对映-贝壳杉烷型二萜化合物Rabdosin B对莴苣幼苗根生长和根毛发育的调控作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
香茶菜属植物为唇形科多年生草本、灌木或亚灌木,全世界共有150多种,广泛分布于热带及亚热带地区。对映–贝壳杉烷型二萜是该属植物的主要次生代谢产物,在其嫩枝叶中含量丰富,目前已从该属植物中分离得到400余种对映–贝壳杉烷型二萜化合物。作为多年生落叶植物,其体内含量极为丰富的对映–贝壳杉烷型二萜化合物每年都会随着植株枯萎被释放到土壤中。在长期进化过程中形成含量如此丰富且种类繁多的次生代谢产物很有可能对物种自身的生存和演化有着重要的意义,然而这些化合物究竟在其自然生境中发挥着何种生态学作用仍然未知。
     为了研究该类化合物的植物毒性,推断其是否在自然生境中发挥重要的生态作用,为系统开展该类化合物化感作用的研究提供依据,我们选取甘肃产蓝萼香茶菜中含量丰富且具结构代表性的对映–贝壳杉烷型二萜化合物Rabdosin B,运用生物测定的方法研究了其对经典化感受试植物“莴苣”幼苗根生长和根毛发育的影响,并探讨了该化合物Rabdosin B的作用机制。研究结果如下:
     (1)对映–贝壳杉烷型二萜Rabdosin B作用于莴苣幼苗48 h后对根的生长表现出显著的“低促高抑”现象。低浓度的Rabdosin B(20μM,40μM,80μM)显著促进根的生长。相反,当浓度达到120-200μM时,又表现出极强的抑制作用。另外,所有测试的浓度(10μM,20μM,40μM)均显著的抑制根毛的发育,且存在浓度依赖性。
     (2)Rabdosin B处理莴苣幼苗48 h后根尖成熟区细胞的长度和根尖分生区细胞的有丝分裂指数均发生了显著的变化,且与根的NGR变化趋势相一致。线性回归分析表明:根的NGR与根尖成熟区细胞的长度和有丝分裂指数之间存在着显著的相关性。由此得出,低浓度的Rabdosin B(20μM,40μM,80μM)显著促进根的生长是通过增加成熟区细胞的长度并提高分生区细胞的分裂活性而导致的。
     (3)高浓度的Rabdosin B(120μM,160μM,200μM)对根生长的抑制作用主要是由于影响了根尖成熟区细胞的长度和分生区细胞的分裂活性。彗星电泳和流式细胞仪分析的结果表明,200μM Rabdosin B使根尖细胞DNA发生严重损伤,从而导致G2期和S期细胞的周期阻滞,进而降低根尖细胞有丝分裂活性。
     (4)Rabdosin B和Ag+(乙烯作用抑制剂)都能够显著的抑制莴苣幼苗根毛的发育,而且它们对于乙烯利促进根毛顶端生长的作用均具有拮抗特性。Rabdosin B对莴苣幼苗根毛发育的抑制作用并不能通过同时添加乙烯利而恢复,说明Rabdosin B并没有影响乙烯的合成,而是影响了乙烯信号通路。
     (5)Ag+对乙烯抑制根的生长同样具有拮抗特性,而Rabdosin B对这一乙烯反应不具有拮抗特性。可能的一种解释是,Rabdosin B是在乙烯信号通路中特异性调控根毛顶端生长的下游支路中起作用,而对于乙烯调控根生长的支路不起作用;而Ag+则可能与乙烯受体发生相互作用,即在乙烯通路中的上游位点起作用,从而对乙烯调控根毛顶端生长和根的生长均表现出拮抗特性。
     我们的研究首次证实了对映–贝壳杉烷型二萜化合物Rabdosin B对莴苣幼苗根的生长表现出显著的“低促高抑”现象,同时对根毛发育过程具有较强的植物毒性作用。Rabdosin B在较低浓度条件下对根生长的促进作用主要是通过增加根尖成熟区细胞的长度和提高分生区细胞的分裂活性而导致的。高浓度的抑制作用主要是由于同时影响了成熟区细胞的长度和分生区细胞的分裂活性。有丝分裂指数的降低是由于DNA损伤导致不同时期细胞的周期阻滞。Rabdosin B对莴苣幼苗根毛发育的抑制作用很有可能是通过拮抗乙烯信号通路而导致的。推测该化合物很有可能作为一种潜在的化感物质在自然生境中发挥着重要的生态学作用,为系统开展该类化合物化感作用的研究具有重要的理论依据和生态学意义。
Isodon plants are important genus of the Labiatae family and are perennial herbs,shrubs, or sub-shrubs. The genus is composed of approximately 150 species thatare widely distributed in tropical and subtropical regions. Ent-kauranediterpenoids are the main natural constituent in this genus and are especiallyabundant in fresh branches and leaves. To date, over 400 ent-kaurane diterpenoidshave been isolated from these plants. Being abundant and varied secondarymetabolites formed during the long evolutionary process, may have specialmeaning to the survival of species themselves. However, whether thesediterpenoids mediate interactions in natural surroundings is still unknown.
     In order to evaluate the phytotoxicity of the ent-kaurane diterpenoids, determinewhether they may play important ecological roles in natural surroundings andprovide foundations for the further systematic allelopathic research, rabdosin B,one of the abundant and structurally representative ent-kaurane diterpenoids fromIsodon japonica var. galaucocalyx obtained from Gansu, was adopted and theeffects on root growth and on root hair development were investigated in lettuceseedlings by bioassay method. Possible action mode of rabdosin B was alsoexplored in our research. The results are given as follows:
     (1) Rabdosin B, an ent-kaurane diterpenoid purified from the air-dried aerialparts of Isodon japonica var. galaucocalyx, showed a biphasic, dose-dependenteffect on root growth and a strong inhibitory effect on root hair development inlettuce seedlings (Lactuca sativa L.). Lower concentrations of rabdosin B (20μM,40μM, 80μM) significantly promoted the root growth, but its higher levels at120-200μM, by contrast, had inhibitory effects. Additionally, all of the testedconcentrations (10μM, 20μM, 40μM) inhibited root hair development of lettuceseedlings in a dose-dependent manner.
     (2) Different concentrations of rabdosin B affected both the size of mature cellsat the root-hair-forming regions and the mitotic activity of meristematic cells inlettuce seedlings’root tips. Regression analysis revealed a positive correlationbetween NGR and cell length and the mitotic index. Based on the results, weconcluded that the promotion effect of rabdosin B at the lower concentrationsresulted from increasing the cell length in the mature region and enhancing the mitotic activity of meristematic cells in lettuce seedlings’root tips.
     (3) Rabdosin B at higher concentrations inhibited the root growth by stronglyaffecting both the cell length in the mature region and the division of meristematiccells. Comet assay and cell cycle analysis demonstrated that the decrease ofmitotic activity of root meristematic cells was due to DNA damage induced cellcycle retardation of G2 phase and S phase at different times.
     (4) Both rabdosin B and Ag+ (an ethylene antagonist) inhibited root hairdevelopment of lettuce seedlings and showed antagonistic activity to ethephonenhanced root hair length. Seedlings with suppressed root hairs that were treatedwith rabdosin B could not be reversed by exogenous application of ethephon,suggesting that rabdosin B may interfere with the ethylene response pathwayinstead of ethylene biosynthesis.
     (5) Addition of rabdosin B did not overcome the inhibitory effect on rootgrowth caused by ethephon as Ag+ did. It is possible that rabdosin B interfereswith the downstream portion of the ethylene pathway, thus, specificallycontrolling root hair development instead of affecting root growth. However, Ag+may interact with an ethylene receptor at a point upstream in the ethylene pathway,thus, both affecting root hair development and root growth.
     Our research demonstrated the dual stimulatory and inhibitory effects ofrabdosin B on root growth and inhibitory effects on root hair development inlettuce seedlings. Further investigations on the underlying mechanism revealedthat the promotion of root growth resulted from enhanced cell length and increasedmitotic activity. In contrast, rabdosin B at higher concentrations inhibited rootgrowth by affecting both the cell length and cell division. Also, rabdosin B at 200μM could induce DNA damage in lettuce root tips, which resulted in the cell cycleretardation, and thus decreased the mitotic activity. In addition, we presumed thatrabdosin B inhibited root hair development through the mechanism of action as apotential ethylene action antagonist. Further studies need to be carried out toconfirm the role of rabdosin B in mediating the ecological interactions in naturalsurroundings.
引文
[1]曹光球,林思祖,黄世国.阿魏酸和肉桂酸对杉木种子发芽的效应[J].植物资源与环境学报,2001,10 (2):63-64.
    [2]崔磊,赵秀梅,张春雨.化感作用研究动态及展望[J].渐江林业科技,2006,26 (1):65-70.
    [3]丁兰,祁林林,景宏伟等.四种对映-贝壳杉烷型二萜化合物化感作用潜能的初步评价[J].西北师范大学学报(自然科学版),2008,44 (6):74-78.
    [4]谷文祥,段舜山,骆世明.萜类化合物的生志特征及其对植物的化感作用[J].华南农业大学学报,1998,19:108-112.
    [5]何海斌,何华勤,林文雄等.不同化感水稻品种根分泌物中萜类化合物的差异分析[J].应用生态学报,2005,16 (4):732-736.
    [6]何华勤,梁义元,贾小丽等.酚酸类物质的抑草效应分析[J].应用生态学报,2004,15 ( 12):2342-2346.
    [7]胡教孝等译.RICE E L.天然化学物质与有害生物的防治[M].北京:科学技术出版社,1956,1-10.
    [8]孔垂华.植物化感作用研究中应注意的问题[J].应用生态学报,1998,9 (3):332-336.
    [9]孔垂华,胡飞.植物化感(相生相克)作用及其应用[M].中国农业出版社,2001,126-129.
    [10]孔垂华,徐效华,梁文举等.水稻化感品种根分泌物中非酚酸类化感物质的鉴定与抑草活性[J].生态学报,2004,24 (7):1317-1322.
    [11]林娟,殷全玉,杨丙钊等.植物化感作用研究进展[J].植物生理科学,2007,23(1):68-72.
    [12]林思祖,杜玲,曹光球.化感作用在林业中的研究进展及应用前景[J].福建林学院学报,2002,(2):184-189.
    [13]李寿田,周健民,王火焰等.植物化感作用机理的研究进展[J].农村生态环境,2001,17 (4):52-55.
    [14]李寿田,周健民,王火焰等.植物化感作用研究概况[J].中国生态农业学报,2002,10 (4):68-70.
    [15]李新宇,朴顺姬,唐海萍等.大籽蒿花中生物碱类化感物质对羊草根茎节器官分化的影响[J].生态学杂志,2004,23 (2):50-54.
    [16]刘秀芬,马瑞霞,袁光林等.根际区化感化学物质分离、鉴定与生物活性的研究[J].生态学报,1996,16 (1):1-10.
    [17]骆世明,曹番荣,林象联.茶园生化他感作用的研究[J].华南农业大学学报,1994,15 (2):129-133.
    [18]骆世明,林象联,曾任森等.华南农区典型植物的他感作用研究[J].生态科学,1995,(2):114-128.
    [19]彭少麟,南蓬.高等植物中的萜类化合物及其在生态系统中的作用[J].生态学杂志,2002,21 (3):33-38.
    [20]孙文浩,余叔文.相生相克效应及其应用[J].植物生理学通讯,1992,28 (2):81-87.
    [21]王大力,祝心如.豚草的化感作用研究[J].生态学报,1996,16 (1):11-19.
    [22]王宪楷.天然药物化学[M].北京:人民卫生出版社.1988,391-460.
    [23]杨期和,叶万辉,廖富林等.植物化感物质对种子萌发的影响[J].生态学杂志,2005,24 (12):1459-1465.
    [24]余叔文,汤章城.植物生理与分子生物学[M].北京:科学出版社,1998,699-718.
    [25]曾任森,林象联,骆世明等.蟛蜞菊的生化他感作用及生化他感作用物的分离和鉴定[J].生态学报,1996,16 (1):20-27.
    [26]张俊英,许永利,李富平等.植物化感作用研究进展[J].安徽农业科学,2007,35 (21):6357 - 6358,6409.
    [27]张学文,刘亦学,刘万学等.植物化感物质及其释放途径[J].中国农学通报,2007,23 (7):295-297.
    [28] ABRAHIM D, BRAGUINI W L, KEKNER-BRACHT A M, et al. Effects of fourmonoterpenes on germination, primary root growth and mitochondrial respiration of maize [J].J Chem Ecol, 2000, 26: 611-637.
    [29] ASPLUND R O. Monoterpenes: Relationship between structure and inhibition of germination[J]. Phtochemistry, 1968, 7: 1995-1997.
    [30] BAIS H P, VEPACHEDU R, GILROY S, et al. Allelopathy and exotic plant invasion: frommolecules and genes to species interaction [J]. Science, 2003, 301:1377-1380.
    [31] BALKE N E. Effects of allelochemicals on mineral uptake and associated physiologicalprocesses, in: THOMPSON A C (Eds), The chemistry of allelopathy, Series 268 [M].Washington D C: ACS Symposium, 1985, pp, 161-177.
    [32] BAZIVAMAKENGA R R, LEROUX G D, SIMARD R R. Effects of benzonic and cinnamicon membrane permeability of soybean roots [J]. J Chem Ecol, 1995, 21: 1271-1285.
    [33] BRADOW J M, CONNICK W J. Volatile seed germination inhibitors from plant residues [J].J Chem Ecol, 1990, 16 (5): 645-666.
    [34] BOOKER F L, BLUM U, FISCUS E L. Short-stem effects of ferulic acid on ion uptake andwater relations in cucumber seedlings [J]. Exp Bot, 1992, 43: 649-655.
    [35] CALERA M R, SOTO F, SANCHEZ P, et al. Biochemically active sesquiterpenelactones from Ratibida mexicana [J]. Phytochemistry, 1995, 40: 419-425.
    [36] CANGIANO T, DELLAGRECA M, FIORENTINO A, et al. Effect of ent-labdanediterpenes from Potamogetonaceae on Selenastrum capricornutum and other aquaticorganisms [J]. J Chem Ecol, 2002, 28: 1103-1114.
    [37] CANTRELL C L, DUKE S O, FRONCZEK F R, et al. Phytotoxic eremophilanes fromLigularia macrophylla [J]. J Agric Food Chem, 2007, 55: 10656-10663.
    [38] CHON SU, CHOI S K, JUNG S, el a1. Effect of alfalfaleaf extracts and phenolicallelochemicals on early seeding growth and root morphology of alfalfa and barnyard grass[J]. Crop Prot, 2002, 21: 1077-1082.
    [39] DEVI R S, PRASAD M N V. Effects of ferulic acid on growth and hydrolytic enzymeactivities of germinating maize seeds [J]. J Chem Ecol, 1992, 18: 1981-1990.
    [40] DING L, QI L L, JING H W, et al. Phytotoxic effects of leukamenin E (an ent-kaurenediterpenoid) on root growth and root hair development in Lactuca sativa L. seedlings [J].J Chem Ecol, 2008, 34: 1492-1500.
    [41] DUKE S O, OLIVA A. Mode of action of phytotoxic terpenoids, in: Macías F A,Galindo J C G, Molinillo J M G, and Cutler H G (Eds), Allelopathy. Chemistry and Modeof Action of Allelochemicals. CRC Press, Boca Raton, 2002, pp, 201-216.
    [42] FISCHER N H, WILLIAMSON G B, WEIDENHAMER J D, et al. In search of allelopathyin the Florida scrub. The role of terpenoids [J]. J Chem Ecol, 1994, 20: 135-138.
    [43] HAN Q B, ZHANG J X, LU Y, et al. A novel cytotoxic oxetane ent-kauranoid from Isodonjaponicus [J]. Planta Med, 2004, 70: 581-584.
    [44] HARPER J R, BALKE N E. Characterization of the inhibition of K+ absorption in oat rootsby salicylic acid [J]. Plant Physiol, 1981, 68:1349-1353.
    [45] HEJI A M, EINHELLIG F A, RASMUSSEN J A. Effects of juglone on growth,photosynthesis, and respiration [J]. J Chem Ecol, 1993, 19(3): 559-568.
    [46] HEJL A M, KOSTER K L. Juglone disrupts root plasma membrane H+-ATPase activity andimpairs water uptake, root respiration, and growth in soybean (Glycine max) and corn (Zeamays) [J]. J Chem Ecol, 2004, 30(2): 453-471.
    [47] HOLASPPA L D, BLUM U. Effects of exogenously applied ferulic acid, a potentialallelopathic compound, on leaf growth, water utilization and endogenous abscissic acid leavelsof tomato, cucumber and bean [J]. J Chem Ecol, 1991, 17: 865-886.
    [48] IBRAHIM N A, EI-GENGAIHI S, MOTAWE H, et al. Phytochemical and biologicalinvestigation of Stevia rebaudiana Bertoni; 1-labdane-type diterpene [J]. Eur Food ResTechnol, 2007, 224: 483-488.
    [49] INDERJIT, DAKSHINI K M. Interference potential of the weed Pluchea lanceolata(Asteraceae): Growth and physiological responses of asparagus bean, Vigna unguiculata var.sesquipedalis [J]. Am J Bot, 1992, 79: 977-981.
    [50] JIANG B, LU Z Q, HOU A J, et al. Ent-kaurane diterpenoids from Isodon lungshengensis [J].J Nat Prod, 1999, 62: 941-945.
    [51] JIMENEZ-OSORNIO, SCKULTZ J, ANAYA K, et al. Allelopathic potential of corn pollen[J]. J Chem Ecol, 1983, 9:1011-1025.
    [52] KHAN U N, VAIDYANATHAN C S. Cinnamate toxicity expression on phenylalamineammonia-lyasm activity, germination and growth of cucumber (Cucumis sativus L.) seedlings[J]. Plant Soil, 1987, 97: 299-302.
    [53] KOMAI K, IWAMRUA J, UEKI K. Plant growth inhibitor in the seed of catchweed [J].Weed Res, 1983, 28:205-209.
    [54] LANGENHEIM J H. Plant resins [J]. Am Sci, 1990, 78: 16-24.
    [55] LESLIE C A, ROMANI R J. Inhibition of ethylene biosynthesis by salicylic acid [J]. PlantPhysiol, 1988, 88: 833-837.
    [56] LI H H, INOUE M, NISHIMURA H, et al. Interaction of trans-cinnamic acid, its relatedphenolic allelochemicals and abscisic acid in seeding growth and seed germination of lettuce[J]. J Chem Ecol, 1993, 19: 1775-1787.
    [57] MACíAS F A, LóPEZ A, VARELA R M, et al. Helikauranoside A, a new bioactivediterpene [J]. J Chem Ecol, 2008, 34: 65-69.
    [58] MACíAS F A, MOLINILLO J M G, CHINCHILLA D, et al. Heliannanes-a structureactivityrelationship (SAR) study, in: Macías F A, Galindo J C G, Molinillo J M G, andCutler H G (Eds), Allelopathy. Chemistry and Mode of Action of Allelochemicals. CRCPress, Boca Raton, 2004, pp, 103-124.
    [59] MACíAS F A, MOLINILLO J M G, GALINDO J C G, et al. Terpenoids with potentialuse as natural herbicide templates, in: Cutler H G and Cutler S J (Eds), BiologicallyActive Natural Products. Agrochemicals CRC, Boca Raton, 1999, pp, 15-31.
    [60] MACíAS F A, MOLINILLO J M G, VARELA R M, et al. Allelopathy. A naturalalternative for weed control [J]. Pest Management Sci, 2007, 63: 327-348.
    [61] MACíAS F A, TORRES A, GALINDO J C G, et al. Bioactive terpenoids from sunflowerleaves cv. Peredovick [J]. Phytochemistry, 2002, 61: 687-692.
    [62] MACíAS F A, VARELA R M, SIMONET A M, et al. (+)-Brevione A. The first memberof a novel family of bioactive spiroditerpenoids isolated from Penicilliumbrevicompactum Dierckx [J]. Tetrahedron Lett, 2000, 41: 2683-2686.
    [63] MALLIK A U. Challenges and opportunities in allelopathy research: a brief overview [J]. JChem Ecol, 2000, 26 (9): 2007-2009.
    [64] MARCI R, VIANELLO A, PENNAZIO S. Salicylate-collapsed membrane potential in peastem mitochondria [J]. Physilo Plant, 1986, 67: 136-140.
    [65] MERSIE W, SINGH M. Phenolic acids affect photosynthesis and protein synthesis byisolated leaf cells of velvet-leaf [J]. J Chem Ecol, 1993, 19:1293-1301.
    [66] MORALES-FLORES F, AGUILAR M I, KING-DíAZ B, et al. Natural diterpenes fromCroton ciliatoglanduliferus as photosystem II and photosystem I inhibitors in spinachchloroplasts [J]. Photosynth Res, 2007, 91: 71-80.
    [67] MORIMOTO M, KOMAI K. Plant growth inhibitors: Patchoulane-type sesquiterpenesfrom Cyperus rotundus L [J]. Weed Biol Manag, 2005, 5: 203-209.
    [68] MULLER C H, MULLER W H, HAINES B L. Volatile Growth inhibitors production byShrubs [J]. Science, 1964, 143: 471-473.
    [69] MULLER C H. The role of chemical inhibition (allelopathy) in vegetational composition[J]. Bull Torrey Bot Club, 1966, 93: 332-351.
    [70] MURPHY S D. Pollen Allelopathy, in: INDERJIT (Eds), Principles and practices in plantecology: Allelochemical interactions [M]. CRC Press, 1999, pp, 129-146.
    [71] NIEMEYER H M, PEREZ F J. Potential of hydroxamicacids in the control of cereal pests,diseases, and weeds [J]. ACS Symp Ser, 1995, 582: 260-270.
    [72] NISHIDA N, TAMOTSU S, NAGATA N, et al. Allelopathic effects of volatilemonoterpenoids produced by Salvia leucophylla: inhibition of cell proliferation and DNAsynthesis in the root apical meristem of Brassica campestris seedlings [J]. J Chem Ecol, 2005,31:1187-1203.
    [73] NOWACKA J, OLESZEK W. Determination of alfalfa (Medica go sativa) saponins by highperformanceliquid chromatography [J]. J Agr Food Chem, 1994, 42: 727-730.
    [74] ORTEGA R C, ANAYA A A, RAMOS L. Effects of allelopathic compounds of corn pollen onrespiration and cell division of watermelon [J]. J Chem Ecol, 1988, 14: 71-86.
    [75] PADHY B, PATNAIK P K, TRIPATHY A K. Allelopathic potential of Eucalyptus leaf litterleachates on germination and seedling growth of fingermiller [J]. Allelopathy J, 2000, 7(1):69-78.
    [76] PICMAN J P, PICMAN A K. Autotoxicity in Parthernium hysterophorus and its possiblerole in control of germination [J]. Biochem Syst Ecol, 1984, 12: 287-292.
    [77] POLITYCKA B. Free and glucosylated phenolics, phenol-beta-glucosyltransferase activityand membrane permability in cucumber roots affected by derivatives of cinnamic and benzoicacids [J]. Acta Physiologiae Plantarum, 1997, 19(3): 311-317.
    [78] POLITYCKA B. Phenolics and the activities of phenylalanine ammonialyase, phenol-betaglucosyltransferaseand beta-glucosidase in cucumber roots as affected by phenolicallelochemicals [J]. Acta Physiologiae Plantarum, 1998, 20 (4): 405-410.
    [79] RAMIREZ-TORO G L, LEATHER G R, EINHELLIG F A. Effects of three phenoliccompounds on Lema gibba G3 [J]. J Chem Ecol, 1988, 14: 845-853.
    [80] RASUSSEN J A, HEJI A M, EINHELLIG F A, et al. Sorgoleone from root exudate inhibitsmitochondrial functions [J]. J Chem Ecol, 1992, 18: 197-207.
    [81] RAY S D, LALORAYA M M. Interaction of gibberllic acid, abscisic acid and phenoliccompounds in the control of hypocotyl growth of Amaranthus caudatus seedlings [J]. Can JBot, 1984, 62: 2047-2052.
    [82] RICE E L. Allelopathy (2ed edition) [M]. New York: Academic Press, 1984, pp, 23-28.
    [83] ROMAGNI J G, ALLEN S N, DAYAN F E. Allelopathic effects of volatile cineoles on twoweedy plant [J]. J Chem Ecol, 2000, 26 (1): 303-314.
    [84] RUDRAPPA T, BONSALL J, GALLAGHER J L, et al. Root-secreted allelochemical in thenoxious weed Phragmites australis deploys a reactive oxygen species response andmicrotubule assembly disruption to execute rhizotoxicity [J]. J Chem Ecol, 2007, 33: 1898-1918.
    [85] SKALTSA H, LAZARI D, PANAGOULEAS C, et al. Sesquiterpene lactones fromCentaurea thessala and Centaurea attica antifungal activity [J]. Phytochemistry, 2000, 55:903-908.
    [86] STREIBIG J, DAYAN F E, RIMANDO A M, et al. Joint action of natural and syntheticphotosystem II Inhibitors [J]. Prestic Sci, 1999, 55 (2): 137-146.
    [87] SUN H D, XU Y L, JIANG B. Diterpenoids from Isodon Species [M]. Science, Beijing,2001.
    [88] SUZUKI K, KAWABATA J, MIZITANI J. New 3,5,4'-trihydroxystibene (resveratrol)oligomers from Carex fedia Var. miyabei (Franchet) T. Koyama (Cyperaceae) [J]. Agric BoilChem, 1987, 52: 2947-2948.
    [89] TANG C S, ZHANG B. Qualitative and quantitative determination of the allelochemicalsphere of germinating mung bean, in: PUTNAM A R and TANG C S (Eds), John Wiley &Sons [M]. New York, 1986, pp, 229-242.
    [90] TANG C S, CAI W F K, NISHIMOTO R K. Plant stress and allelopathy [J]. ACS Symp Ser,1995, 582:142-157.
    [91] TENGCHAISRI T, CHAWENGKIRTTIKUL R, RACHAPHAEW N, et al. Antitumoractivity of triptolide against cholangiocarcinoma growth in vitro and in hamsters [J]. CancerLett, 1998, 133: 169-175.
    [92] URZúA A, JARA F, TOJO E, et al. A new antibacterial clerodane diterpenoid from theresinous exudate of Haplopappus uncinatus [J]. J Ethnopharmacol, 2006, 103: 297-301.
    [93] VACCARINI E E, PALACIOS S M, MERAGELMAN K M, et al. Phytogrowth -inhibitory activities of a clerodane from Viguiera tucumanensis [J]. Phytochemistry, 1999,50: 227-230.
    [94] WEIR T L, PARK S W, VIVANCO J M. Biochemical and physiological mechanismsmediated by allelochemicals [J]. Curr Opin Plant Biol, 2004, 7: 472-479.
    [95] WINK M, BRUNING B L. Allelopathic properties of alkaloids and other natural products:Possible modes of action [A], in: DAKSHINI K M M (Eds), Allelopathy: Organisms,Processes and Applications [C]. ACS Symposium Series 582. Washington: AmericanChemical Society, 1995, pp, 117-126.
    [96] YU J Q, MATSUI Y. Effects of root exudates of cucumber (Cucumis sativus) andallelochemicals on ion uptake by cucumber seedlings [J]. J Chem Ecol, 1997, 23: 817-827.
    [1] AKINBORO A, BAKARE A A. Cytotoxic and genotoxic effects of aqueous extracts of fivemedicinal plants on Allium cepa Linn [J]. J Ethnopharmacol, 2007, 112: 470–475.
    [2] ANGELIS K J, DUSINSKA M, COLLINS A R. Single cell gel electrophoresis: detectionof DNA damage at different levels of sensitivity [J]. Electrophoresis, 1999, 20:2133–2138.
    [3] AN M, JOHNSON I R, LOVETT J V. Mathematical modeling of allelopathy: biologicalresponse to allelochemicals and its interpretations [J]. J Chem Ecol, 1993, 19: 2379–2388.
    [4] BELZ R G. Stimulation versus inhibition-bioactivity of parthenin, a phytochemical fromParthenium hysterophorus L. Dose-Response, 2008, 6: 80–96.
    [5] BELZ R G, DUKE S O, HURLE K. Dose-response– a challenge for allelopathy? [J].Nonlinearity Biol. Toxicol Med, 2005, 3: 173–211.
    [6] BELZ R G, VELINI E D, DUKE S O. Dose/response relationships in allelopathy research,in: Fujii Y and Hiradate S (Eds.), Allelopathy. New concepts and methodology [M].Science Publishers, New Hampshire, USA, 2007, pp, 3–29.
    [7] BERTIN C, YANG X H, WESTON L A. The role of root exudates and allelochemicals inthe rhizosphere [J]. Plant and Soil, 2003, 256: 67–83.
    [8] BLANCO FERNáNDEZ A, SáNCHEZ-MOREIRAS A M, COBA DE LA PE?A T. Flowcytometry: principles and instrumentation, in: Reigosa M J (Eds), Handbook of PlantEcophysiology Techniques [M]. Kluwer Academic Publishers, Dordrecht, 2001, pp,21–34.
    [9] BURSSENS S, HIMANEN K, VAN DE COTTE B, et al. Expression of cell cycleregulatory genes and morphological alterations in response to salt stress in Arabidopsisthaliana [J]. Planta, 2000, 211: 632–640.
    [10] CANTRELL C L, DUKE S O, FRONCZEK F R, et al. Phytotoxic eremophilanes fromLigularia macrophylla [J]. J Agric Food Chem, 2007, 55: 10656–10663.
    [11] COBA DE LA PE?A T, SáNCHEZ-MOREIRAS A M. Flow cytometry: cell cycle, in:Reigosa M J (Eds), Handbook of Plant Ecophysiology Techniques [M]. Kluwer AcademicPublishers, Dordrecht, 2001, pp, 65–80.
    [12] COOLS T, DE VEYLDER L. DNA stress checkpoint control and plant development [J].Curr Opin Plant Biol , 2008, 12: 1–6.
    [13] DAYAN F E, ROMAGNI J G, DUKE S O. Investigating the mode of action of naturalphytotoxins [J]. J Chem Ecol, 2000, 26, 2079–2094.
    [14] DEN BOER B G W, MURRAY J A H. Triggering the cell cycle in plants [J]. TrendsCell Biol, 2000, 10: 245–250.
    [15] DE VEYLDER L, BEECKMAN T, INZE D. The ins and outs of the plant cell cycle [J].Nat Rev Mol Cell Biol, 2007, 8: 655–665.
    [16] DOLEZěL J, CIHALIKOVA J, WEISEROVA J, et al. Cell cycle synchronization inplant root meristems [J]. Meth Cell Sci, 1999, 21: 95–107.
    [17] DUKE S O, OLIVA A. Mode of action of phytotoxic terpenoids, in: Macías F A,Galindo J C G, Molinillo J M G, and Cutler H G (Eds), Allelopathy. Chemistry and Modeof Action of Allelochemicals [M]. CRC Press, Boca Raton, 2002, pp, 201–216.
    [18] Fischer N H, Williamson G B, Weidenhamer J D, et al. In search of allelopathy in the Floridascrub: The role of terpenoids [J]. J Chem Ecol, 1994, 20: 1355–1380.
    [19] GICHNER T, PATKOVáZ, SZáKOVáJ, et al. Cadmium induces DNA damage intobacco roots, but no DNA damage, somatic mutations or homologous recombination intobacco leaves [J]. Mutation Research, 2004, 559: 49–57.
    [20] GICHNER T, PATKOVáZ, SZáKOVáJ, et al. DNA damage in potato plants inducedby cadmium, ethyl methanesulphonate andγ-rays. Environ Exp Bot , 2008, 62: 113–119.
    [21] GICHNER T, PLEWA M J. Induction of somatic DNA damage as measured by singlecell gel electrophoresis and point mutation in leaves of tobacco plants [J]. Mutat Res,1998, 401: 143–152.
    [22] HEFNER E, HUEFNER N, BRITT A B. Tissue-specific regulation of cell-cycleresponses to DNA damage in Arabidopsis seedlings [J]. DNA Repair, 2006, 5: 102–110.
    [23] INDERJIT, DAKSHINI K M M. Allelopathic potential of an annual weed, Polygonummonspeliensis, in crops in India [J]. Plant Soil, 1995, 173: 251–257.
    [24] KO?CA K, LANKOFF A, BANASIK A, et al. A cross-platform public domain PCimage-analysis program for the comet assay [J]. Mutation Research, 2003, 534: 15–20.
    [25] KONG C H, HU F, XU X H. Allelopathic potential and chemical constituents of volatilesfrom Ageratum conyzoides under stress [J]. J Chem Ecol, 2002, 28: 1173–1182.
    [26] LIU G A, DING L, YANG Y, et al. Anti-oxidative action of ent-kaurane diterpenoids [J].Res Chem Intermed, 2006, 32: 787–794.
    [27] LIU W, YANG Y S, LI P, et al. Root growth inhibition and induction of DNA damage insoybean (Glycine max ) by chlorobenzenes in contaminated soil [J]. Chemosphere , 2004,57: 101–106.
    [28] MACíAS F A, MOLINILLO J M G, CHINCHILLA D, et al. Heliannanes-a structureactivityrelationship (SAR) study, in: Macías F A, Galindo J C G, Molinillo J M G, andCutler H G (Eds), Allelopathy. Chemistry and Mode of Action of Allelochemicals [M].CRC Press, Boca Raton, 2004, pp, 103–124.
    [29] MACíAS F A, MOLINILLO J M G, GALINDO J C G, et al. Terpenoids with potentialuse as natural herbicide templates, in: Cutler H G and Cutler S J (Eds), BiologicallyActive Natural Products [M]. Agrochemicals CRC, Boca Raton, 1999, pp, 15–31.
    [30] MACíAS F A, MOLINILLO J M G, VARELA R M, et al. Allelopathy. A naturalalternative for weed control [J]. Pest Management Sci, 2007, 63: 327–348.
    [31] MACíAS F A, VARELA R M, SIMONET A M, et al. (+)-Brevione A. The first memberof a novel family of bioactive spiroditerpenoids isolated from Penicilliumbrevicompactum Dierckx [J]. Tetrahedron Lett, 2000, 41: 2683–2686.
    [32] MORIMOTO M, KOMAI K. Plant growth inhibitors: Patchoulane-type sesquiterpenesfrom Cyperus rotundus L. Weed [J]. Biol Manag, 2005, 5: 203–209.
    [33] MULLER C H. The role of chemical inhibition (allelopathy) in vegetational composition[J]. Bull Torrey Bot Club, 1966, 93: 332–351.
    [34] NISHIDA N, TAMOTSU S, NAGATA N, et al. Allelopathic effects of volatilemonoterpenoids produced by Salvia leucophylla: inhibition of cell proliferation and DNAsynthesis in the root apical meristem of Brassica campestris seedlings [J]. J Chem Ecol,2005, 31: 1187–1203.
    [35] PAN J W, ZHU M Y, CHEN H. Aluminum-induced cell death in root-tip cells of barley[J]. Envir Exp Bot, 2001, 46: 71–79.
    [36] PERES A, CHURCHMAN M L, HARIHARAN S, et al. Novel plant-specific cyclindependentkinase inhibitors induced by biotic and abiotic stresses [J]. J Biol Chem , 2007,282: 25588–25596.
    [37] RASMUSSEN J A, EINHELLIG F A. Inhibitory effects of combinations of three phenolicacids on grain sorghum germination [J]. Plant Sci Lett, 1979, 14, 69–74.
    [38] REICHHELD J P, VERNOUX T, LARDON F, et al. Specific checkpoints regulate plantcell cycle progression in response to oxidative stress [J]. Plant J, 1999, 17, 647.
    [39] REIGOSA M J, PAZOS-MALVIDO E. Phytotoxic effects of 21 plant secondarymetabolites on Arabidopsis thaliana germination and root growth [J]. J Chem Ecol, 2007,33: 1456–1466.
    [40] RICE E L. Allelopathy (2ed edition) [M]. New York: Academic Press, 1984, pp, 23-28.
    [41] SáNCHEZ-MOREIRAS A M, COBA DE LA PE?A T, REIGOSA M J. The naturalcompound benzoxazolin-2(3H)-one selectively retards cell cycle in lettuce root meristems[J]. Phytochemistry, 2008, 05, 014.
    [42] SUN H D, XU Y L, JIANG B. Diterpenoids from Isodon Species [M]. Science, Beijing,2001.
    [43] SZABO L G. Juglone index: A possibility for expressing allelopathic potential of planttaxa with various life strategies [J]. Acta Bot Hung, 2000, 42: 295–305.
    [44] TICE R R, AGURELL E, ANDERSON D, et al. Single cell gel/comet assay: guidelinesfor in vitro and in vivo genetic toxicology testing [J]. Environ Mol Mutagen, 2000, 35:206–221.
    [45] WEST G, INZE D, BEEMSTER G T S. Cell cycle modulation in the response of theprimary root of Arabidopsis to salt stress [J]. Plant Physiol, 2004, 135: 1050–1058.
    [46] YADEGARI R, PAIVA G, LAUX T, et al. Cell differentiation and morphogenesis areuncoupled in Arabidopsis raspberry embryos [J]. Plant Cell , 1994, 6: 1713–1729.
    [1] BIBIKOVA T, GILROY S. Root hair development [J]. J Plant Growth Regul, 2003, 21:383-415.
    [2] CAO X F, LINSTEAD P, BERGER F, et al. Differential ethylene sensitivity of epidermalcells is involved in the establishment of cell pattern in the Arabidodsis root [J]. PhysiolPlant, 1999, 106: 311-317.
    [3] DOLAN L. The role of ethylene in root hair growth in Arabidopsis [J]. J Plant Nutr SoilSci, 2001, 164: 141-145.
    [4] FORDE B, LORENZO H. 2001. The nutritional control of root development [J]. Plantand Soil, 232: 51–68.
    [5] GRICHKO V P, SISLER E C, SEREK M. Anti-ethylene properties of monoterpenes andsome other naturally occurring compounds in plants [J]. SAAS Bull Biochem Biotech, 2003,16: 20-27.
    [6] LI H J, GUO H W. Molecular basis of the ethylene signaling and response pathway inArabidopsis [J]. J Plant Growth Regul, 2007, 26: 106-117.
    [7] MICHAEL G. The control of root hair formation: suggested mechanisms [J]. J Plant NutrSoil Sci, 2001, 164: 111-119.
    [8] PAN J W, ZHU M Y, CHEN H. Aluminum-induced cell death in root-tip cells of barley [J].Environ Exp Bot, 2001, 46: 71-79.
    [9] PARKER J S, CAVELL A C, DOLAN L, et al. Genetic interactions during root hairmorphogenesis in Arabidopsis [J]. Plant Cell, 2000, 12: 1961-1974.
    [10] RODR?GUEZ F I, ESCH J J, HALL A E, et al. A copper cofactor for the ethylene receptorETR1 from Arabidopsis [J]. Science, 1999, 283: 996-998.
    [11] SISLER E C, GRICHKO V P, SEREK M. Interaction of ethylene and other compoundswith the ethylene receptor: Agonists and antagonists, in: KHAN N A (Eds), EthyleneAction in Plants [M]. Springer-Verlag, Heidelberg, Berlin, Germany, 2006.
    [12] TANIMOTO M, ROBERTS K, DOLAN L. Ethylene is a positive regulator of root hairdevelopment in Arabidopsis thaliana [J]. Plant J, 1995, 8: 943-948.
    [13] YANG X H, OWENS T G, SCHEFFLER B E, et al. Manipulation of root hairdevelopment and sorgoleone production in sorghum seedlings [J]. J Chem Ecol, 2004, 30(1): 199-213.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700