转基因耐盐旱稻的获得及转AtNCED3水稻的抗逆性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻是重要的粮食作物,其产量严重地受到水资源短缺和土壤盐渍的影响。利用基因工程手段,提高水稻的耐盐、耐旱能力,具有深远的应用前景。本研究将OsNHX1和AtNCED3两个基因,分别转化到旱稻和水稻中;同时选择了诱导型启动子rd29A在水稻中超表达AtNCED3基因,希望得到既耐盐、耐旱、耐低温,又不影响生长发育的水稻新品系。
     以旱稻IRAT109品种的成熟胚愈伤组织为受体材料,与含质粒p330I/OsNHX1的农杆菌菌株LBA4404共培养,经筛选培养获得了多个超表达OsNIIX1基因的独立转化株系。PCR检测证明目的基因已整合到旱稻的基因组中。进一步Northern blot分析表明:三个转基因株系的T1和T2代植株中目的基因的mRNA表达水平明显高于野生型。通过对转基因株系表型观察和生理生化分析表明:100mM NaCl处理5天后的恢复生长过程中,转基因植株的生长明显快于野生型:200mMNaCl处理下,转基因植株较野生型出现受害症状的时间大大延迟,说明转基因植株耐盐性得到了提高。NaCl处理下,转基因植株叶片和根中Na~+含量的提高和渗透势的降低,说明转基因植株的Na~+/H~+ antiporter的表达量高于对照,能将过多的Na~+累积于叶片或根细胞的液泡中,从而提高了细胞的渗透吸水能力,维持了细胞溶质的离子平衡。
     此外,选择了组成型启动子Ubi-1和诱导型启动子rd29A在水稻中超表达AtNCED3基因,通过农杆菌介导法获得了两个水稻品种和两个旱稻品种的多个转基因株系。对水稻品种中作93转基因植株的ABA含量分析表明:组成型表达AtNCED3基因在正常和渗透或干旱胁迫下都能提高转基因抗性愈伤组织和转基因植株叶片内的ABA含量,而诱导型表达AtNCED3基因只在渗透或干旱胁迫下提高了转基因抗性愈伤组织和转基因植株叶片内的ABA含量。从转基因水稻植株与对照的表型观察、生理测定和抗逆性研究等的结果表明:组成型表达AtNCED3基因的水稻植株长得非常矮小、开花时间大大推后,细胞的分裂和伸长以及生长与发育都受到了抑制,降低了正常条件下的蒸腾速率和气孔导度;然而,诱导型启动子驱动的AtNCED3基因的超表达对转基因水稻的营养生长阶段的生长发育虽有轻微影响,但在干旱、盐胁迫和低温等逆境条件下表现出明显的抗逆性。
     本研究得到了具有较高抗盐的转OsNHX1基因旱稻株系,并利用诱导型启动子rd29A在水稻中超表达AtNCED3基因,得到了既抗逆,又不影响生长发育的水稻新品系。为利用转基因技术提高作物的抗逆性奠定了基础,并为深入研究AtNCED3基因的功能和ABA的作用机理提供了有用的材料。
Rice is an important crop. However, water shortage and salinity soil have become most serious constraint to rice production and yield stability in many rice-growing areas. Producing drought- and salt-tolerance rice lines by plants gene engineering was the most importent approach in rice breeding at present and in the fuilture. In this study, OsNHX1 and AtNCED3 were transformed into upland rice and lower land rice respectively. To obtain new rice lines with enhancing drought, salt and lower temperature tolerance but without affecting their growth and development, we selected the inducible promoter rd29A to overexpres the AtNCED3 gene in rice.Mature embryo derived calli from IRAT109 cultivar were as starting material and had been co-cultivated with A. tumefaciens LBA4404 habaring plasmid p3301/OsNHX1. Seven independent transgenic lines overexpressing OsNHXl gene were created and the object gene has been integrated in the upland genome by PCR assay. Moreover, Northern bolt analysis showed that the expression levels of OsNHXl in leaves of three independent transgenic plant lines were significantly higher than those of wild type plants. The transgenic plants grew faster than wild type plants during the recovery growth upon the removal of 100 mM NaCl treatment for 5days. Under the 200 mM NaCl treatment, the transgenic plants showed delayed appearance of damage symptoms, suggesting their increased salt tolerance. We found that the Na+ content was higher and the osmotic potential was lower in leaves and roots of transgenic plants than that of wild type plants in the present of 200mM or 50mM NaCl, indicating that transgenic plants had more Na+/H+ antiporter and can compartmentalize Na+ into vacuoles, thus enhancing the ability of cells absorbing water by osmosis and maintaining the cytosol ion balance.Through the mothed of Agrobacterium tumefaciens-mediated transformation, we generated a number of independent transgenic upland rice and lower land rice lines in which the AtNCED3 encoding region is under control of stress-inducible rd29A promoter or of strong constitutive Ubi-1 promoter. On the analysis of ABA content in leaves or calli of transgenic plantsfrom Zhongzuo 93 cultivar, we found that constitutive overexpression of AtNCED3 in rice plants caused a great increase amount of ABA content in both transgenic hygrimacin resistant calli and plant leaves under both normal and drought stress conditions. Nonetheless, inducible overexpression of \heAtNCED3 plants resulted in enhancing ABA levels only under drought stress condition. These demonstrate that the manipulation of ABA biosynthese enzyme genes can elevate the ABA content in plants.According to the phenotype, the assay of physiological traits and abiotic tolerance between the control and transgenic plants, we found that Ubi::AtNCED3 plants result in severe growth retardation, delayed flower, significantly decreased transpiration rate and stomatal conductance, and inhibited cell cleavage and elongation. However, the rd29AvAtNCED3 plants exhibited significant drought, salt and lower temperature tolerance under multi-stress conditions, although slight growth retardation were observed during the vegetative growth stage. These results showed that the rd29A
    promoter is quite useful to realize efficient expression patterns of AtNCED3 in rice plants with improved drought-, salt- and lower temperature tolerance by manual manipulation.In this study, we have obtained salt tolerance upland lines and abiotic tolerance rice plants using the inducible promoter rd29A overexpressing AtNCED3 gene. We generated the rd29A::AtNCED3 new rice lines, which not only have multi-stress tolerance characteristics but also grow normally. These works laid the foundation of using plant engineering techniques to enhance abiotic stress tolerance in crops. Meanwhile, we can use the transgenic plants to further study the function of AtNCED3 gene and the mechanism of ABA action.
引文
郭岩,张利,肖刚等.甜菜碱醛脱氢酶(BADH)的cDNA在水稻中的表达。中国科学(C辑),1997,27(2):151~155.
    黄健秋,卫志明,安海龙等.根癌农杆菌介导的水稻高效转化和转基因植株的高频再生。植物学报,20004,2:1172-117
    腊红桂,王化琪,黄大年等.抗除草剂基因导入旱稻(Oryza sativa)栽培种。农业生物技术学报,2003,11(3):227-232。
    李保健,欧阳学智,许耀.应用根癌农杆菌Ti质粒系统将外源基因转入籼稻细胞的研究。中国科学(B辑),1990,2:144-149.
    刘巧泉,张景六,王宗阳等.根癌农杆菌介导的水稻高效转化系统的建立。植物生理学报,1998,24:259-271.
    刘友良,汪良驹.植物对盐胁迫的反应和耐盐性。余叔文,汤章城主编.植物生理与分子生物学.第2版.北京:科学出版社,1998.752-769
    苏金,朱汝财.渗透胁迫调节的转基因表达对植物抗旱耐盐性的影响。植物生理学通讯,2001,18(2):129-136。
    汤章城.逆境条件下的植物脯氨酸积累机制可能的意义。植物生理学通讯,1984(91):15-21。
    唐祚舜,王象坤,李良才等.基因枪法转基因水稻中hpt基因稳定遗传。遗传学报,2000,27(1):26-33。
    吴刚,崔海瑞,舒庆侥等.转基因水稻中转录水平crylA(b)基因的沉默和阶段复活。中国科学(C辑),2001,31:(5)。
    任仲海 马秀灵 赵彦修等.Na+/H+逆向转运但白和植物耐盐性。生物工程学报,2002,18:(1)16-19。
    肖岗,张耕耘、刘风华等.山菠菜甜菜碱醛脱氢酶基因研究。科学通报,1995,40(8):641-645
    于志华,陈敏勇,顾红雅等.抗除草剂旱稻转基因植株的获得。北京大学学报(自然科学版) 1996,32:499-504。
    章冰,卫志明.根癌农杆菌介导的水稻转化基因R_1代植株表型特征。植物生理学报,1999,25(4):313~320。
    郑宏红,戴顺洪,何锶洁等.籼稻基因枪转化研究。遗传学报,1996,23(4):286-292。
    Abe, H., Urao, T, Ito, T et al. Arabidopsis AtMYC2 (b-HLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signalling. Planl Cell., 2003, 15: 63-78.
    Abede, T, Guenzi, A. C, Martin, B. et al. Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiol. 2003, 131: 1748-1755.
    Ahmad, I. and Hellebust, J. A. The relationship between inorganic nitrogen metabolism and proline accumulation in osmoregulatory responses of two euryhaline microalgae. Plant Physiol, 1988, 88: 348-354.
    Albrecht, V., Wein, S., Blazevic, D. et al. The calcium sensor CBLI integrates plant responses to abiotic stresses. Plant J. 2003, 36: 457-470.
    Aldemita, R. R., and T. K. Hodges. Agrobacterium tumefaciens-mediated transformation of japonica and indica rice varieties. Planta, 1996, 199:1021-1029.
    Alvim, E C, Carolino, S. M. B., Cascardo, et al. Enhanced accumulation of BiP in transgenic plants confers tolerance to water stress. Planl Physiol, 2001, 126:1042-1054.
    Amtmann A., Sanders D. Mechanism of Na~+ uptake by plant cells. Adv. Bot. Res. 1999, 29: 76-112.
    Apse M P, Aharon G S, Snedden W A et al. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiporter in Arabidopsis. Science, 1999, 285:1256~1258
    Badawi, G. H., Kawano, N., Yamauchi, Y et al Over-expression of ascorbate peroxidase in tobacco chloroplasts enhances the tolerance to salt stress and water deficit. Plant Physiol, 2004, 121: 221-231.
    Baker, S. S., Wilhelm, K. S., and Thomashow, M. E 1994. The 5'-region of Arabidopsis
    Banuelos MA, Sychrova H, Bleykasten, Grosshans C et al. The NHAlantiporter of Saccharomyces cerevisiae mediates sodium and potassium efflux. Microbiology, 1998, 144: 2748~2758
    Barkla BJ, Zingarelli L, Blumwald E et al. Tonoplast Na+/H+ antiport activity and its energization by the vacuolar H~+-ATPase in the halophytic plant Mesembryanthemum crystallinum L. Plant Physiol, 1995, 109:549~556
    Bartels, D. and Sunkar, R.. Drought and salt tolerance in plants Critical Reeviews in Plants science, 2005, 24:23-58.
    Bhhandal IS, Malik CP. Potassium estimation, uptake, and its role in physiology and metabolism of flowering plants. International Review of Cytology, 1998, 110:205-254.
    Binzel M. L., Hess F. D., Bressan R. A. et al.. Intracellular compartmentation of ions in salt adapted tobacco cells. Plant Physiol. 1988, 86:607-614
    Blaha G, stelzl U, Spahn CMT, Agrawal RK, Frank J, Nierhus KH. Preparation of functional ribomal complexes and effect of buff condition on tRna positions observed by cryoelectron microcopy. methods in Enzymology 2000, 317:292-309.
    Blumwald E, Poole R J. Na+/H+ antiport in isolated vesicles from storage tissue of Beta vulgaris. Plant Physiol, 1985, 78:163~167.
    Blumwald, E. Sodium transport and salt tolerance in plants. Current opinion in cell biology 2000, 12:431-434.
    Blumwald, E., Aharon, G. S., Apse, M. P. Sodium transport in plant cells. Biochimica et Biophysica Acta, 2000, 1465:140-150.
    Bouvier F, D'Harlingue A, Backhaus RA et al. Identification of neoxanthin synthase as a carotenoid cyclase paralog. Eur J of Biochem, .2000, 267(21), 6346-6352
    Bray, E. A., Bailey-Serres J., and Weretilnyk, E. Responses to abiotic stresses. In: Biochemistry and Molecular Biology of Plants. Gruissem, W., Buchnnan, B., and Jones, R. eds. American Society of Plant Physiologists, Rockviile, MD, 2000, 1158-1249.
    Burbidge A, Grieve TM, Jackson A. et al. characterization of the ABA-deficient tomato mutant notabilis and its relationship with maize Vp14. Plant J, 1999, 17, 427-431.
    Busk, P. K. and Pages, M. Regulation of abscisic acid-induced transcription. Plant Mol. Biol. 1998., 37: 425-435.
    Cao, J., Duan. X, McElroy. D, and W.. R. Regeneration of herbicideresistant transgenic rice plants following microprojectile-mediated trasformation of suspension culture cells, eletrophoresis. Plant cell Rep 1992, 11: 586-591.
    Cao, J. Zhang W, McElrory D, et al. In: Rice Biotechnology, GS Khush, GH Tonniessen (eds), CAB International, Wallingford, UK, pp175-198.
    Capell, T., L. Bassie, and P. Christou. Modulation of the polyamine biosythetic pathway in transgenic rice confers tolerance to drought stress. PNAS, 2004, 101: 9909-9914.
    Chandler, P. and Robertson, M. Gene expression regulated by abscisic acid and its relation to stress tolerance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1994, 25: 113-141.
    Chen, T. H. H. and Murata, N. Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr. Opin. Plant Biol. 2002, 5: 250-257.
    Cheng, N. H., J. K. Pittman, J. K. Zhu et al. The protein kinase SOS2 activates the Arabidopsis H(+)/Ca(2+) antiporter CAX1 to integrate calcium transport and salt tolerance. J Biol Chem 2004, 279: 2922-2926.
    Cheng, W.-H., Endo, A., Zhou, L., et al. A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell 2002, 14: 2723-2743.
    Choi HW, Lemaux PG, Cho MJ. Long term stability of transgene expression driven by barley endosperm specific hordein promoters in transgenic barley. Plant Cell Rep, 2003, 21 (11): 1108-1120
    Choi, H. I., Hong, J. H., Ha, J. O. et al. ABFs, a family of ABA-responsive element binding factors. J. Biol. Chem., 2000, 275: 1723-1730.
    Christou. P., Transformation technology, Trends Plant Sci. 1996, 423~431.
    Chung, W. S., Lee, S. H., Kim, J. C et al. Identification of a calmodulin-regulated Ca2+-ATPase (SCA 1) that is located in the plasma membrane. Plant cell 2000, 12: 1393-1407.
    Cockcroft, C. E., den Boer, B. G. W., Healyy, J. M. S. et al., Cyclin D control of plant growth rate in plants. Nature, 2000, 405: 575-579.
    Cosgrove, D. J. Relaxation in a high stress environment: The molecuklar basis of extensible cell walls and cell enlargement. Plant Cell. 1997, 9: 1031-1041.
    Cristou, P., and T. L. Ford. The impact of selection parameters on the phenotype and genotype of transgenic rice callus and plants. Trangenic Res, 1995, 4: 44-51.
    Cunningham, K. W. and Fink, G. R. Calcineurin inhibits VCXI-dependent H+/Ca2+ exchange and induced Ca2+ ATPases in Saccharomyces cerevisiae. Mol. Cell Biol. 1996, 16: 2226-2237.
    Datta, S. K., and A. Peterhans, Dattra, K. Genetically engineered fertile india rice recoverated from transformed protoplasts. Biotechnology. 1990, 8: 736-740.
    Demidchik V., Tester M. Sodium fluses through non-selective cation dhannels in the plasma membrane of protoplasts from Arabidopsis thaliana roots. Plant Physiol. 2002.128:379-387.
    Deng, X., Philips, J., Meijer, A., Salamini, F, and Bartels, D. Characterization of five novel dehydration-responsive homeodomain leucine zipper genes from the resurrection plant Craterostigma ptantagenium. Planl Mol. Biol. 2002, 49: 601-610.
    Dong, J., W. Teng, B. W. G., and T. C. Hall. agrobacterium-mediatede transformation of javanica rice. Mol. Breed. 1996, 2: 267-276.
    Dubouzet, J. G., Sakuma, Y, Ito, Y, Kasuga, M., Dubouzet, E., Miura, S., Seki, M., Shinozaki, K., and Yamaguchi-Shinozaki. K. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J. 2003, 33: 751-763.
    Dure, Ⅲ L. Structural motifs in LEA proteins. In: Close T. J. Ed. Plant Responses to cellular dehydration during environmental stress: 1993. 91-103.
    Ellul, R, Rios, G., Atares, A., Roig, L. A., Serrano, R., and Moreno, V. The expression of the Saccharomyces cerevisiae HAL1 gene increases salt tolerance in transgenic watermelon [Citrullus lanatus (Thunb.) Matsun. & Nakai.]. Theor Appl. Genet. 2003, 107: 462-69.
    Espinosa-Ruiz, A., Belles, J. M., Serrano, R., and Culianez-Macia, F. A. Arabidopsis thaliana AtHAL3: A flavoprotein related to salt and osmotic tolerance and plant growth. Planl J. 1999, 20: 529-539.
    Finkelstein RR and Rock C. D. Abscisic acid biosynthesis and response. In CR Somerville, EM Meyerowitz, eds, The Arabidopsis Book. American Society of Plant Biologists, Rockville, MD, 2002, 1-52. http://www.aspb.org/publications/Arabidopsis
    Finkelstein, R. R., Gampala, S. S., and Rock, C. D. Abscisic acid signaling in seeds and seedlings. Plant Cell 14 SuppI: 2002, S15-S45.
    Flowers, T. J. Impriving crop salt tolerance. J Exp Bot. 2004, 55:307-319.
    Frandsen, G., Muller-Uri, F, Nielsen, M., Mundy, J., and Skriver, K. Novel plant Ca~(2+)-binding protein expressed in response to abscisic acid and osmotic stress. Biot. Chem. 1996, 271: 343-348.
    Fu X., Kohli A. and Twyman R. M., et al. Alternative silencing effects involve distinct types of non-spoading cytrosine methylation at a three-fene-single copy transgenic locaus in rice. mol. Gen. Genet. 2000, 263: 106-118.
    Fukuda, A., A. Nakamura, A. Tagiri, H. Tanaka, A. Miyao, H. Hirochika, and Y. Tanaka. Function, intracellular localization and the importance in salt tolerance of a vacuolar Na(+)/H(+) antiporter from rice. Plant Cell Physiol 2004, 45:146-159.
    Fukuda, A., A. Nakamura, and Y. Tanaka. Molecular cloning and expression of the Na+/H+ exchanger gene in Oryza sativa. Biochim Biophys Acta 1999, 1446:149-155.
    Fukuda, A., Y. Yazaki, T. Ishikawa, S. Koike, and Y. Tanaka. Na+/H+ antipoter in tonoplast vesicles from rice roots. Plant Cell physiol. 1998, 39: 196-201.
    Furini, A., Koncz, C, Salamini, F, and Bartels, D. High level transcription of a member of a repeated gene family confers dehydration tolerance to callus tissue of Craterostigma plantagineum. EMBO J. 1997, 16: 3599-3608.
    Gago, G. M., Almoguera, C, Jordano, J., Gonzalez, D. H., and Chan, R. L. Hahb-4, a homeobox-leucine zipper gene potentially involved in abscisic acid-dependent responses to water stress in sunflower. Plant Cell Environ. 2002, 25: 633-640.
    Galau, G. A, Hughes, D. W., and Dure, Ⅲ L. Abscisic acid induction of cloned cotton late embryogenesis-abundant (Lea) mRNAs. Plant Mol. Biol. 1986, 7: 155-170.
    Garcia, A. B., J. D. Engler, S. Iyer, T. v. Gerats, M. Montagu, and A. B. Caplan. 1997. Effects of moprotectants upon NaCl Stress in Rice. Plant Physiology. 115:159-169.
    Garciadeblas B, Rubio F, Quintero F J et al. Differential expression of two genes encoding isoforms of the ATPase involved in sodium efflux in Saccharomyces cerevisiae. Mol Gen Genet, 1993, 236:363~368
    Garciadeblas, B., M. E. Senn, M. A. Banuelos, and A. Rodriguez-Navarro. Sodium transporand HKT transporters: the rice model. Plant J. 2003, 34: 788-801.
    Gaxiola, R., Li, J., Undurraga, S., Dang, L. M., Allen, G. J., Alper, S. L., and Fink, G. R. Drought-and salt-tolerant plants result from overexpression of the AVPI H-1-pump. Proc. Nat. Acad. Sci. USA. 2001, 98:11444-11449.
    Ge L, Chen H, Jang J. F, Zhao Y, Xu M. L, Xu Y. Y, Chong K, XU Zh. H, Tan K. H. Overexpression of OsRAA1 causes pleiotropic phenotypes in transgenic rice plants, including altered leaf, flower and root development and root response to gravity. Plant physiology. 2004, 135: 1502-1513.
    Geisler, M., Axelsen, K. B., Harper, J. F, and Palmgren, M. G. Molecular aspects of higher plant P-type Ca(2-t-)-ATPases. Biochim. Biophys. Acta. 2000a, 1465: 52-78.
    Geisler, M., Frangne, N., Gomes, E., Matinoia, E., and Palmgreen, M. G. The ACA4 gene of Arabidopsis encodes a vacuolar membrane calcium pump that improves salt tolerance in yeast. Plant Physiol. 2000b, 124: 1814-1827.
    Ghoulam, C. F., A. Fares, K. Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environ. Exp. Bot. 2002., 47:39-50.
    Gilmour. S. J., sebolt, A. M., Salazar, M. ZP., Everard, J. D. and Thomashow, MF. Overexpression of the Arabidopsis CBF3 transcriptional activator minies multiple biochemical changes associated with cold acclimation. Plant Physiol. 2000, 124:1854-1865.
    Gittins J R, Pellny TK, Biricolti S, et al. Transgene expression in the vegetative tissues of apple driven by the vascular specific rolC and CoYMV promoters. Transgenic Res., 2003, 12 (4): 391-402
    Gupta, A. S., Heinen, J. L., Holaday, A. S., Burke, J. J., and Allen, R. D. Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proc. Natl. Acad. Sci. USA. 1993, 90:1629-1633.
    Haake, V., Cook, D. Riechmann, J. L., Pineda, O., Thomashow, M. F, and Zhang, J. Z. Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol. 2002, 130: 639-648.
    Halfter U , Ishitani M, Zhu J K. The. Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium2binding protein SOS1. Proc Natl Acad Sci USA 2000, 97:3735~3740
    Hamilton D A, Schwarz Y H, Mascarenhas J P. A monocot pollen-specific promoter contains separable pollen specific and quantitative elements.. Plant Mol. Bio, 1998, 38:663-669
    Han K-H, MA CP and Strauss SH Matrix attachment region (MARs) enhance transformation frequency and transgene expression in polar. Transgenic Res. 1997, 6: 415-420.
    Hanson AD, nelsen CE, Everson EH. Evalution of free proline accumulation as an index of drought resistance using two constrasting barley cultivars. Crope Sci. 1997, 17: 720-734.
    Harrison MA, Walton DC. Abscisic acid metabolism in water-stressed bean leaves. Plant Physiol 1975, 56:250-254
    Hasegawa, P. M., Bressan, R., Zhu, J.-K., and Bohnert, H. -J. Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2000, 51: 463-499.
    Hayashi, H., Alia, Mustardy, L., Deshnium, P., Ida, M., and Murata, N. Transformation of Arabidopsis thaliana with the codA gene for choline oxidase; accumulation of glycinebetaine and enhanced tolerance to salt and cold stress. Plant J. 1997, 12: 133-142.
    Hiei, Y., S. Ohta, T. Komari, and T. Kumashiro. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 1994, 6:271-282.
    Hiei, Y., T. Komari, and T. Kubo. Transformation of rice mediated by Agrobacterium tumefaciens. Plant Mol Biol. 1997, 35:205-218.
    Hoai, N. T. T., I. S. Shim, K. Kobayashi, and U. Kenji. Accumulation of some nitrogen compounds in response to salt stress and their relationships with salt tolerance in rice (Oryza sativa L.) seedlings. Plant Growth Regulation. 2003, 41:159-164.
    Holmstrom K.-O., Somersalo S., Mandal A., Plava T. E., Welin B., Improved tolerance to salinity and low temperature in transgenic tobacco producing glycine betaine, J. Exp. Bot. 2000, 51, 177-185
    Hoshida, H., Tanaka, Y, Hibino, T., Hayashi, Y, Tanaka, A., Takabe, T., and Takabe, T. Enhanced tolerance to salt stress in transgenic rice that overexpresses chloroplast glutamine synthetase. Plant Mot. Biol. 2000, 43:103-111.
    Hsieh, T.-H., Lee, J.-T, Charng, Y.-Y, and Chan, M.-T. Tomato plants ectopically expressing Arabidopsis CBFl show enhanced resistance to water deficit stress. Plant Physiol. 2002, 130: 618-626.
    Huang, J. Q., Z. M. Wei, H. L. An, S. P. Xu, and B. Zhang. High efficiency of genetic transformation of rice using Agrobacterium mediated procedure. Acta Botanica sinica 2000, 42: 1172-1178.
    Ingram, J. and Barrels, D. The molecular basis of dehydration tolerance in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1996, 47: 377-403.
    Iuchi S, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K. A stress-inducible gene for 9-cis-epoxy-carotenoid dioxygenase involved in abscisic acid biosynthesis under water stress in drought-tolerant cowpea. Plant Physiol, 2000, 123, 553-562
    Iuchi, S., M. Kobayashi, T. Taji, M. Naramoto, M. Seki, T. Kato, S. Tabata, Y. Kakubari, K. Yamaguchi-Shinozaki, and K. Shinozaki. Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J. 2001, 27: 325-333.
    Iwaki T , Higashida Y, Tsuji H et al. Characterization of a second gene(ZSOD22) of Na+PH+ antiporter from salt2tolerant yeast Zygosaccharomyces rouxii and functional expression of ZSOD2 and ZSOD22in Saccharomyces cerevisiae. Yeast. 1998, 4: 1167~1174
    Iwasaki, T., Kiyosue, T., Yamaguchi-Shinozaki, K., and Shinozaki, K. The ehydration-inducible rdI7 (cor47) gene and its promoter region in Arabidopsis thaliana. Plant Physiol. 1997, 115: 1287-1294.
    Jacoby, M., Weisshaar, B., Droge-Laser, W., Vicente-Carbajosa, J., Tiedemann, J., Kroj, T, and Parcy, R bZIP transcription factors in Arabidopsis. Trends Plant Sci. 2002, 7: 106-111.
    Jang, I.-C, Oh, S.-J., Seo, J.-S. et al. Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth. Plant Physiol. 2003, 131:516-524.
    Jang, I. C., Choi W. B., Lee K. H., Song S. IK., Nahm, B. H. and kim, J. K. High-level and Ubiquitous expression of the rice cytochrome c gene OsCcl and its promoter activity in transgenic plants provides a useful promoter for transgenesis of monocts. Plant physiol. 2002, 129: 1473-1481.
    Johansson A M, Wang C, Stenberg A, et al. Characterization of a PttRPS18 promoter active in the vascular cambium region of hybrid aspen. Plant Mol Biol, 2003, 52 (2): 317-329
    Kang, J., Choi, H., Im, M., and Kim, S. Y Atabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. Plant Cell, 2002, 14: 343-357.
    Kasuga M., Setsuko Miura, Kazuo Shinozaki, et al. A Combination of the Arabidopsis DREB1A Gene and Stress-Inducible rd29A Promoter Improved Drought- and Low-Temperature Stress Tolerance in Tobacco by Gene Transfer. Plant Cell Physiol. 2004, 45(3): 346-350
    Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K., and Shinozaki, K. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat. Biotechnol. 1999, 17: 287-291.
    KaviKishor, P. B., Hong, Z., Miao, G.-H., Hu, C.-A. A., and Verma, D. P S. Over-expression of A-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol. 1995, 108: 1387-1394.
    Kawasaki, S., Borchert, C, Deyholos, M., Wang, H., Brazille, S., Kawai, K., Galbraith, D., and Bohnert, H. Gene expression profiles during the initial phase of salt stress in rice. Plant Cell 2001, 13: 889-905.
    Khanana, H. K., and S. K. Raina. Agrobacterium-mediated transformation of indica rice cultivars using binary and super-binary vectors,. Aust. J. Plant Physiol. 1999, 26:311-324.
    Kiegle, E., Moore, C. A., Haseloff, J., Tester, M. A., and Knight, M. R. Celltype-specific calcium responses to drought, salt and cold in the Arabidopsis root. Plant J. 2000, 23: 267-278.
    Kim, K. Y., Kwon, S. Y., Lee, H. S., Hur, Y., Bang, J. W. and Kwak, S. S. A novel oxidative stress-inducible peroxidase promoter from sweetpotato: molecular cloning and characterization in transgenic tobacco plants and cultured cells. Plant Mol. Biol. 2003, 51: 831-838.
    Kinclova-Zimmermannova, O., Flegelova, H., Sychrova, H. Rice Na+/H+-antiporter Nhx1 partially complements the alkali-metal-cation sensitivity of yeast strains lacking three sodium transporters. Folia Microbiol (Praha). 2004, 49:519-525.
    Knight, H. and Knight, M. R. Abiotic stress signalling pathways: Specificity and cross-talk. Trends Plant Sci. 2001, 6: 262-267.
    Knight, H., Trewavas, A. J., and Knight, M. R. Calcium signalling in Arabidopsis thaliana responding to drought and salinity. Plant J. 1997. 12: 1067-1078.
    Kohli A., Gahakwa D. and Vain P., et al. Transgene expression in rice engineered through particle bombardment: molecular factors controlling stable expression and transgene silencing. Planta, 1999, 208:88-97.
    Kudla, J., Xu, Q., Harter, K., Gruissem, W., and Luan, S. Genes for calcineurin B-like proteins in Atabidopsis are differentially regulated by stress signals. Ptoc. Natl. Acad. Sci. USA 1999, 96: 4718-4723.
    Kumpatla S. P. and Hall T. C. Longevity of wheat puroindoline gene expression and re-establishment of silencing in transgenic rice. Plant Mol. Bol., 1998, 38: 1113-1122.
    Lee, S. Ch, Huh k. W, An K. et al. Ectopic expression of a cold-inducible transcription factor, CBF1/DREB1b,in Transgenic rice Mol. Cell, 2004, 18:(1): 107-114.
    Lee, Y H. and Chun, J. Y A new homeodomain-leucin zipper gene from Arabidopsis thaliana induced by water stress and abscisic acid. Plant Mol. Biol. 1998, 37: 377-384.
    Leung, J. and Giraudat, J. Abscisic acid signal transduction. Annu. Rev. Plant Physiol Plant Mol. Biol. 1998, 25: 199-221.
    Li, L. C. Qu, R. D. Kochko, A. d. et al, An improved rice transformation system using the biolistic method. Plant cell Rep. 1993, 12:250-255.
    Lian, H. L, Yu, X., Ye, Q et al The role of aquaporin RWC3 in drought avoidance in rice. Plant Cell Physiol. 2004, 45(4): 481-489
    Lin, I. liu, Yg et al Proc Natl Acad Sci U S A. 2003, 100(10): 5962-5967.
    Liu J, Zhu J K. A calcium sensor homology required for plant salt tolerance. Science 280:1943-1945.
    Liu J, Zhu J K. An Arabidopsis mutant that requires increase calcium for potassium nutrion and salt tolerance. Proc Nat Acad Sci USA, 1997, 94:14960~14964
    Liu, J. and Zhu J.-K. A calcium sensor homolog required for plant salt tolerance. Science 1998, 280: 1943-1945.
    Liu, Q., Kasuga, M., Sakuma, Y, Abe, H., Miura, S., Yamaguchi-Shinozaki, K., and Shinozaki, K. Two transcription factors, DREBI and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 1998, 10: 1391-1406.
    Liu, T., and J. van Staden. Selection and characterization of sodium chloride-tolerant callus of Glycine max (L.) Merr cv. Acme. Plant Growth Regul. 2000, 31:195-207.
    Luan, S., Kudla, J., Rodriguez-Concepcion, M., Yalovsky, S., and Gruissem, W. Calmodulins and calcineurin-B like proteins: Calcium sensors for specific signal response coupling in plants. Plant Cell 2002, 14: S389-S400.
    Lutts, S., J. M. Kinet, and J. Bouharmont. Effects of salt stress on growth, mineral nutrition and proline accumulationin relation to osmotic adjustment in rice(Oryza sativa L.) cultivars differing in salinity resistance. Plant Growth Regul. 1996, 19:207-218.
    Ma XL, Zhang Q, Xiong L M et al. Molecular cloning and expressionanalysis of the Na +/H+ antiporter. Suaeda salsa (Will publish)
    Mansour, M. M. E. Protection of plasma membrane of onion epidermal cells by glycinebetaine and proline against NaCI stress. Platit Physio. Biochem 1998, 36: 767-772.
    Marin E, Nussaume L, Quesada A et al. A Molecular identification of zeaxanthin epoxidase of Nicotiana plumbaginifolia, a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of Arabidopsis thaliana. EMBO J. 1996, 15:2331-2342
    Maser, P., M. Gierth, and J. I. Schroedr. Molecular mechanisms of potassium and sodium updake in plants. Plant and soil 2002, 247:43-54.
    McElroy D, blowers AD, jenes B, Wu R construction of expression vectors based on the rice actinl (Actl) 5'region for use in monocot transformation. Mol Gen Genet. 1991, 231:150-160
    McKersie, B. D., Bowley, S. R., Harjanto, E., and Leprince, O. Water deficit tolerance and field performance of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiol 1996, 111: 1177-1181.
    Mizoguchi, T., Irie, K., Hirayama, T et al. A gene encoding a mitogenactivated protein kinase kinase kinase is induced simultaneously with genes for a mitogen-activated protein kinase and an S6 ribosomal protein kinase by touch, cold, and water stress in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA. 1996, 93: 765-769.
    Mohanty, A., N. P. Sarma, and A. K. Tyagi. Agrobacterium tumefaciens-mediated transformation of japonica and indica rice varities. Plant Science 1999, 147: 127-137.
    Munns, R., Passioura, J. B., Guo, J., et al. Water relations and leaf expansion: Importance of timing. J. E.xp. Bot. 2000, 5t: 1495-1504.
    Nanjo, T., Kobayashi, M., Yoshiba, Y et al. Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliatia. FEBS Lett. 1999, 461: 205-210.
    Narusaka Y, Nakashima K, Shinwari ZK et al. Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J. 2003, 34(2):137-48.
    Nguyen, H. T., R. C. Babu, and A. Blum. Breeding for drought resistance in rice: Physiology and molecular genetics consoderration. Crop Sci. 1997, 37:1426-1434.
    Niu X., Bressan R. A., Hasegawa P. M. et al. Ion homeostasis in NaCl stress environments. Plant Physiol. 1995, 109:735-742
    Nonami, H. and Boyer, J. S. Primary events regulating stem growth at low water potentials. Plant Physiol. 1990, 94: 1601-1609.
    Nozawa, A., Koizumi, N., and Sano, H. An Arabidopsis SNE-lrelated protein kinase, atsrl, interacts with a calcium-binding protein, AtCBL2, of which transcripts respond to light. Plant Cell Physiol. 2001, 41: 976-981.
    Oberschall, A., Deak, M., Torok, K., et al. A novel aldose/aldehyde reduetase protects transgenic plants against lipid peroxidation under chemical and drought stresses. Plant J. 2000, 24: 437-446.
    Oertli JJ. Extracellular salt accumulation, a possible mechanism of salt injury in plants, Agrochimica 1968, 12: 461-469.
    Ohta, M., Y. Hayashi, A. Nakashima, A. et al. Introduction of a Na+/H+ antiporter gene from Atriplex gmelini confers salt tolerance to rice. FEBS Lett 2002, 532:279-282.
    Osorio, J., Osorio, M. L., Chaves, M. M., and Pereira, J. S. Water deficits are more important in delaying growth than in changing patterns of carbon allocation in Eucalyptus gtobulus. Tree Physiol. 1998, 18: 363-373.
    Ouwerkerk PB, Memerlink J. A G-box element from the catharanthus roseus strictosidine synthase gene promoter confers seed specific expression in transgenic tobacco plants. Mol Gen Genet, 1999, 261 (4-5): 635-643
    Oztur, Z. N., Talame, V., Deyholds, M. et al. Monitoring largescale changes in transcript abundance in drought- and salt-stressed barley. Plant Mol Biol. 2002, 48: 551-573.
    Pandey, S., Tiwari, S. B., Tyagi, W. et al. A Ca2+/CaM-dependent kinase from pea is stress regulated and in vitro phosphorylates a protein that binds to AtCaM5 promoter. Eur. J. Biochiem. 2002, 269:3193-3204.
    Park, J. M., Park, C. -J., Lee, S.-B. et al. Overexpression of the tobacco Tsi I gene encoding an EREB P/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. Plant Cell 2001, 13: 1035-1046.
    Peng, Z., Lu, Q., and Verma, D. P. Reciprocal regulation of △1-pyrroline-5-carboxylate synthetase and proline dehydrogenase genes controls proline levels during and after osmotic stress in plants. Mol. Gen. Genet. 1996, 253: 334-341.
    Piao, H. L., Lim, J. H., Kim, S. J. et al I. Constitutive over-expression of AtGSK 1 induces NaCI stress responses in the absence of NaCI stress and results in enhanced NaCl tolerance in Arabidopsis. Plant J. 2001, 27:305-314.
    Pierce M, Raschke K. Synthesis and metabolism of abscisic acid in detached leaves of Phaseolus vulgaris L. after loss and recovery of turgot. Planta. 1981, 153:156-165
    Pilon-Smits, E. A. H., Ebskamp, M. J. M., Paul, M. J. et al. Improved performance of transgenic fructan-accumulating tobacco under drought stress. Planl Physiol. 1995, 25: 125-130.
    Pilon-Smits, E. A. H., Terry, N., Sears Tobin, K. H., and Van Dun, K. Enhanced drought resistance in fructan-producing sugar beet. Plant Physiot. Biochem. 1999, 25: 313-317.
    Prior C, Potier S, Souciet J. L, et al. Characterization of theNHA1 gene encoding a Na +/H+ antiporter of the yeast Saccharomyces cerevisiae. FEBS Lett, 1996, 387:89-93
    Qin X, Zeevaart JA. The 9-cis-epoxycarotenoidcleavage reaction is the key regulatory step of abscisic acid biosynthesis in water-stressed bean. Proc Natl Acad Sci, 1999, 96:15354-15361
    Qin X, Zeevaart JAD. Overexpression of a 9-cis-epoxycarotenoiddioxygenase gene in Nicotiana plumbaginifolia increases abscisic acid and phaseic acid levels and enhances drought tolerance. Plant Physiol. 2002, 128:544-551
    Qiu, Q. S., Y. Guo, F. J. Quintero et al. S. Schumaker, and J. K. Zhu. Regulation of vacuolar Na~+/H~+ exchange in Arabidopsis thaliana by the salt-overly-sensitive (SOS) pathway. J Biol Chem. 2004, 279:207-215.
    Raineri, D. M., P. Bottino, and M. P. Gordon. Agrobacterium-mediated transformation of rice(Oryza sativa L.). Bio/technology 1990, 8: 33-88.
    Ramanjulu, S. and Bartels, D. Drought- and desiccation-induced modulation of gene expression in plants. Plant Cell Environ. 2002, 25: 141-151.
    Rashid, H., S. Yokoi, K. Toriyama, and k. Hinata.. Transgenic plant production mediated by Agrobacterium in indica rice. Plant cell Rep. 1996, 15: 727-730.
    Reiser, V., Raitt, D. C, and Saito, H. Yeast osmosensor Slnl and plant cytokinin receptor Crel respond to changes in turgor pressure. J. Cell. Biol. 2003, t61: 1035-1040.
    Rhodes, D. and Hanson, A. D. Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu Rev Plant Physiot Plant Mol Biol. 1993, 44: 357-384.
    Rock, C. Pathways to abscisic acid-regulated gene expression. New Phytol. 2000, 148: 357-396.
    Rontein, D., Basset, G., and Hanson, A. D. Metabolic engineering of osmoprotectant accumulation in plants. Metah. Eng. 2002, 4: 49-56.
    Roosens, N., Hal Bitar, E, Loenders, K. et al. Overexpression of ornithine-△5-aminotransferase increases proline biosynthesis and confers osmotolerance in transgenic plants. Mot. Breed. 2002, 9: 73-80.
    Roxas, V. P., Smith, Jr, R. K., Allen et al. Overexpression of glutathione-S-transferase glutathione peroxidase enhances the growth of transgenic tobacco seedlings during stress. Nat. Biotechnol. 1997, 15: 988-991.
    Rubio F., Gassmann W., Schroeder J. I. Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science. 1995, 270:1660-1663.
    Saijo, Y., S. Hata, J. Kyozuka, K. Shimamoto, and I. K. Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J. 2000, 23:319-327.
    Saito, S., Hirai, N., Matsumoto, C, et al. Arahidopsis CYP707As encode (-1-)-abscisic acid 8'-hydroxylase, a key enzyme in the oxidative catabolism of abscisic acid. Plant Physiol. 2004, 134: 1439-1449.
    Sakuma, Y, Liu, Q., Dubouzet, J. G., et al. DNA-binding specificity of the ERE/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and coldinducible gene expression. Biochem. Biophys. Res. Commun. 2002, 290: 998-1009.
    Sallaud, C., D. Meynard, J. van Boxtel, C. Gay, M. Bes, J. P. et al. Highly efficient production and characterization of T-DNA plants for rice (Oryza sativa L.) functional genomics. Theor Appl Genet. 2003, 106:1396-1408.
    Schachtman D. P., Kumar R., Schroeder J. I., Marsh E. L. Molecular and functional characterization of a novel low-affinity cation transporter (LCT1) in higher plants. Proc. Natl. Acad. Sci. USA. 1997, 94:11079-11084.
    Schuppler, U., He, P-H., John, P C. L. et al. Effect of water stress on cell division and cell-division-cycle 2-like cell-cycle kinase activity in wheat leaves. Plant Physiol. 1998, 117: 667-678.
    Schwartz SH, Qin X, Zeevaart JAD Elucidation of the indirect pathway of abscisic acid biosynthesis by mutants, genes, and enzymes. Plant Physiol 2003, 131:1591-1601
    Seki, M., Narusaka, M., Ishida, J. et al. Monitoring the expression profiles of ca. 7000 Arabidopsis genes under drought, cold, and high-salinity stresses using a full-length cDNA microarray. Funct Integr Genomics, 2002, 2: 282-291.
    Seki, M., Narusaka, M., Ishida, J., et al. Monitoring the expression profiles of ca. 7000 Arabidopsis genes under drought, cold, and high-salinity stresses using a full-length cDNA microarray. Plant J. 2002, 31: 279-292.
    Seo M, Koiwai H, Akaba S et al. Abscisic ldehyde oxidase in leaves of Arabidopsis thaliana. Plant Journal, 2000b, 23(4), 481-488
    Seo M, Koshiba T Complex regulation of ABA biosynthesis in plants. Trends Plant Sci, 2002, 7: 41-48.
    Seo M, Peeters AJM, Koiwai H et al. The Arabidopsis aldehyde oxidase 3 (AA03) gene product catalyzes the final step in abscisic acid biosynthesis in leaves. PNAS, 2000a, 97(23), 12908-12913
    Serrano, R., Mulet, J. M., Rios. G. et al.. A glimpse of the mechanisms of ion homeostasis during salt stress. J. E.xp. Bot. 1999, 50: 1023-1036.
    Setter, T. L. and Flannigan, B. A. Water deficit inhibits cell division and expression of transcripts involved in cell proliferation and endoreduplication in maize endosperm. J. Exp. Bot. 2001, 52: 1401-1408.
    Sharp, R. E., Hsiao, T. C, and Silk, W. K. Growth of the maize primary root at low water potentials. Ⅰ. Spatial distribution of expansive growth. Plant Physiol. 1988, 87: 50-57.
    Sharp, R. E., Hsiao, T. C, and Silk, W. K. Growth of the maize primary root at low water potentials. Ⅱ. Role of growth and deposition of hexose and potassium in osmotic adjustment. Plant Physiol. 1990, 93: 1337-1346.
    Sharp, R. E., LeNoble, M. E., Else, M. A., et al. Endogenous ABA maintains shoot growth in tomato independently of effects on plant water balance: Evidence for an interaction with ethylene. J. Exp. Bot. 2000, .51, 1575-1584.
    Sheen, J. Ca2+-dependent protein kinases and stress signal transduction in plants. Science 1996, 274: 1900-1902.
    Shen YG, Du BX, Zhang JS AhCMO, regulated by stresses in Atriplex hortensis, can improve drought tolerance in transgenic tobacco. Theor Appl Genet. 2002, 105(6-7): 815-821.
    Sheveleva, E., Chmara, W., Bohnert, H. J., and Jensen, R. G. Increased salt and drought tolerance by D-ononitol production in transgenic Nicotiana tahacum L. Plant Physiot. 1997, 115: 1211-1219.
    Shi H, Ishitani M, Kim C et al . The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci USA, 2000, 97: 6896-6901.
    Shi, H., and J. K. Zhu. Regulation of expression of the vacuolar Na+/H+ antiporter gene AtNHX1 by salt stress and abscisic acid. Plant Mol Biol. 2002, 50:543-550.
    Shi, H., B. H. Lee, S. J. Wu, and J. K. Zhu. Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat Biotechnol. 2003. 21:81-85.
    Shi, H., B. H. Lee, S. J. Wu, and J. K. Zhu. Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat Biotechnol. 2003, 21:81-85.
    Shimamoto, K., and R. Terada. Fertile transgenic rice plants regenerated from transformed protoplasts. Nature. 1989. 338: 274-276.
    Shinozaki, K. and Yamaguchi-Shinozaki, K. Molecular response to dehydration and low temperature: Differences and cross-talk between two stress signaling pathways. Curr Opin. Plant Biol. 2000, 3: 217-223.
    Shono M, Wade M, Hara Y. Molecular cloning of Na+-ATPase cDNA from a marine alga, Heterosigma akashiwo. Biochim Biophys Acta. 2001, 1511:193-199
    Singh, K. B., Foley, R. C, and Onate-Sanchez, L. Transcription factors in plant defense and
    Snedden, W. A. and Fromm, H. Galmodulin as a versatile calcium signal transducer in plants. New Phytol. 2001, 151: 35-66.
    Snedden, W. A. and Fromm, H. Galmodulin, calmodulin-related proteins and plant responses to the environment. Trends Plant Sci. 1998, 3: 299-304.
    Soderman, E., Hjellstrom, M., Fahleson, J., and Engstrom, P. The HDZIP gene ATHB6 in Arabidopsis is expressed in developing leaves, roots and carpels and up-regulated by water-deficit conditions. Platit Mol. Biol. 1999, 40: 1073-1083.
    Soderman, E., Mattsson, J., and Engstrom, P. The Arabidopsis homeobox gene ATHB-7 is induced by water deficit and by abscisic acid. Plant J. 1996, 10: 375-381.
    Spollen, W. G., Sharp, R. E., Saab, I. N. et al. Regulation of cell expansion in roots and shoots at low water potentials. In: Water Deficits: Plant Responses from Cell to Comnmnity. Smith J. A. G., Griffiths H., Eds. BIOS Scientific Publishers, Oxford, 1993, 37-52.
    Spollen, W. G., LeNoble, M. E., Sanmels, T. D., et al. Abscisic acid accumulation maintains maize primary root elongation at low water potentials by restricting ethylene production. Plant Physiol. 2000, 122, 967-976.
    Stewar CR, Lee JA. The role of proline accumulation in high plants. Planta. 1974, 120-279
    Stockinger, E. J., Gilmour, S. J., and Thomashow, M. F. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the G-repeat/DRE, a c/.s-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc. Natl. Acad. Sci. USA 1997, 94: 1035-1040.
    Storey R., Pitman M. G., Stelzer R., Carter C., X-ray micrio-analysis of cells and cell compartments of Atriplex spongiosa. J. Exp. Bot. 1983, 34:778-794 stress response. Curr Opin. Plant Biot. 5: 430-436.
    Sugano, S. Kaminaka, H. Rybka, Z. et al. H. Stress-responsive zinc finger gene ZPT2-3 plays a role in drought tolerance in petunia. Plant J. 2003, 36: 830-841.
    Sun, W., Bernard, C, van de Cotte, et al. At-HSP17. 6A, encoding a small heat-shock protein in Arabidopsis, can enhance osmotolerance upon overexpression. Plant J. 2001, 27: 407-415.
    Sunkar, R., Bartels, D., and Kirch, H.-H. Overexpression of a stress inducible aldehyde dehydrogenase gene from Arabidopsis thaliana in transgenic plants improves stress tolerance. Plant J. 2003, 35: 452-464.
    Sze, H., Liang, R, Hwang, I., Curran, A. C, and Harper, J. F. Diversity and regulation of plant Ca2+ pumps: Insights from expression in yeast. Annu. Rev. Plant Physiol. Plant Mol. Biot. 2000, 51: 433-462.
    Tamura, T., Hra, K., Yamaguchi, Y et al. osmotic stress tolerance of transgenic tobacco expressing a gene encoding a membrane-located receptor-like protein from tobacco plants. Plant Physiot. 2003, 131: 454-462.
    Tan BC, Schwartz SH, Zeevaart JAD et al. Genetic control of abscisic acid biosynthesis in maize. PNAS, 1997, 94:12235-12240
    Tang, K., Jun P. T., Xu, Y. Sun, X. et al. Particle bombardment-mediated co-transformation of elit Chinese rice cultivars with genes conferring resistance to bacterial blight and sap-sucking insect pests. Planta. 1999, 208:552-563.
    Tarcynski M. C., Jensen R. G., Bohnert H. J. Stress protection in transgenetic tobacco producing a putative osmsprotetant mannitiol. Science. 1993, 259:508-510
    Taylor, I. B., Burbidge, A. and Thompson, A. J.. Control of abscisic acid synthesis. J Exp Bot. 2000, 51:1563-1574.
    Tester, M., and R. Davenport. Na~+ tolerance and Na~+ transport in higher plants. Ann Bot (Lond) 2003, 91:503-527.
    Thompson AJ, Jackson AC, Symonds RC, et al. Ectopic expression of a tomato 9-cis-epoxycarotenoid dioxygenase gene causes over-production of abscisic acid. Plant J. 2000, 23:363-374
    Toorchi, M., Shashidhar, Gireesha, H. et al. Performance of backcrosses involving transgressant doubled happloid lines in rice under contrasting moisture regimes: yield components and marker heterozygosity. Crop Sci 2003, 43:1448-1456.
    Toriyama K., Arimoto, JU, Chimiya, K. Hinata. Transgenic rice plants after direct gene transfer into protoplasts, Biotechnology, 1998, 6:1072~1074.
    Toriyama. K, Arimoto. Y, and U. H. Transgenic plants after direct gene transfer into protoplasts. Biotechnology. 1988, 6:1072-1074
    Uchimiya H, Iwata M, Nojiri C et al. Biolophos treatment of transgenic rice plants expressing a bar gene prevents infection by the sheath blight pathogen (Rhizoctonia solani). Bio/Technology 1993, 11:835-836
    Uno, Y, Furihata, T., Abe, et al. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal tran. sduction pathway under drought and high-salinity conditions. Proc. Natl. Acad. Sci. USA. 2000, 97:11632-11637.
    Urao, T., Yakubov, B., Satoh, R. et al. A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor. Plant Cell. 1999, 11: 1743-1754.
    Van Camp, W., Capiau, K., Van Montagu et al. Enhancement of oxidative stress tolerance in transgenic tobacco plants overproducing Fe-superoxide dismutase in chloroplasts. Plant Physiol. 1996, 112: 1703-1714.
    Van der Geest A H, Hall T C. A 68 bp element of the beta-phaseolin promoter functions as a seed specific enhancer. Plant Mol Biol, 1996, 32 (4):579-588
    Van M J, Houck C M. A functional map of the fruit-specific promoter of the tomato 2A11 gene. Plant Mol. Biol, 1993, 21 (4): 625-640
    Venema, K., Quintero, F. J., Pardo, J. M. et al. The Arabidopsis Na+/H+ exchanger AtNHXI catalyses low affinity Na+ and K+ transport in reconstituted liposomes. J. Biot. Chem. 2002, 277: 2413-2418.
    Villalobos, M. A., Bartels, D., and Iturriga, G. Stress tolerance and glucose insensitive phenotypes in Arabidopsis overexpressing the CpMYBlO transcription factor gene. Plant Physiol. 2004, 135: 309-324.
    Wada M., Urayama O., Satoh S. et al. A marine algal Na+ -activated ATPase possesses an immunologically identical epitope to Na+/K+-ATPase. FEBS lett. 1992, 309 272-274.
    Wang, H. Q., Bouman, B. A. M. Zhao D. L. et al. Aerobic rice in northern china: opportunities and challenges. 2002, 143-154 in B. A. M. Bouman, H. Hengsdijk, B. Hardy, P. S. Binddraban, T. P. Tuong, and J. K. Ladha, eds. water-wise rice production. International Rice Research Institute Los Banos, philippines.
    Wang, H., Datla, R., Georges, F. et al. Promoters from kinl and cor6.6, two homologues of Arabidopsis thaliana genes: Transcriptional regulation and gene expression induced by low temperature, ABA, osmoticum and dehydration. Plant Mol. Biol. 1995, 28: 605-617.
    Wang, H., Qi, Q., Schorr, P. et al. ICKl, a cyclin-dependent protein kinase inhibitor from Arabidopsis thaliana interacts with both Cdc2a and CycD3, and its expression is induced by abscisic acid. Plant J. 1998, 15: 501-510.
    Wang, J., Zuo, K., Wu, W. et al. Molecular cloning and characterization of a new Na+/H+ antiporter gene from Brassica napus. DNA Seq 2003, 14:351-358.
    Watad AA, Reinhold L, Comparision between as table NaCl selected Nicotina cell lie and wild type. Plant PHY siol, 1983, 73:624-632
    Watanabe Y, Miwa S, Tamai Y. Characterization of Na+/H+antiporter gene closely related to the salt tolerance of yeast Zygosaccharomyces rouxii. Yeast, 1995, 11:829-838
    West, G., Inze, D., and Beemster, G. T. S. Cell cycle modulation in the response of the primary root of Arabidopsis to salt stress. Plant Physiol. 2004, 135: 1050-1058.
    Westgate, M. E. and Boyer, J. S. Osmotic adjustment and the inhibition of leaf, root, stem and silk growth at low water potentials in maize. Planta. 1985, 164: 540-549.
    Weterings K, Schrauwen J, Wullems G, et al. Functional dissection of the promoter of the pollen specific gne NTP303 reveals a novel pollen-specific and conserved cis-regulatory element. Plant Journal, 1995, 8:55-63
    Wimmers, L. E., Ewing, N. N., and Bennett, A. B. Higher plant Ca2+ATPase: Primary structure and regulation of mRNA abundance by salt. Proc. Natl. Acad. Sci. USA 1992, 89: 9205-9209.
    Winicov, I. Alfin 1 transcription factor overexpression enhances plant root growth under normal and saline conditions and improves salt tolerance in alfalfa. Planta 2000, 210: 416-422.
    Wu C, Washida H, Onodera Y, et al. Quantitative nature of the Prolamin-box, ACGT and AACA motifs in a rice glutelin gene promoter: minimal cis-element requirements for endosperm specific gene expression. Plant Journal, 2000, 23 (3): 415-421
    Wu, C. A., Yang G. D., Meng, Q. W. and Zheng, C. C.. The cotton GhNHX1 gene encoding a novel putative tonoplast Na(+)/H(+) antiporter plays an important role in salt stress. Plant Cell Physiol 2004, 45:600-607.
    Wu, Y, Thorne, E. T., Sharp, R. E. et al. Modification of expansin transcript levels in the maize primary root at low water potentials. Plant Physiol. 2001, 126: 1471-1479.
    Xia, T., Apse, M. P., Aharon, G. S. and Blumwald, E.. Identification and characterization of a NaCl-inducible vacuolar Na+/H+ antiporter in Beta vulgaris. Physiol Plant. 2002, 116:206-212.
    Xiong L, Ishitani M, Lee H, Zhu JK. The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold and osmotic stress-responsive gene expression. Plant Cell. 2001, 13: 2063-2083.
    Xiong L, Schumaker, K. S, and Zhu J. K. Cell signaling during cold, drought, and salt stress. The plant cell, Suplement 2002, S165-S183
    Xiong L, Zhu JK. Regulation of abscisic acid biosynthesis Plant Physiology, 2003, 133: 29-36.
    Xu Zj, Nakajima M, Suzuki Y, Yamaguchi I Cloning and characterization of the abscisic acid-specific glucosyltransferase gene from adzuki bean seedlings. Plant Physiol. 2002, 129:1285-1295
    Xu, D., Duan, X.. Wang, B. Hong, B. David Ho, T. and Wu, .R. Expression of a Late Embryogenesis Abundant Protein Gene, HVA1, from Barley Confers Tolerance to Water Deficit and Salt Stress in Transgenic Rice. Plant Physiol. 1996, 110:249-257.
    Xue, Z. y., D. Y. Zhi, G. Xue, H. Zhang, and Y. X. Zhao. Enhanced salt tolerance of transgenic wheat (Tritivum aestivum L.) expressing a vacuolar Na+/H+ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na+. Plant Science 2004., 167:849-859.
    Yamagata H, Yonesu K, Herata A, et al. TGTCACA is a novel cis-regulatory enhancer element involved in fruit-specific expression of the cucumisin gene. J Biol Chem, 2002, 277 (13): 11582-11590
    Yamaguchi-Shinozaki, K. and Shinozaki, K. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, lowtemperature, or high-salt stress. Plant Cell 1994, 6: 251-264.
    Yamaguchi-Shinozaki, K. and Shinozaki, K. The plant hormone abscisic acid mediates the drought-induced expression but not the seed-specific expression of rd22, a gene responsive to dehydration stress in Arabidopsis thaliana. Mol. Gen. Genet. 1993, 238: 17-25.
    Yamamoto S, Nishihara M, Morikawa H, et al. Promoter analysis of seed storage protein genes from canavalia gladiata. Plant Mol Biol, 1995, 27 (4):729-741
    Yancey, P. H., Clark, M. E., Hand, S. C, Bowlus, R. D., and Somero, G. N. Living with water stress: Evolution of osmolyte systems. Science 1982., 217:1214-1222.
    Yang, S. X., Zhao, Y. X., Zhang, Q., He, Y. K., Zhang, H., and Luo. HALl mediate salt adaptation in Arabidopsis thaliana. Cell Res. 2001, 11: 142-148.
    Yang, T. and Poovaiah, B. W. Calciurn/Calmodulin-mediated signal network in plants. Trends Plant Sci. 2003, 8: 505-512.
    Yokoi, S., Quintero, F. J., Cubero, B., Ruiz, M. T., Bressan, R. A., Hasegawa, P M., and Pardo, J. M. Differential expression and function of Arabidopsisthaliana NHX Na+/H+ antiporters in the salt stress response. Plant J. 2002, 30: 529-539.
    Zeevaart JAD Changes in the levels of abscisic acid and its metabolites in excised leaf blades of Xanthium strumarium during and after water stress. Plant Physiol. 1980, 66:672-678
    Zeevaart JAD, Creelman RA Metabolism and physiology of abscisic acid. Annu Rev Plant Physiol Plant Mol Biol. 1988, 39:439-473
    Zhang, H. X., and E. Blumwald. transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat. Biotechnol. 2001, 19:765-768.
    Zhang, H. X., J. N. Hodson, J. P. Williams, and E. Blumwald. Engineering salt-tolerant Brassicaants: Characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Proc. Natl. Acad. Sci:USA, 2001, 98: 12832-12836.
    Zhang, W., and R. Wu. Efficient regeneration of transgenic rice plants rome rice protoplasts. Plant cell Rep 1988, 7: 379-384.
    Zhu J K, Liu L, Xiong L. Genetic Analysis of Salt Tolerance in Arabidopsis: Evidence for a Critical Role of Potassium Nutrition. Plant Cell, 1998, 10:1181-1192
    Zhu J K. Genetic Analysis of Plant Salt Tolerance Using Arabidopsis. Plant Physiol, 2000, 124:941~948
    Zhu, B. C, Su, J., Chan, M. C, Verma, D. P. S., Fan, Y L., and Wu, R. Over-expression of a A-pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water-stress and salt-stress in transgenic rice. Plant Sci. 1998, 139:
    Zhu, J. K. Regulation of ion homeostasis under salt stress. Curr Opin. Plant Biol. 2003, 6: 441-445.
    Zorb, C. N., A. Karl, S. Leib, K. Yan, F. Schubert, S. Molecular characterization of Na+/H+ antiporters (ZmNHX) of maize (Zea mays L.) and their expression under salt stress. J. Plant 7Physiol. 2005, 162: 55-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700