-396.
    [132]刘俊,刘崇怀.龙眼葡萄棚架栽培条件下的根系分布[J].果树学报,,2006,23(3):379-383.
    [133]秦玲,魏钦平,李嘉瑞.成龄苹果树形改造对根系生长分布的影响[J].果树学报,2006,23(1):105-107.
    [134]侯立群,王露琴.果树根系研究动态与展望[J].山东林业科技, 2003, (6): 21-23.
    [135] Draye X., Delvaux B., Swennen R. Distribution of lateral root primordia in root tips of musa [J]. Annals of Botany, 1999,(84): 393-400.
    [136] WieslerF, HorstWJ. Rootgrowth and nitrite utilization ofmaize culti-vars under field conditions [J]. Plant Soil, 1994, 163: 267-277.
    [137]冯广龙,刘昌明.土壤水分对作物根系生长及分布的调控作用[J].生态农业研究, 1996,4(3):5-9.
    [138]Miao GY,ZhangYT,Yin J etal.A Study on the development of root system in winter wheat under unirrigated conditions in semi-arid Loess Plateau.Acta Ag ronomica Sinica(in Chinese),1989.
    [139]马元喜,王晨阳,周继泽.小麦根系主要生态效应的研究[J].河南农业大学学报,1994,28(1):12-18.
    [140]STUEDLE,E.Water uptake by roots effects of water deficit[J].Journal of Experiment Botany,2000,51:1531-1542.
    [141]杨素苗,郑辉,齐国辉,等.土壤含水量对盆栽红富士苹果叶片光和特性的影响[J].河北林果研究,2008,23(2):179-181,186.
    [142]杨素苗,李保国,齐国辉,等.灌溉方式对红富士苹果根系活力、新梢生长和果实产质量的影响[J].干旱地区农业研究,2010,28(5):181-184.
    [143] Wegehenkel G E. Eco-physiology of Economic Plants in Arid and Semi-arid Regions[M]. Springer-Verlag, Berlin,Heidelberg, NewYork, 1998.
    [144] Granier A,Huc R, Barigah S T. transpiration of natural rain forest and its dependence on climatic factors[J].Agricultural and Forest Meteorology,1996,78:19~29.
    [145]Granier A. Evaluation of transpiration in a Douglass firstands by means of sap flow measurements [J].Tree Physiology,1987,3(4):309-320.
    [146]Cohen Y. Determination of orchard water requirement by a combined trunk sap flow and meteorological approach[J].Irrigation Science,1991,(12):93-98.
    [147]李海涛,陈灵芝.用于测定树干木质部蒸腾液流的热脉冲技术研究概况[J].植物学通报,1997,14(4):24-29.
    [148]郑国.生物显微技术时[M].北京:高等教育出版社1993.
    [149]李正理.植物制片技术[M].北京:北京大学出版社,1996:130-139.
    [150]肖祥希,杨宗武,郑蓉,等.铝胁迫对龙眼叶和根细胞超微结构的影响[J].林业科学,2003,39(12):58-64.
    [151]谢深喜,张秋明,熊兴耀,等.水分胁迫对柑橘叶片和根系细胞超微结构的影响[J].湖南农业大学学报(自然科学版),2008,34(2):168-172.
    [152]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000.
    [153]陈雪梅,王沙生(1992). HPLC法定量分析植物组织中ABA, IAA和NAA[J].植物生理学通讯, 28 (5): 368-371.
    [154]崔妙玲,许雪峰,李天忠,等.半根水分胁迫下苹果幼苗根系生长及水分状况研究[J].中国农学通报,2006,22(8):355-359.
    [155]Desikan R,Cheung M K,Bright J, et al.ABA, hydrogen peroxide and nitric oxide signaling in stomatal guard cells[J].Journal of Experimental Otany,2004,55:205-212.
    [156]邹琦.植物生理学实验指导[M].北京:中国农业出版社. 2001.
    [157]何其华,何永华,包维楷.干旱半干旱区山地土壤水分动态变化[J].山地学报,2003,21(2):149-156.
    [158]李洁,郭小平,朱金兆,等.山西吉县梨、李子土壤水分动态变化及其耗水研究[J].水土保持研究,2006,13(3):132-134.
    [159]潘颜霞,王新平.荒漠人工植被区浅层土壤水分空间变化特征分析[J].中国沙漠,2007,27(2):250-256.
    [160]唐立松,张建龙,李彦,等.植物对土壤水分变化的响应与控制性分根交替灌溉[J].干旱区研究,2005,20(l):90-93.
    [161]王进鑫,罗伟祥,刘广全,等.黄土高原人工林根区土壤水分亏缺状况与空间分布[J].西北林学院学报,2004,19(4):l-4.
    [162]王力,邵明安,王全九.林地土壤水分运动研究述评[J].林业科学,2005,41(2):147-153
    [163]马长明.基于耗水特征的农林复合模式研究一以河北平山退耕区为例[D].北京:北京林业大学,2007:46-49.
    [164]周青云,康绍忠.葡萄根系分区交替滴灌的土壤水分动态模拟[J].水利学报,2007,38(10): 1245-1252.
    [165]Elmaloglou S, Malamos N. A method to estimate soil-water movement under a trickle surface line source, with water extraction by roots[J]. Irrigation and Drainage, 2003, 52:273-284.
    [166]Mmolawa K, Or D. Experimental and numerical evaluation of analytical volume balance model for soil water dynamics under drip irrigation[J]. Soil Science Society of America Journal,,2003,67:1657-1671.
    [167]李光永,郑耀泉,曾德超,等.地理点源非饱和土壤水分运动的数值模拟[J].水利学报,1996,(11):47-51.
    [168]冯绍元,丁跃元,曾向辉.温室滴灌线源土壤水分运动数值模拟[J].水利学报,2001,(2):59-62,68.
    [169]龚道枝,康绍忠,佟玲,等.分根交替灌溉对土壤水分分布和桃树根茎液流动态的影响[J].水利学报,2004,35(10): 112-118.
    [170]Fusheng Li, Shabtai Cohenb, Amos Naorc,et al. Studies of canopy structure and water use of apple trees on three rootstocks[J].Agricultural Water Management, 2002,55(1): 1-14.
    [171]丁日升,康绍忠,龚道枝.果树液流变化规律研究[J].灌溉排水学报,2004,23(2): 21-25.
    [172]张光灿,刘霞,贺康宁,等.金矮生苹果叶片气体交换参数对土壤水分的响应[J].植物生态学报,植物生态学报,2004,28(1):66-72.
    [173]张劲松,孟平,尹昌君,等.果粮复合系统中单株苹果蒸腾需水量的计算[J].林业科学研究,2001,14(4):384-387.
    [174]孟平,张劲松,王鹤松.苹果树蒸腾规律及其与冠层微气象要素的关系[J].生态学报,2005,25(5):1075-1081.
    [175]李焕波,张林森,李丙智.应用热脉冲方法对长富2苹果树干茎流速率的研究[J].西北农业学报,2008,17(5):244-247,305.
    [176]康绍忠,胡笑涛,Ian Goodwin,等.地下水位较高条件下不同根区湿润方式对梨树根与茎液流及其水分平衡的影响[J].农业工程学报,2001,17(3):15-23.
    [177]崔妙玲,许雪峰,李天忠,等.半根水分胁迫下苹果幼苗根系生长及水分状况研究[J].中国农学通报,2006,22(8):355-359.
    [178]马旭凤,于涛,汪李宏,等.苗期水分亏缺对玉米根系发育及解剖结构的影响[J].应用生态学报,2010,21(7): 1731-1736.
    [179]MackayAD, BarberSA. Effectof cyclicwetting and drying of a soil on root hair growth ofmaize roots[J].Plant and Soil, 1987,104: 291-293.
    [180]谢深喜,张秋明,熊兴耀,等.水分胁迫对柑橘叶片和根系细胞超微结构的影响[J].湖南农业大学学报(自然科学版),2008,34(2):168-172.
    [181]马焕普,刘志民.丙基双氢茉莉酸酯对海棠幼苗根尖超微结构的影响[J].园艺学报,2001,28(2):153-155.
    [182]唐连顺,李广敏.水分胁迫下玉米叶肉细胞超微结构的变化与其膜脂过氧化伤害的关系[J].植物学报,1994,36(增刊):43-39.
    [183]陈京,王枝槐,周启贵.PEG处理对甘薯叶肉细胞超微结构的影响[J].西南师范大学学报,1997,22(4):398-404.
    [184]杨子荣,徐楚年,寿元,等.水分胁迫对棉花纤维细胞分化的超微结构及品质的影响[J].华南农业大学学报,1992(增刊):54-56.
    [185]陈立松,刘星辉.水分胁迫对荔枝叶片超微结构的影响[J] .福建农业大学学报,2001,30(2):171-174.
    [186]王静,黄薇,刘桐.不同水分胁迫下几种春小麦种子根形态结构的研究[J].中国沙漠,2000,20(1):79-81.
    [187]王法宏,郑丕尧,王树安,等.大豆不同抗旱性品种根系性状的比较研究.形态特征及解剖组织结构[J].作物学报,1989(1):32-38.
    [188]Claudio Lovisolo, Wolfram /hartung and Andrea Schubert. Whole-plant hydraulic conductance and root-to-shoot flow of abscisic acid are independently affected by water stress in grapevines [J]. Functional Plant Biology, 2002,29:1349-1356.
    [189]Chan K Y,Heenan D P.Effect of tillage and stubble management on soil water store,crop growth and yield in a wheatlupine rotation southern NSW[J].Aust J Agric Res,1996,47:479-488.
    [190]Tawainga K.Tillage and rotation effects on soil physical characteristics[J].Agronomy Journal,2002,94:299-304.
    [191]张蜀秋,贾文锁,王学臣,等.用胶体金免疫电镜技术研究水分胁迫对蚕豆根中ABA分布与含量的影响[J].植物学报,1996,38(11):857-860
    [192]单长卷,徐新娟,王光远等冬小麦幼苗根系适应土壤干旱的生理学变化[J].植物研究,2007,27(1):55-58.
    [193]邹养军.苹果根系分区灌水的生理机制及应用研究[D]西北农林科技大学2006,67.
    [194]李鲁华,李世清,翟军海,等.小麦根系与土壤水分胁迫关系的研究进展[J].西北植物学报, 2001,21(1):1-7.
    [195]颜华,贾良辉,王根轩.植物水分胁迫诱导蛋白的研究进展[J].生命的化学,2002,22(2):165-168.
    [196]史玉炜,王燕凌,李文兵,等.水分胁迫对刚毛柽柳可溶性蛋白、可溶性糖和脯氨酸含量变化的影响[J].新疆农业大学学报,2007,30(2): 5~ 8.
    [197]Loveys B R,Stoll M,Dry P R,et al.Partial root-zone drying stimulates stress responses in grapevine to improve water use efficiency while maintaining crop yield and quality [J].Aus-tralian Grape Grower and Winemaker, 1998,414:108 -114.
    [198]毕彦勇,高东升,王晓英,等.根系分区灌溉对设施油桃生长发育、产量及品质的影响[J].中国生态农业学报,2005,13(4):88-90.
    [199]Kang Shaozhong, Hu Xiaotao, Peter Jerie, et al. The effects of partial rootzone drying on root, trunk sap flow and water balance in an irrigated pear (Pyrus communis L.) orchard[J]. Journal of Hydrology, 2003, 280(1/2/3/4): 192-206.
    [200]杜太生,康绍忠,闫博远,等.干旱荒漠绿洲区葡萄根系分区交替灌溉试验研究[J].农业工程学报,2007,23(11):52-58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700