水分亏缺对玉米根和叶显微结构及H_2O_2积累的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉米是耗水量大的作物,研究水分亏缺下玉米生理、形态的变化以及对胁迫的响应能够为实际的农业生产提供必要的理论依据。本试验通过调亏灌溉的方法对盆栽玉米设定不同控水梯度处理[田间最大持水量的75%~85%(对照)、65%~75%(轻度)、55%~65%(中度)、45%~55%(重度)],运用生理学实验技术结合常规染色、荧光染色、显微形态观察、细胞化学定位等手段,从生理学、形态学、解剖学和细胞化学角度,研究了苗期、拔节期玉米根和叶组织的形态、解剖结构和H_2O_2积累变化对水分亏缺的响应。研究结果如下:
     (1)水分亏缺对根毛生长的影响:苗期和拔节期,水分亏缺下玉米根毛直径均变细,根毛长度和密度增加,根尖到根毛区距离缩短,其中重度处理的根毛密度最大,根尖端到根毛区的距离最短。复水后各处理组与复水前相比,根毛直径、长度、密度、根尖到根毛区距离无明显变化。
     (2)水分亏缺对玉米根毛区解剖结构的影响:玉米苗期、拔节期根毛区皮层薄壁细胞随着水分亏缺程度的加剧,细胞体积缩小变形,排列不规则,导致皮层厚度逐渐变薄。苗期轻度水分亏缺促进玉米内皮层细胞径向壁木质化、栓质化加厚,细胞变形不明显,而中度、重度处理的内皮层细胞壁木质化、栓质化程度低,内皮层细胞变形明显;拔节期内皮层细胞壁发育为成熟的“马蹄形”加厚,轻度、中度水分亏缺促进内皮层细胞径向壁、内切向壁木质化、栓质化加厚,细胞变形不明显,只有重度处理内皮层细胞变形。复水后,内皮层细胞继续发育进入后期,细胞壁加厚程度增加。
     (3)水分亏缺对玉米叶片气孔的影响:水分亏缺程度与气孔密度呈正相关,与气孔开度呈负相关,重度处理气孔开度最小。复水后,轻度处理组气孔开度恢复到正常水平,中度、重度气孔开度得到一定程度的恢复。
     (4)水分亏缺对根和叶片中H_2O_2含量的影响:随着水分亏缺程度的加剧,根和叶片中H_2O_2含量均升高,在重度处理时达到最大。复水后,轻度水分处理的H_2O_2含量下降到接近正常对照水平。中度、重度处理的H_2O_2含量高于正常对照,但差异不显著。
     (5)水分亏缺对根中H_2O_2分布和积累的影响:荧光标记表明水分亏缺处理下,玉米根尖端是产生H_2O_2的主要部位。随着水分亏缺程度的加剧,H_2O_2的分布区域从根冠向分生区和伸长区逐渐延伸,H_2O_2的含量也逐渐增多。CeCl3标记显示H_2O_2主要分布于细胞膜和细胞间隙,拔节期处理组H_2O_2的积累量高于苗期。中度、重度处理组除了在细胞膜和细胞间隙存在大量的H_2O_2外,液泡膜、线粒体膜上也出现H_2O_2的积累,其中重度处理组细胞出现线粒体肿胀、嵴减少的现象。复水后,苗期和拔节期处理组根尖细胞中的H_2O_2不同程度的减少,但中度、重度处理的细胞膜、细胞间隙仍存在少量H_2O_2积累。
     综上所述,玉米通过促进根毛发育,改变皮层厚度,增加内皮层木质化、栓质化程度,调节气孔开关,增加根尖H_2O_2积累来响应水分亏缺产生的胁迫。
Maize is one of the largest water consumption crops, researching water deficit on the change of physiology and morphology and response to stress can provide essential theoretical foundation for the practical agriculture production. In a pot experiment with water treatments: 75%-85% of field capacity (control), 65%-75% of field capacity (light deficit), 55%-65% of field capacity (moderate deficit), and 45%-55% of field capacity (severe deficit). To research water deficit and rewatering on the change of morphology, anatomical structure and H_2O_2 accumulation in root and leave of maize, which is in seelding and jointing stage, with physiology experiment technology, green and the counterstain safranin stain , fluorescent dyes stain, SEM and cell chemistry labeling. The results were as follows:
     The effect of water deficit on root hair of maize:After water deficit treatment in seedling, maize root hair became thin, root hair density increased, distance from root point to root hair shortened, which was most denser in root hair and shortest distance from root point to root hair with severe treatment. Rewatering had no significant effect on root hair density and distance from root tip to root hair of maize root hair corn root has no evident change.
     It showed that decrease of codex parenchyma cells area and deformation shape with irregular arrangment resulted in width of codex in root hair zone of maize seedling and jointing getting thinner. With increasing water deficit, the endodermis in root hair zone of maize seedling decreased and deformated obviously, Comparatively, the endodermis of maize jointing changed unconspicuously, caused by mature casparian band enhenced mechanical strength of endodermis. Fluorescence observations showed that axial walls of endodermis thickened on seedling stage with light deficit. Both axial and inner tangential walls of casparian band of endodermis thickened more obviously on jointing stage with light and moderate deficit. Because of it developed into late growth, endodermis cell wall got more thickened after rewatering.
     The effect of water deficit on the stomata of maize: water deficit level is correlated positively with the density of stomata, and negative correlation with Stomata aperture, which get the highest level reduce in stomata aperture with severe disposal. After rewatering, the level of Stomata aperture were closed to control, the Stomata aperture of moderate deficit and severe deficit treatment recovered resume to a certain extent.
     The effect of water deficit on the H_2O_2 contents of roots and leaves: As the levels of water deficit aggravate, the H_2O_2 contents of roots and leaves rised up, which got to the highest content in the severe treatment. After rewatering, the H_2O_2 content in moderate deficit declines to the normal control. The H_2O_2 contents of moderate deficit and severe deficit was higher than the control, but the difference was not remarkable.
     The effect of water deficit on the distribution and accumulation of H_2O_2 in root: The result of water deficit on fluorescent stain showed maize root tip produce the most of H_2O_2. As the water deficit extend is aggravating, the accumulation of H_2O_2 increased and extented from root tip to meiosis zone. The result of CeCl3 labeling indicates that H_2O_2 mainly distributes on the cell membrane and the intercellular space of cells. The H_2O_2 accumulation of the treatments in jointing stage was higher than that in seedling period. In the moderate and severe deficit, the H_2O_2 accumulation was not only on the cell membrane and the intercellular space, but also on the tonoplast and mitochondria. In addition, the cell of root tip appears mitochondria swell and mitochondrialcristae reduce in the severe deficit. After rewatering, H_2O_2 have different degree of reduced in the treatments of jointing and seedling stage, there are still a few accumulation on the cell membrane and the intercellula space the moderate and severe.
     In sum, in order to influence the force of water deficit, maize promotes the root hair growth, changes the cortex thickness, increases the level of lignifications qualitative of endodermis., adjust Stomata aperture, increases the accumulation of H_2O_2 in root tip.
引文
白莉萍,隋方功,孙朝晖等. 2004.土壤水分胁迫对玉米形态发育及产量的影响.生态学报, 7(24): 1556~1560
    曹慧,兰彦平,王孝威. 2001.果树水分胁迫研究进展.果树学报, 18(2): 110~114
    陈豫梅,陈厚彬,陈国菊. 2001.香蕉叶片形态结构与抗旱性关系的研究,热带农业科学, 4: 14~16
    冯广龙,罗远培,杨培岭等. 1998.土壤水分对冬小麦初生根和次生根生长发育的影响.作物学报, 24(6): 698~705
    高俊凤. 2000.植物生理学实验技术.西安:世界图书出版公司: 159~160
    郭相平,康绍忠,索丽生. 2001.苗期调亏处理对玉米根系生长影响的试验研究.灌溉排水, 20(1): 25~27
    贺冬梅,张崇玉,王丹妮,李盛勇,胡先伟. 2008.玉米拔节期水肥耦合效应研究.水土保持研究, 15(3): 164~166
    郝福顺,陈珈. 2005.植物细胞膜NADPH氧化酶的研究进展.植物学通报, 22, 1~10.
    胡田田,康绍忠,原丽娜,李志军,张富仓. 2008.不同灌溉方式对玉米根毛生长发育的影响.应用生态学报, 19(6): 1289~1295
    黄占斌. 2000.干湿变化与作物的补偿效应规律研究.生态农业研究, 8(1): 30~33
    康绍忠,胡笑涛,蔡焕杰等. 2004.现代农业与生态节水的理论创新及研究重点.水利学报, 12: 1~7
    孔妤,王忠,熊飞,顾蕴洁,邓亚萍. 2008. PEG胁迫下水稻根外皮层厚壁细胞的解剖学研究.扬州大学学报, 29(1): 61~65.
    李博,王刚卫. 2008.不同干旱方式和干旱程度对玉米苗期根系生长的影响.干旱地区农业研究, 26(5): 148~152
    李海,苏维埃. 1995.渗透胁迫条件下花生幼根水分状况的核磁成象分析.中国科学(B辑), 25(12): 1291~1295
    李广毅,高国雄,吕悦来等. 1995.三种灌木植物形态特征及解剖结构的对比观察.水土保持研究, 2(2): 141~145
    李扬汉. 1995.植物学.上海:科学技术出版社: 139~155
    李正理. 1981.旱生植物的形态和结构.生物学通报, 4: 9~12
    梁建生,张建华. 1998.根系逆境信号ABA的产生和运输及其生理作用.植物生理学通讯, 34(5): 319~338
    刘丹等. 2003.水分胁迫下脱落酸的产生作用机制及应用研究进展.东北林业大学学报, 31(1): 34~38
    刘殿英,黄炳茹,董庆裕. 1991.土壤水分对冬小麦根系放入影响.山东农业大学学报, 22(2): 103~110
    刘胜群,宋凤斌. 2007.不同耐旱性玉米根系解剖结构比较研究,干旱地区农业研究, 25(2): 86~91
    刘艳,黄卫东,战吉宬,潘秋红. 2004.机械伤害和外源茉莉酸诱导豌豆幼苗H2O2系统性产生.中国科学C辑, 34(6): 501~509
    马旭凤,于涛,汪李宏,石喜,郑灵祥,王密侠,姚雅琴,蔡焕杰. 2010.苗期水分亏缺对玉米根系发育及解剖结构的影响.应用生态学报, 21(7): 1731~1736.
    苗雨晨,宋纯鹏,董发才. 2000. ABA诱导蚕豆气孔保卫细胞H2O2的产生.植物生理学报, 26(1): 53~58
    欧巧明,倪建福,马瑞君. 2005.春小麦根系木质部导管与其抗旱性的关系麦类作物学报. 25(3): 27~31
    齐健,宋凤斌,刘胜群. 2006.苗期玉米根叶对干旱胁迫的生理响应.生态环境, 15(6): 264~1268
    王静,续惠云. 2000.水分胁迫对春小麦苗期叶肉细胞和气孔数的影响.西北植物学报, 20(5): 842~846
    王立德,廖红,王秀荣,严小龙.植物根毛的发生、发育及养分吸收,植物学通报2004, 21 (6): 649~659
    王泽立,张恒悦,阎先喜. 1998.玉米抗旱品种的形态解剖学研究.西北植物学报, 18(4): 582~583
    王周锋,张岁岐,刘小芳. 2005.玉米根系水流导度差异及其与解剖结构的关系.应用生态学报, 16(12): 2349~2352
    翁晓燕,蒋德安. 1999.影响水到光合作用日变化的酶和相关因素分析.生物书学学报, 14(4): 495~500
    吴小琴,朱锦懋,王钦丽,胡玉熹,林金星. 2002.植物凯氏带的研究进展.植物学通报, 19(3): 302~309
    吴子恺.玉米抗旱育种. 1994.玉米科学, 2(1): 6~9
    武维华. 2003.植物生理学.北京:科学出版社: 440
    夏国军,阎耀礼,程水明.旱地冬小麦水分亏缺补偿效应研究. 2001.干旱地区农业研究, 19(1): 79~82
    肖婷婷,吕金印. 2010.水分亏缺对小麦穗部维管束系统发育的影响.中国生态农业学报, 18(5): 977~981
    徐洪伟,陆静梅,周晓馥. 2009.水分胁迫条件下玉米毛状根再生植株耐旱性研究.农业工程学报, 23(7): 19~23
    徐建华,陶冶,黄艳,孙家林. 2004.植物根内皮层凯氏带染色的小檗碱-苯胺蓝对染法.植物生理学通讯, 40(4): 479~482
    杨建昌, Johanson W,朱庆森等. 1995.水分胁迫对水稻气孔导度及脱落酸含量的影响.作物学报, 21(5): 594~539
    杨建设,许育彬. 1997,论冬小麦抗旱丰产的根区调控问题.干旱地区农业研究, 15(1): 50~57
    于海秋,王晓磊,蒋春姬,王晓光,曹敏建. 2008.土壤干旱下玉米幼苗解剖结构的伤害进程.干旱地区农业研究, 26(5): 143~147
    张红霞,刘果厚,崔秀萍. 2005.干旱对浑善达克沙地榆叶片解剖结构的影响.植物研究, 25(1): 39~44
    张华,刘子会,马春红. 2004.干旱胁迫下玉米木质部汁液pH和ABA含量变化及其与气孔关系.河北农业科学, 8(2): 35~39
    张继澍. 2005.植物生理学.北京:高等教育出版社: 39
    张寄阳,刘祖贵,段爱旺. 2006.棉花对水分胁迫及复水的生理生态响应.棉花学报, 18(6): 398~399
    张岁歧,山仑. 2001.根系吸水机理研究进展.应用与环境生物学报, 7(4): 396~402.
    赵瑞霞,张奇宝等. 2001.干旱对小麦叶片下表皮细胞、气孔密度及大小的影响.内蒙古农业科. (6): 6~7
    赵雅静,翁伯琦,王义祥,徐国忠. 2009.植物对干旱胁迫的生理生态响应及其研究进展.福建稻麦科技, 27(2): 45~50
    周丛义,吴国利,段壮芹,吴丽丽,高永生,陈坤明. 2010. H2O2-NOX系统:一种植物体内重要的发育调控与胁迫响应机制.植物学报, 45 (5): 615~631
    周桂玲,达利夏提,安争夕, 1995.新疆滨藜属植物叶表皮微形态学及叶的比较解剖学研究.干旱区研究, 12(3): 34~37
    朱丹,蒋明义,谭明谱. 2006. ABA诱导玉米叶质外体H2O2积累的机制,植物生理与分子生物学学报, 32 (5): 519~526
    Bedard K, Krause KH. 2007, The NOX family of ROS generating NADPH oxidases: physiology and pathophysiology. Physiol Rev, 87: 245~313
    Bonnett H T. 1968, The root endodermis: fine structure and function. Cell Bid. 37: 109~205
    Boyer J S. 1970. Leaf enlargement and metabolic rates in corn soybean and sun-lower at various leaf water potentials. Plant Physiol, 46: 233~235
    Bruce R J, West C A. Elicitation of linin biosynthesis and isoperoxidase activity by pectic fragments in suspension cultures of castor bean. Plant Physiol .1989, 91: 889~897
    Bustos D, Lascano R, Villasuso A L, Machado E, Senn M E, Cordoba A, Taleisnik E, 2008.
    Reductions in maize root-tip elongation by salt and osmotic stress do not correlate with apoplastic O2- levels. Annals of Botany, 102: 551~559
    Chaves, M M, Pereira J S, Maroco J, Rodrigues M L, Ricardo C P P, Osorio M L, Carvalho I, Faria T, Pinheiro C. 2002. How plants cope with water stress in the field. Photosynthesis and growth. Ann. Bot. 89: 907~916
    Cruz R T, Jordan W R, Drew M. 1992. Structural changes and associated reduction of hydraulic conductance in roots of Sorghum bicolor L. following exposure to water deficit. Plant physiol. 99: 203~212
    Davies W J, Zhang J. 1991. Root signal and the regulation of growth and development of plants in drying soil. PlantPhysio1. 42: 55~76
    Geiszt M. 2006. NADPH oxidases: new kids on the block. Cardiovasc Res. 71: 289~299
    Gunz D W, Hoffmann M R. 1990. Atmospheric chemistry of peroxides: a review. Atomos Environ, 24A: 1601~1633
    Kamaluddin M, Grace J. 1992. Photoinhibition and light acclimation in seedings of Bischofia javanica Atropical foresee forest trees from Asia. Ann. Bot, 69: 47~52
    Kramer P J, Kozlowski T T. 1979. Physiology of woody plants. Orlando Academic press Lange B M, Lapierre C, Sandenmnn H J. 1995. Elicitor-induced spruce stress lignin (structural similarity to early developmental lignins). Plant Physiol. 102: 1277~1287
    Mark C, Brundrett, Daryl E, Enstone, C A, Peterson. 1988. A berberine-aniline blue fluorescentstaining procedure for suberin, lignin, and callose in plant tissue. Protoplasma, 146:133-142
    Peterson C A, Murrmann M, Steudle E. 1993. Location of the major barriers to water and ion movement in young roots of Zea mays L. Planta, 190: 127~136
    Rieger M, Litvin P. 1999. Root system hydraulic conductivity in species with contrasting root anatomy. Journal of Experimental Botany, 50(331): 201~209.
    Natrova Z, Natr L. 1993. Limitation of kernel yield by the size of conducing tissue in winter-wheat varieties. Field Crops Research, 31(2): 121~130
    Nupur S,Vijay K, Gonugunta, Mallikarjuna R, Puli, Agepati S, Raghavendra. 2009. Nitric oxide production occurs downstream of reactive oxygen species in guard cells during stomatal closure induced by chitosan in abaxial epidermis of Pisum sativum. Planta, 229: 757~765
    Reinhardt D H, Rost T L. 1995. Salinity accelerates endodermal development and induces an exodermis in cotton seedling roots. Environmental and Experimental Botany, 35(4): 563~574
    Salln M L. 1987. Toxic oxygen species and protective systems of the chloroplast. Physiol Plant, 72: 681~689
    Sharp R E. 2004. Root growth maintenance during water deficit: physiologyto functional genomics. Journal Experiment Botany, 55: 2343~2351
    Shi H Z, Zhu J K. 2002. SOS4, a pyridoxal kinase gene, is required for root hair development in A rabidopsis. Plant Physiol, 129 : 585~593
    Steudle E M, Peterson C A. 1998. How does water get through roots. Exp Bot, 49: 775~788
    Steudle E M, Murrmann, Peterson C A. 1993. Transport of water and solutes across maize roots modified by puncturing the endodermis (Further evidence for the composite transport model of the root). Plant Biologists, 103(2): 335~349
    Yao N, Tada Y, Sakamoto M, Nakayashiki H, Park P, Tosa Y, Mayama S. 2002. Mitochondrial oxidative burst involved in apoptotic response in oats. the Plant Journal, 30(5): 567~579
    Vamerali T, Saccomani M, Bona S. 2003. A comparison of root characteristics in relation to nutrient and water stress in two maize hybrids. Plant and Soil, 255: 157~167
    Van Breusegem F, Bailey S J, Mittler R. 2008, Unraveling the tapestry of networks involving reactive oxygen species in plants. Plant Physiol , 147, 978~984
    Zhao C X, Deng X P, Zhang S Q, Ye Q, Steudle E, Shan L. 2004 Advances in the studies on water uptake by plant roots. Acta Botanica Sinica, 46(5): 505~514.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700