新型功能化吸附剂的制备及其在金属离子分析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当今社会,金属离子污染已存在于人类生活的各个领域,已严重威胁到了人类的生命安全,如何对环境中的痕量金属污染物进行有效治理就成为环境分析化学工作者所面临的一大挑战。尽管原子发射光谱和原子吸收光谱是应用最广泛的测定金属离子含量的方法,然而由于金属污染物体系比较复杂,且常以痕量、超痕量的状态存在于环境中,因而在进入仪器分析前,往往需要将实际样品进行一定的预处理。固相萃取技术(SPE)是目前样品前处理技术中最为灵活、高效的的一种手段,对于固相萃取技术而言,吸附剂的选择决定着方法的回收率和富集因子。为了解决固相萃取技术选择性不够高,容易对目标物质的分析造成干扰等缺点,一般通过物理或者化学手段对吸附剂的表面进行修饰,在吸附剂的表面引入0、N、S、P等配位原子从而提高方法的选择性和吸附容量。因此,本论文致力于合成新型的固相萃取剂并将其用于环境样品中痕量金属离子的分离富集,主要的研究工作如下:
     1.用2-羟基萘醛修饰凹凸棒得到了新型的固相萃取吸附剂,并将其应用于环境样品中痕量Cu(Ⅱ)的富集分离。通过静态和动态分析程序优化各种实验条件,得到最佳富集Cu(Ⅱ)的酸度为pH 4,使用2.0 mL 0.0lmol L-1的HCl可以实现对Cu(Ⅱ)的有效洗脱。该吸附剂对Cu(Ⅱ)的吸附容量为25.13 mg g-1。本方法对Cu(Ⅱ)的检出限为0.24 ng mL-1,富集因子为150。将本方法应用于国家标准样品和天然水样中痕量Cu(Ⅱ)的测定,结果令人满意。
     2.用香草醛修饰硅胶得到了两种新型的固相萃取吸附剂,并将其应用于环境样品中痕量Cr(Ⅲ)的富集分离。通过优化各种实验条件,得到在pH为4时,两种吸附材料均可以实现对Cr(Ⅲ)的定量吸附。2.0 mL 0.5 mol L-1 HCl可以实现对Cr(Ⅲ)的定量洗脱。两种吸附剂对Cr(Ⅲ)的吸附容量分别为0.700和0.538 mmolL-1。两种方法的检出线分别为0.87和0.64 ng mL-1。两种方法的富集因子分别为100和75。将这两种吸附剂应用于生物样品和环境样品中痕量Cr(Ⅲ)的富集分离,结果令人满意。
     3.用乙二胺成功修饰活性炭得到新型的固相萃取吸附剂并将其应用于环境样品中痕量Cr(Ⅲ)、Fe(Ⅲ)、Hg(Ⅱ)和Pb(Ⅱ)的测定。通过优化实验条件,得到最佳的实验酸度为pH 4,被吸附的离子可以被3.0 mL 2%硫脲和0.5 mol L-1 HCl混合溶液洗脱,该吸附剂对Cr(Ⅲ)、Fe(Ⅲ)、Hg(Ⅱ)和Pb(Ⅱ)的吸附容量分别为39.4、28.9、60.5和49.9 mg g-1。本方法的相对标准偏差小于4%(n=8),将本方法应用于国家标准样品GBW08301,、猪肝以及环境水样中痕量Cr(Ⅲ)、Fe(Ⅲ)、Hg(Ⅱ)和Pb(Ⅱ)的测定,结果令人满意。
     4.用锌试剂负载活性炭得到新型的固相萃取剂,将其用来分离富集液体样品中痕量的Cr(Ⅲ)和Pb(Ⅱ),用ICP-AES进行测定。实验结果表明,在优化的酸度下,本吸附剂对的吸附容量分别为17.9和26.7 mg g-1,1.0 mL 0.1 mol L-1 HCl可以实现对目标离子的有效洗脱。常见的共存离子不影响目标离子的分离富集,得到该方法对Cr(Ⅲ)和Pb(Ⅱ)的检出限分别为0.91和0.65 ng mL-1,相对标准偏差小于3.5%(n=8),该方法已成功应用于生物样品和黄河水样中痕量Cr(Ⅲ)和Pb(Ⅱ)的分离富集。
     5.用DCC作为脱水剂,使用L-丙氨酸成功修饰碳纳米管得到一种能够选择性吸附Au(Ⅲ)的固相萃取吸附剂材料。在优化的酸度条件下,该吸附剂对的吸附容量为101.3 mg g-1,该吸附材料制备过程简单,富集过程快速,易洗脱,将其应用于国家标准样品、和环境水样中痕量Au(Ⅲ)的测定,结果令人满意。
In recent years, the toxicity and the effect of trace elements on human health and the environment are receiving increasing attention in pollution and nutritional studies. Therefore, it is crucial to develop simple, rapid, and efficient methods for monitoring metal ions in the environment. Although inductively coupled plasma atomic emission spectrometry (ICP-AES) and atomic absorption spectrometry (AAS) are among the most widely used methods for trace metal determination, they are usually insufficient due to the matrix interferences and the very low concentration of metal ions. For these reasons, an efficient separation and preconcentration procedure is often required prior to the measurement step. Recently, one of widely used and fast emerging preconcentrative separation techniques is the solid-phase extraction (SPE). In SPE procedure, the choice of appropriate adsorbent is a critical factor to obtain full recovery and high enrichment factor. However, the main drawback of SPE is the lack of selectivity, which leads to high interference of the other existing species with the target metal ion. To overcome this problem, a chemical or physical modification of the sorbent surface with some organic compounds, is usually used to load the surface with some donor atoms such as oxygen, nitrogen, sulfur and phosphorus. Based on it, this research paper is devoted to the design, synthesis and application of newly selective solid-phase extractors in order to pre-concentration and separation of trace metal ions. The detailed novelty of this study have been listed in the following:
     1. A new sorbent 2-hydroxy-l-naphthaldehyde-modified attapulgite was prepared as a solid-phase extractant and applied for separation, preconcentration and determination of Cu(Ⅱ) in aqueous solutions by ICP-AES. The optimum pH value for the separation of Cu(Ⅱ) on the newly sorbent was 4.0 and complete elution of Cu(Ⅱ) from the sorbent surface was carried out using 2 mL of 0.01 mol L-1 HCl. The adsorption capacity for Cu(Ⅱ) was 25.13 mg g-1. The detection limits of the method defined by IUPAC were found to be 0.24 ug L"1 with enrichment factor of 150. The method has been applied for the determination of Cu(Ⅱ) in certified reference materials and natural water samples with satisfactory results.
     2. A method is described for the selective extraction of chromium(Ⅲ) from aqueous solutions and natural water samples, based on the use of two newly synthesized solid-phase extractors via silica gel-immobilized-vanillin derivatives (Ⅰ,Ⅱ). The optimum pH values for the separation of Cr(Ⅲ) simultaneously on the newly sorbents were both 4.0 and complete elution of Cr(Ⅲ) from the sorbents surface was carried out using 2.0 mL of 0.5 mol L-1 HCl. The sorption capacity of phase I towards Cr(Ⅲ) was found to be 0.700 mmol g-1 where the sorption capacity of phaseⅡwas 0.538 mmol g-1. The detection limits (3б) of the method defined by IUPAC were found to be 0.87 and 0.64 ng mL-1 with enrichment factors of 100 and 75 for phasesⅠandⅡ, respectively. The method has been applied for the determination of Cr(III) in biological materials and water samples with satisfactory results.
     3. A new method that utilizes ethylenediamine-modified activated carbon (AC-EDA) as a solid phase extractant has been developed for simultaneous preconcentration of trace Cr(Ⅲ), Fe(Ⅲ), Hg(Ⅱ) and Pb(Ⅱ) prior to the measurement by ICP-AES. The optimum pH value for the separation of metal ions simultaneously on the new sorbent was 4.0. Complete elution of adsorbed metal ions from the sorbent surface was carried out using 3.0 mL of 2% (%w/w) thiourea and 0.5 mol L-1 HCl solution. The maximum static adsorption capacity of the sorbent at optimum conditions was found to be 39.4,28.9,60.5 and 49.9 mg g-1 for Cr(Ⅲ), Fe(Ⅲ), Hg(Ⅱ) and Pb(Ⅱ), respectively. The precision (RSD) of the method was lower 4.0% (n=8). The prepared sorbent as solid-phase extractant was successfully applied for the preconcentration of trace Cr(Ⅲ), Fe(III), Hg(Ⅱ) and Pb(Ⅱ) in natural and certified samples with satisfactory results.
     4. A new method that utilizes zincon-modified activated carbon (AC-ZCN) as a solid phase extractant has been developed for simultaneous preconcentration of trace Cr(Ⅲ) and Pb(Ⅱ) prior to the measurement by ICP-AES. At pH 4, the maximum adsorption capacity of Cr(Ⅲ) and Pb(Ⅱ) onto the AC-ZCN were 17.9 and 26.7 mg g-1, respectively. The adsorbed metal ions were quantitatively eluted by 1 ml of 0.1 mol L-1 HCl. According to the definition of IUPAC, the detection limits (3б) of this method for Cr(Ⅲ) and Pb(Ⅱ) were 0.91 and 0.65 ng mL"1, respectively. The relative standard deviation under optimum condition is less than 3.5%(n=8). The method has been applied for the determination of Cr(Ⅲ) and Pb(Ⅱ) in biological materials and water samples with satisfactory results.
     5. A new method that utilizes L-Alanine-modified multiwalled carbon nanotubes as a solid phase extractant has been developed for simultaneous preconcentration of trace Au(Ⅲ) prior to the measurement by ICP-AES. The maximum adsorption capacity at optimum conditions was found to be 101.3 mg g-1 for Au(Ⅲ). The method was validated using two certified reference materials, and has been applied for the determination of trace Au(Ⅲ) in natural water samples with satisfactory results.
引文
[1]余自力,程光磊.金属离子分析技术[M].北京:化学工业出版社.2004.
    [2]李成仙.仪器分析的发展趋势及其在生物科学中的应用[J].安康学院学报.2007,19:96-98.
    [3]杨铭珍.发射光谱分析方法的发展[J].辽宁师范大学学报.1985,1:65-77.
    [4]鲍鸥.光谱分析在化学发展中的作用[J].世界科学.1988,3:59.
    [5]胡长平.仪器分析的发展历程[J].安徽科技,2004,10:48-49.
    [6]李慧.化学光谱分析[J].上海钢研.1984,6:18-22.
    [7]王拥军,石香玉.分离富集[M].河南大学出版社.2008.
    [8]苏耀东,程祥圣.共沉淀分离富集法的应用与进展[J].理化检验-化学分册.1999,35(5):236-241.
    [9]金鑫,刘劲松,陈恒武,毛雪琴.流动注射在线共沉淀预富集火焰原子吸收法测定痕量铜[J].理化检验-化学分册.1998,34,246-250.
    [10]苏耀东,夏青,谭秀臣,程祥圣.镍-1-(2-吡啶偶氮)2-萘酚共沉淀分离富集碱金属盐中痕量铅及铅的原子吸收光谱测定[J].分析化学.1998,11:1391-1393.
    [11]Alonso A., Almendral M.J., Porras M.J., et al. Flow-injection solvent extraction with and without phase separation:Fluorimetric determination of aluminium in water[J]. Anal. Chim. Acta.2001,447(1-2):211-217.
    [12]Anthemidis A.N., Zachariadis G.A., Farastelis C.G.,et al. On-line liquid-liquid extraction system using a new phase separator for flame atomic absorption spectrometric determination of ultra-trace cadmium in natural waters[J]. Talanta.2004,62(3):437-443.
    [13]Anthemidis A.N. Automatic sequential injection liquid-liquid micro-extraction system for on-line flame atomic absorption spectrometric determination of trace metal in water samples[J]. Talanta.2008,77(2):541-545.
    [14]Motomizu S., Onoda M., Oshima M. Spectrophotometric determination of potassium in river water based on solvent extraction of the complex formed with a crown ether and an anionic azo dye using flow injection[J]. Analyst.1988,113:743-746.
    [15]Blanco T., Maniasso N., Gine M.F., et al. Liquid-liquid extraction in flow injection analysis using an open-phase separator for the spectrophotometric determination of copper in plant digests[J]. Analyst.1998,123:191-193.
    [16]Blas O.J., Paz J.L.P., Mendez J.H. Indirect determination of the pesticide dimethoxydithiophosphate in an FIA-AAS system with liquid-liquid back-extraction[J]. Talanta.1991,38(8):857-861.
    [17]Koshima H., Onishi H. Separation of rhenium by extraction with crown ethers and flow-injection extraction-spectrophotometric determination with Brilliant Green[J]. Anal. Chim. Acta.1990,232:287-292.
    [18]Bergamin H., Medeiros J.X., Reis B.F., et al. Solvent extraction in continuous flow injection analysis:Determination of molybdenum in plant material[J]. Anal. Chim. Acta.1978, 101:9-16.
    [19]Starczewska B., Halaburda P., Kojlo A. Studies and analytical application of reaction of imipramine with chrome azurol S[J]. J. Pharm. Biomed. Anal.2002,30(3):553-560.
    [20]Nemcova I., Rychlovsky P., Tomankova V., et al. Extraction spectrophotometric determination of lidocaine using flow injection analysis[J]. Anal. Lett.2001, 34(14):2457-2464.
    [21]Fossey L., Cantwell F.F. Characterization of solvent extraction/flow injection analysis with constant pressure pumping and determination of procyclidine hydrochloride in tablets. Anal. Chem[J].1982,54:1693-1697.
    [22]Kimura K., Iketani S., Sakamoto H., et al. Applicability of Chromogenic 14-Crown-4 Derivative to Extraction-Spectrophotometric Flow Injection Analysis for Lithium Ion in Blood Serum[J]. Anal. Sci.1988,4(2):221-222.
    [23]Lucy C.A., Cantwell F.F.. Simultaneous determination of phenylephrine hydrochloride and pheniramine maleate in nasal spray by solvent extraction-flow injection analysis using two porous-membrane phase separators and one photometric detector[J]. Anal. Chem.1986, 58:2727-2731.
    [24]Ali A. Ensafi, A. Benvidi, T. Khayamian. Determination of Cadmium and Zinc in Water and Alloys by Adsorption Stripping Voltammetry[J]. Anal. Lett.2004,37(3):447-462.
    [25]Nielsen S.C., Hansen E.H.. Interfacing flow injection analysis (sequential injection analysis) and electro-thermal atomic absorption spectrometry determination of trace-levels of Cr(VI) via on-line pre-concentration by adsorption in a knotted reactor and by liquid-liquid extraction[J]. Anal. Chim. Acta.2000,422(1):47-62.
    [26]Gallignani M., Ayala C, Brunetto M.D., et al. A simple strategy for determining ethanol in all types of alcoholic beverages based on its on-line liquid-liquid extraction with chloroform, using a flow injection system and Fourier transform infrared spectrometric detection in the mid-IR[J]. Talanta.2005,68(2):470-479.
    [27]Burns D.T., Chimpalee N., Harriot M. Flow-injection extraction spectrophotometric determination of dichromate with the tetramethylenebis(triphenylphosphoniurn)cation[J]. Anal. Chim. Acta.1989,225:241-246
    [28]李超.食品分析原理与技术[M].北京:科学技术文献出版社.1987.
    [29]王立,汪正范,牟世芬,丁晓静.色谱分析样品处理[M].化学工业出版社.2001.
    [30]甘树才,来雅文,段太成,曹淑琴,郭锦勇,赵炳南.DT-1016型阴离子交换树脂分离富集金铂钯[J].岩矿测试.2002,1(2):113-116.
    [31]Afkhami A., Madrakian T., Assl A.A.,et al. Solid phase extraction flame atomic absorption spectrometric determination of ultra-trace beryllium[J]. Anal Chim Acta.2001,437(l):17-22.
    [32]Marek Smolik, Agata Jakobik-Kolon. Determination of Microamounts of Hafnium in Zirconium Using Inductively Coupled Plasma Atomic Emission Spectrometry and Inductively Coupled Plasma Mass Spectrometry during Their Separation by Ion Exchange on Diphonix Chelating Resin[J]. Anal. Chem.2009,81(7):2685-2687.
    [33]Kargol M, Zajac, J.Jones D., et al. Porous Silica Materials Derivatized with Cu and Ag Cations for Selecti J.ve Propene-Propane Adsorption from the Gas Phase:Aluminosilicate Ion-Exchanged Monoliths[J]. Chem. Mater.2004,16(20):3911-3918.
    [34]Wang L., Tian C., Wang B., et al. Controllable synthesis of graphitic carbon nanostructures from ion-exchange resin-iron complex via solid-state pyrolysis process[J]. Chem. Commun.2008,42:5411-5413.
    [35]Pierluigi B., Claudio B., Giuliano G, et al. Recycling asymmetric hydrogenation catalysts by their immobilisation onto ion-exchange resinsfJ]. Dalton Trans.2004,12:1783-1784.
    [36]James WJorgenson. New Directions in Electrophoretic Methods[M]. Chapter 13. 1987:182-198.
    [37]Yan Xu. Capillary electrophoresis[J]. Anal. Chem.1995,67(12):463-473.
    [38]Stephen K.Doorn, Robert E.Fields, Hui Hu, et al. High Resolution Capillary Electrophoresis of Carbon Nanotubes[J]. J. Am. Chem. Soc.2002,124(12):3169-3174.
    [39]Sergey N.Krylov, Maxim Berezovski. Non-equilibrium capillary electrophoresis of equilibrium mixtures—appreciation of kinetics in capillary electrophoresis[J]. Analyst. 2003,128:571-575.
    [40]Chandra A.Nesbitt, Ken K.-C. Yeung. In-capillary enrichment, proteolysis and separation using capillary electrophoresis with discontinuous buffers:application on proteins with moderately acidic and basic isoelectric points[J]. Analyst.2009,134(1):65-71.
    [41]Dwight R.Stoll, Peter W.Carr. Fast, Comprehensive Two-Dimensional HPLC Separation of Tryptic Peptides Based on High-Temperature HPLC[J]. J. Am. Chem. Soc.2005, 127(14):5034-5035.
    [42]Judith Handley. HPLC gets steamed heat[J]. Anal. Chem.2001,73(17):476A.
    [43]Garceau Y., Davis I., Hasegawa J. Fluorometric TLC determination of free and conjugated propranolol, naphthoxylactic acid, and p-hydroxypropranolol in human plasma and urine[J]. J Pharm Sci.1978,67(6):826-831.
    [44]Ravi Bhushan, Charu Agarwal. Direct enantiomeric TLC resolution of dl-penicillamine using (R)-mandelic acid and 1-tartaric acid as chiral impregnating reagents and as chiral mobile phase additive[J]. Biomed. Chromatogr.2008,22(11):1237-1242.
    [45]Heiko Hayen, Dietrich A.Volmer. Rapid identification of siderophores by combined thin-layer chromatography/matrix-assisted laser desorption/ionization mass spectrometry[J]. Rapid Commun.s in Mass Spectrom.2005,19(5):711-720.
    [46]John A.Perry, Thomas H.Jupille, Louis J.Glunz. TLC [thin-layer chromatography]. Programmed multiple development^]. Anal. Chem.1975,47(l):65A-74a.
    [47]Ute Distler, Marcel Hulsewig, Jamal Souady, et al. Matching IR-MALDI-o-TOF Mass Spectrometry with the TLC Overlay Binding Assay and Its Clinical Application for Tracing Tumor-Associated Glycosphingolipids in Hepatocellular and Pancreatic Cancer[J]. Anal. Chem.2008,80(6):1835-1846.
    [48]武汉大学.分析化学[M].高等教育出版社.1978.
    [49]Font G., Molto J.C., Pico Y. Solid-phase extraction in multi-residue pesticide analysis of water[J].J. Chromatogr. A.1993,642(1-3):135-161.
    [50]Dressier M. Extraction of trace amounts of organic compounds from water with porous organic polymers [J]. J Chromatogr. A.1979,165(2):167-206.
    [51]Dimson P, et al. American Laboratory.1986,10:82.
    [52]上海市医学化验所.临床生化检验(上)[M].上海:上海科技出版社.1979.
    [53]Arthur C.L., Pawlisz Y.N. Solid phase microextraction with thermal desorption using fused silica optical fibers[J]. Anal. Chem.1990,62:2145-2148.
    [54]娄大伟,孙秀云,杨积学等.固相微萃取-气相色谱法测定工业苯酚中的2-甲基苯并呋喃和2,4-二苯基-4-甲基-1-戊烯[J].色谱.2010,30(10):1582-1585.
    [55]饶静,周钧,周伟,尹建军,宋全厚.固相微萃取-气质色谱法分析一种新型发酵酒的特征风味组分[J].酿酒.2010,37(6):38-42.
    [56]赵鸿雁,刘巧,杨梅,胡建.新型碳纳米管固相微萃取-气相色谱法测定义齿基托树脂中游离甲基丙烯酸酯类[J].分析仪器.2010,5:55-60.
    [57]庞建峰.固相微萃取技术及其在环境样品分析中的应用[J].环境科学导刊.2010,29(5):97-100.
    [58]Ronald H.Schmidt, Karsten Haupt. Molecularly Imprinted Polymer Films with Binding Properties Enhanced by the Reaction-Induced Phase Separation of a Sacrificial Polymeric Poroge[J]. Chem. Mater.2005,17(5):1007-1016.
    [59]Steven C.Zimmerman, N.Gabriel Lemcoff. Synthetic hosts via molecular imprinting—are universal synthetic antibodies realistically possible[J]. Chem. Commun.2004,1:5-14.
    [60]Eduardo C.F., Gustavo B.S., et al. Molecularly imprinted polymers as analyte sequesters and selective surfaces for easy ambient sonic-spray ionization[J]. Analyst,2010,135 (4):726-730.
    [61]Michael Subat, Andrew S.Borovik, Burkhard Konig. Synthetic Creatinine Receptor:Imprinting of a Lewis Acidic Zinc(II)cyclen Binding Site to Shape Its Molecular Recognition Selectivity[J]. J. Am. Chem. Soc.2004,126(10):3185-3190.
    [62]Hai-Juan Wang, Wen-Hui Zhou, Xiao-Fei Yin, et al. Template Synthesized Molecularly Imprinted Polymer Nanotube Membranes for Chemical Separations [J]. J. Am. Chem. Soc. 2006,128(50):15954-15955.
    [63]Liu Y. W., Chang X.J., Dong Y. Highly selective determination of inorganic mercury(II) after preconcentration with Hg(II)-imprinted diazoaminobenzene-vinylpyridine copolymers[J]. Anal. Chim. Acta.2005,538():85-91.
    [64]Sobhi D., Prem E.J., Babu T.,et al. Preconcentrative separation of palladium(II) using palladium(II) ion-imprinted polymer particles formed with different quinoline derivatives and evaluation of binding parameters based on adsorption isotherm models[J]. Talanta,2005, 65(2):441-452.
    [65]Zhang N., Jibrin S.S., Man H., Chromium(III)-imprinted silica gel for speciation analysis of chromium in environmental water samples with ICP-MS detection[J]. Talanta.2008, 75(2):536-543.
    [66]张毅,胡玉玲,李攻科.分子印迹技术在生化分离分析中的应用[J].分析测试学报.2008,27:215.
    [67]Hennion M.C. Solid-phase extraction:method development, sorbents, and coupling with liquid chromatography[J]. J. Chromatogr. A.1999,856(1-2):3-54.
    [68]高巍,武中平,徐春祥等.固相萃取技术研究[J].江苏食品与发酵.2006,3:4-9.
    [69]刘俊亭.新一代萃取分离技术—固相微萃取[J].色谱,1997,15(2):118-119.
    [70]姚磊明,陆光汉,吴晓刚等.固相微萃取及其在环境分析中的应用[J].环境科学与技术,1999,85(2):23-25.
    [71]张海霞,朱彭龄.固相萃取[J].分析化学.2000,28(9):1172-1180.
    [72]赵利剑,杨亚玲,夏静.固相萃取技术的研究[J].四川化工.2005,3(8),21-25.
    [73]Chandross E.A., Miller R.D. Nanostructures:Introduction[M]. Chem.Rev.1999, 99(7):1641-1642.
    [74]张立德,牟季美.纳米材料和纳米结构[M].科学出版社.2001.59-65.
    [75]Vassileva E., Proinova I. Hadjiivanov K. Solid-phase extraction of heavy metal ions on a high surface area titanium dioxide(anatase) [J]. Analyst.1996,121(5):607-612.
    [76]Mallikarjuna N.N., Venkataraman A. Adsorption of Pb2+ ions on nanosized gamma-Fe2O3: formation of surface ternary complexes on ligand complexation[J]. Talanta.2003,60(1): 139-147.
    [77]Gallego M, Depena Y.P., Valcarcel M. Fullerenes as sorbent materials for metal preconcentration[J]. Anal.Chem.1994,66(22):4074-4078.
    [78]Long R.Q., Yang R.T. Carbon nanotubes as superior sorbent for dioxin removal[J]. J. Am. Chem. Soc.2001,123(9):2058-2059.
    [79]Cai Y.Q., Jiang G.B., Liu J.F., et al. Multiwalled carbon nanotubes as a solid-phase extraction adsorbent for the determination of bisphenol a,4-n-nonylphenol,and 4-tert-octylphenol[J]. Anal.Chem.2003,75(10):2517-2521.
    [80]Zhao X.L., Shi Y.L., Wang T., Cai Y.Q., Jiang G.B. Preparation of silica-magnetite nanoparticle mixed hemimicelle sorbents for extraction of several typical phenolic compounds from environmental waters samples[J]. J. Chromatogr. A.2008,1188:140.
    [81]Song Y, Zhao S.L., Tchounwou P., Liu Y.M. A nanoparticle-based solid-phase extraction method for liquid chromatography-electrospray ionization-tandem mass spectrometric analysis[J]. J. Chromatogr. A.2007,1166:79.
    [82]Li J.D., Zhao X.L., Shi Y.L., Cai Y.Q., Mou S.F. Cetyltrimethylammonium bromide-coated magnetic nanoparticles for the preconcentration of phenolic compounds from environmental water samples[J]. Environ. Sci. Technol.2008,42:1201.
    [83]Li J.D., Zhao X.L., ShiY.L., Cai Y.Q., Mou S.F., Jiang G.B. Mixed hemimicelles solid-phase extraction based on cetyltrimethylammonium bromide-coated nano-magnets Fe3O4 for the determination of chlorophenols in water samples coupled with liquid chromatography spectrophotometry deteetion[J]. J. Chromatogr. A.2008,1180:24.
    [84]Yantasee W., Waner C.L., Sangvanich T., Addleman R.S., Carter T.G., Wiacek R.J., Fryxwll G.E., Timchalk C., Warner M.G. Removal of heavy metals from aqueous systems with thiol functionalized superparamagnetic nanoparticles[J]. Environ. Sci. Technol.2007,41:5114.
    [85]Schirmer C., Meisel H. Molecularly imprinted polymers for the selective solid-phase extraction of chloramphenicol[J]. Anal. Bioanal. Chem.2008,392:223.
    [86]Ariffin M.M., Miller E.I., Cormack P.A.G., Anderson R.A. Moleeularly imprinted solid-phase extraction of diazepam and its metabolites from hair samples[J]. Anal. Chem.2007,79:256.
    [87]Yan H.Y., Qiao F.X., Row K.H. Molecularly imprited-matrix dispersion for selective extraction of five fluoroquinolones in eggs and tissue[J]. Anal. Chem.2007,79:8242.
    [88]He J.M., Wang S., Fang G.Z., Zhu H.P. Molecularly imprinted polyer online solid-phase extraction coupled with high-performance liquid chromatography-UV for the determination of three sulfonamides in pork and chicken[J]. J. Agric. Food. Chem.2008,56:2919.
    [89]Wang H.F., He Y, JI T.R., Yan X.P. Surface molecular imprinting on Mn-doped ZnS quantum dots for room-temprature phosphorescence optosensing of pentachlorophenol in water[J]. Anal. Chem.2009,81:1615.
    [90]Chang X., Jiang N., Zheng H., et al. Solid-phase extraction of iron(III) with an ion-imprinted functionalized silica gel sorbent prepared by a surface imprinting technique[J]. Talanta.2007, 71:38.
    [91]Jiang N., Chang X., Zheng H., et al. Selective solid-phase extraction of nickel(II) using a surface-imprinted silica gel sorbent[J]. Analytica Chimica Acta.2006,577:225.
    [92]Lu G., Jun H.W. Determination of trace methotrexate and 7-OH-methotrixate in plasma by high-performance liquid chromatography with fluorimetric detection[J]. J. Liq. Chromatogr. 1995,18(1):155-171.
    [93]Stafford CG St,ClaireIIlRL, High-performance liquid chromatography analysis of the lactone and carboxylate forms of a topoisomerase I inhibitor in plasma[J]. J. Chromatogr. B.1995, 633:119.
    [94]陈騉,王睿,王静.固相萃取HPLC检测生物样品中甲苯磺丁腺和代谢产物及其人体药代动力学研究[J].药物分析杂志.2005,25(1):50-54.
    [95]丁劲松,彭文兴,张祖.固相萃取结合HPLC2MS测定人血浆中奥曲肽的浓度及相对生物利用度[J].药学学报.2004,16(7):62-65.
    [96]张毕奎,李焕德,邓航.柱前衍生HPLC法结合固相萃取测定血浆中卡托普利[J].药物分析杂志.2002,22(1):28-30.
    [97]王丽梅,固相萃取-HPLC法快速测定苯妥英钠及卡马西平的血药浓度[J].中国新医药.2003,3(3):42-45.
    [98]Chen H.J., Zhang L., Cox J., et al. DNA Adducts of 2,3-Epoxy-4-hydroxynonanal:Detection of 7-(r,2'-Dihydroxyheptyl)-3H-imidazo[2,l-i]purine and 1,N6-Ethenoadenine by Gas Chromatography/Negative Ion Chemical Ionization/Mass Spectrometry[J]. Chem. Res. Toxicol.1998,11(12):1474.
    [99]高立勤,刘文英.固相萃取技术及其在生物样本分析中的应用与进展[J].药学进展.1997,21(1):8-13.
    [100]Deforcel D.L., Lemiere F., Hoes L., et al. Analysis of the DNA adducts of phenyl glycidyl ether in a calf thymus DNA hydrolysate by capillary zone electrophoresis-electrospray mass spectrometry:evidence for phosphate alkylation[J]. Carcinogenesis.1998,19(6):1077-1086.
    [101]Zhizhina G.P., BlyukhterovaN.V. Biochemistry (Moscow).1997,62(l):88-94.
    [102]Fiori M., Pierdminici E., Longo F. Identification of main corticosteroids as illegal feed additives in milk replacers by liquid chromatography-atmospheric pressure chemical ionisation mass spectrometry [J]. J. Chromatogr. A.1998,807(2):219-227.
    [103]鲁杰,杨大进,方从容.固相萃取-高效液相色谱法用于保健食品中违禁添加物枸橼酸西地那非的分析[J].中国卫生检验杂志.2007,17(9):36-38.
    [104]林春晓,部昌松,李红华.保健食品中雌二醇激素的固相萃取反相高效液相色潜测定法[J].职业与健康.2003,19(9):51-52.
    [105]李俊,郭晓关,任玉娟,王震.蔬菜水果中农药残留检测方法的优化[J].贵州农业科学.2010,38(8):246-249.
    [106]张燕,郭天鑫,于姣等.离子交换固相萃取高效液相色谱联用法检测食品中的5-羟甲基糠醛[J].食品科学.2010,31(18):212-215.
    [107]黄武,章晶晶,郁小朴,孙艳波.固相萃取—高效液相色谱法检测鱼粉中三聚氰胺 [J].2010,38(8):192-194.
    [108]胡振元,施梅儿.痕量环境有机污染物分析中的样品前处理技术[J].化学世界.1999,(1):563-567.
    [109]赵进英,李金昶.固相萃取技术及其在环境分析中的应用[J].化学工程师.2002,90(3):29-31.
    [110]叶振福.高效液相色谱法分析水中多环芳烃(PAHs) [J]厦门科技.1999,(4):38.
    [111]贾瑞宝.水中痕量多环芳烃(PAHs)类环境污染物检测方法的研究[J].中国环境检测.1999,15(1):40-42.
    [112]林玉君,解光武,徐小静,贾静.固相膜萃取-气相色谱/离子阱质谱法测定水中17种多环芳烃[J].广州化工.2010,37(5):210-214.
    [113]朱坚,汪国权.食品中危害残留物的现代分析技术[M].上海:同济大学出版社.2003.
    [114]孙锡浩,陈雁君,卢英华等.水中硫双威固相萃取方法的研究[J].济宁医学院学报.1998,21(3):17-19.
    [115]康跃惠,张干,盛国英.固相萃取法测定水源水中的有机磷农药中国环境科学.2000,20(1):1-4.
    [116]何淼.固相萃取技术在环境有机污染物分析中的应用[硕士论文].北京:中国地质科学院.2007.
    [117]许建华.应用固相萃取富集环境空气中痕量有机化合物[J].环境监测管理与技术.1997,9(6):14-16.
    [118]王琳,刘国宏,张新荣.纳米Ti02固相萃取电感耦合等离子体质谱法测定雪水中的痕量金属离子[J].分析化学.2004,32:1006-1010.
    [119]Cui Y., Chang X., Zhai Y., et al. ICP-AES determination of trace elements after preconcentrated with p-dimethylaminobenzaldehyde-modified nanometer SiO2 from sample solution[J]. Microchem. J.2006,83:35-41.
    [120]程永华,李青彬.固相萃取富集-火焰原子吸收法测定水中痕量铜[J].化学试剂.2010,32(8):718-720.
    [121]Kadriye Ozlem Saygi, Mustafa Tuzen, Mustafa Soylak, et al. Chromium speciation by solid phase extraction on Dowex M4195 chelating resin and determination by atomic absorption spectrometry[J]. J. Hazard. Mater.2008,153:1009-1014.
    [122]Liu R., Liang P.. Determination of trace lead in water samples by graphite furnace atomic absorption spectrometry after preconcentration with nanometer titanium dioxide immobilized on silica gel[J]. J. Hazard. Mater.2008,152:166-171.
    [123]Liu R., Liang P.. Determination of gold by nanometer titanium dioxide immobilized on silica gel packed microcolumn and flame atomic absorption spectrometry in geological and water samples[J]. Anal. Chim. Acta.2007,604:114-118.
    [124]Liu Y., Liang P., Guo L. Nanometer titanium dioxide immobilized on silica gel as sorbent for preconcentration of metal ions prior to their determination by inductively coupled plasma atomic emission spectrometry [J]. Talanta.2005,68:25-30.
    [1]Giustetto R., Xamena F.X.L., G.Ricchiardi, et al. Maya Blue:A Computational and Spectroscopic Study[J]. J. Phys. Chem. B.2005,109(41):19360-19368.
    [2]Huang J., Liu Y., Jin Q., et al. Adsorption studies of a water soluble dye, Reactive Red MF-3B, using sonication-surfactant-modified attapulgite clay[J]. J. Hazard. Mater.2007, 143(1-2):541-548.
    [3]周济元,顾金龙,周茂等.凹凸棒石粘土应用现状及高附加值产品的开发[J].非金属矿.2002(2):4-6
    [4]周杰,刘宁.凹凸棒石粘土的显微结构特征[J].硅酸盐通报.1999,6:50-54.
    [5]Bradley W.F. The structural scheme of attapulgite[J]. American mineralogist.1940, 25(6):405-410.
    [6]Xu J.M., Li W., Yin Q.F., et al. Direct electrochemistry of Cytochromec on natural nano-attapulgite clay modified electrode and its electrocatalytic reduction for H2O2[J]. ElectrochimieaActa.2007, (52):3601-3606.
    [7]Liu Y.S., Liu P., Su Z.X., et al. Attapulgite-Fe3O4 magnetic nanoparticles via co-precipitation technique[J]. Applied Surface Science.2008,255(5):2020-2025.
    [8]Buchholz F.L., Graham A.T. Modern Superabsorbent Polymer Technology[M]. Wiley-VCH: New York.1998.1-152.
    [9]Sun X.H., Zhang G, Shi Q., et al. Study on foaming water-smellable EPDM rubber[J]. J. Appl. Polym. Sci.2002, (86):3712-3717.
    [10]茆乐平.鞋及鞋垫夹层用除臭剂[P].中国专利.CN1425469.2003-06-25.
    [11]侯秀武.新的非离子型微粒助留助滤体系及其机理的研究[硕士论文].南京:南京林业大学.2004.
    [12]邹建国,钟秦.用稀土改性凹凸棒图净化柴油机尾气[J].硅酸盐学报.2005,33(8):1028-1031.
    [13]Ye H., Chen F., Sheng Y. Adsorption of phosphate from aqueous solution onto modified palygorskites[J]. Sep. Purif. Technol.2006,50:283-290.
    [14]Alvarez-Ayuso E., Garcia-Sanchez A. Removal of cadmium from aqueous solutions by palygorskite[J]. J. Hazard. Mater.2007,147:594-600.
    [15]Wang W.J., Chen H., Wang A.Q. Adsorption characteristics of Cd(II) from aqueous solution onto activated palygorskite[J]. Sep. Purif. Technol.2007,55:157-164.
    [16]Huang J.H., Liu Y.F., Wang X.G. Selective adsorption of tannin from flavonoids by organically modified attapulgite clay[J]. J. Hazard. Mater.2008,160:382-387.
    [17]Fan Q.H., Shao D.D., Hu J., et al. Comparison of Ni2+sorption to bare and ACT-graft attapulgites:effect of pH, temperature and foreign ions[J]. Surf. Sci.2008,602:778-785.
    [18]Zhao Y.j., Chen Y, Li M.S., et al. Adsorption of Hg2+ from aqueous solution onto polyacrylamide/attapulgite[J]. J. Hazard. Mater.2009,171:640-646.
    [19]Chen H., Zhao Y.G., Wang A.Q. Removal of Cu(Ⅱ) from aqueous solution by adsorption onto acid-activated palygorskite[J]. J. Hazard. Mater.2007,149:346-354.
    [20]Murray H.H. Traditional and new applications for kaolin, smectite, and palygorskite:a general overview[J]. Appl. Clay. Sci.2000,17(5-6):207-211.
    [21]Boki K., Sakaguchi K., Tomioka H., Individual adsorption characteristics of beta-carotene and triolein on attapulgite and sepiolite[J], JJTHE 1995,41:426-432.
    [22]Ye H., Chen F., Sheng Y. Adsorption of phosphate from aqueous solution onto modified palygorskites[J]. Sep. Purif. Technol.2006,50:283-290.
    [23]Vico L.I., Acebal S.G. Some aspects about the adsorption of quinoline on fipatagonian saponite[J]. Applied Clay Science.2006,33:142-148.
    [24]史建设.凹凸棒石表面改性及其在尼龙6中的应用[博士论文].南京:南京理工大学.2004.
    [25]Tian M., Qu C, Feng Y. Structure and properties of fibrillar silicate/SBR composites by direct blend process[J]. J. Mater. Sci.2003,38:4917-4924.
    [26]黄健花.凹凸棒土的有机改性及其应用[博士论文].无锡:江南大学.2008.
    [27]Cao J.L., Shao G. S., Wang Y, et al. CuO catalysts supported on attapulgite clay for low-temperature CO oxidation[J]. Catal.Commun.2008,9:2555-2559.
    [28]Janchena J., Aekermanna D., Weiler E., et al. Calorimetrie investigation on zeolites, AlPCVs and CaCl2 impregnated attapulgite for thermochemical storage of heat[J]. Thermochimica Acta.2005,434:37-41.
    [29]Xu J.M., Li W., Yin QF., et al. Direct electron transfer and bioelectrocatalysis of hemoglobin on nano-structural attapulgite clay-modified glassy carbon electrode [J]. J. Colloid Inter. Sci. 2007,315:170-176.
    [30]Liu P., Xue Q.J., Tian J., et al. Self-assembly of functional silanes onto nano-sized silica[J]. Chin. J. Chem. Phys.2003,16:481-486.
    [31]Huang J., Liu Y, Jin Q., et al. Adsorption studies of awater soluble dye, Reaetive Red MF-3B, using sonication-surfactant-modified attapulgite clay[J]. J. Hazard. Mater.2007,143: 541-548.
    [32]Zhang J.P., Wang Q., Wang A.Q.. Synthesis and characterization of chitosan-g-poly(aerylicaeid)/attapulgite superabsorbent composites [J]. Carbohydr. Polym. 2007,68:367-374.
    [33]Wang L.H., Sheng J.. Graft polymerization and characterization of butyl acrylate onto silane-modified attapulgite[J]. Journal of Macromol. Sci., Pure and Appl. Chem.2003, 40:1135-1146.
    [34]Laxen D.P.H., Harrison R.M. Cleaning methods for polythenecontainers prior to the determination of trace metals in fresh water samples[J].Anal. Chem.1981,53:345-350.
    [35]Liu Y.W., Chang X.J., Guo Y, et al. Biosorption and preconcentration of lead and cadmium on waste Chinese herb Pang Da Hai[J]. J. Hazard. Mater.2006,135:389-394.
    [36]Florence T.M.The speciation of trace element in waters[J]. Talanta.1982,29:345-364.
    [37]Niu Z.W., Fan Q.H., Wang W.H., et al.. Effect of pH, ionic strength and humic acid on the sorption of uranium(VI) to attapulgite[J]. Appl. Radiat. Isot.2009,67:1582-1590.
    [38]H.T.Tang. Organic compound spectra determination[M]. Publishing house of Beijing University, Beijing.1992. pp.124-159.
    [39]Dong Q.N. IR Spectrum Method[M]. Publishing house of the Chemical Industry, Beijing. 1979. pp.104-168.
    [40]Pearson R.G. Hard and Soft Acids and Bases[J]. J. Am. Chem. Soc.1963,85(22):3533-3539.
    [41]Mahmoud M.E. Silica gel-immobilized Eriochrome black-T as a potential solid phase extractor for zinc(II) and magnesium(II) from calcium(II)[J]. Talanta.1997,45(2):309-315.
    [42]Mendil D., Tuzen M., Usta C., et al. Bacillus thuringiensis varisraelensis immobilized on Chromosorb 101:a new solid phase extractant for preconcentration of heavy metal ions in environmental samples[J]. J Hazard Mater.2008,150(2):357-363.
    [43]Maquieira A., Elmahadi H., Puchades R. Immobilized Cyanobacteria for Online Trace Metal Enrichment by Flow Injection Atomic Absorption Spectrometry[J]. Anal Chem.1994,66: 3632-3638.
    [44]Ghaedi M., Ahmadi F., Soylak M. Preconcentration and separation of nickel, copper and cobalt using solid phase extraction and their determination in some real samples[J]. J. Hazard. Mater.2007,147:226-231.
    [45]Guo Y., Din B.,.Liu Y, et al. Preconcentration and determination of trace elements with 2-aminoacetylthiophenol functionalized Amberlite XAD-2 by inductively coupled plasma-atomic emission spectrometry[J]. Talanta.2004,62:207-213.
    [46]Tewari P.K., Singh A.K. Amberlite XAD-7 impregnated with Xylenol Orange:a chelating collector for preconcentration of Cd(Ⅱ), Co(Ⅱ), Cu(Ⅱ), Ni(Ⅱ), Zn(Ⅱ) and Fe(Ⅲ) ions prior to their determination by flame AAS[J]. Fresenius J. Anal. Chem.2000,367:562-567.
    [47]He Q., Chang X.J., Huang X.P., et al. Determination of trace elements in food samples by ICP-AES after preconcentration with p-toluenesulfonylamide immobilized on silica gel and nanometer SiO2[J]. Microchim. Acta.2008,160:147-152.
    [48]Ngeontae W., Aeungmaitrepirom W., Tuntulani T. Chemically modified silica gel with aminothioamidoanthraquinone for solid phase extraction and preconcentration of Pb(II), Cu(Ⅱ), Ni(Ⅱ), Co(Ⅱ) and Cd(Ⅱ)[J]. Talanta.2007(3),71:1075-1082.
    [49]Chen S.Z., Liu C, Yang M., et al. Solid-phase extraction of Cu, Co and Pb on oxidized single-walled carbon nanotubes and their determination by inductively coupled plasma mass spectrometry[J]. J. Hazard. Mater.2009,17(1)247-251.
    [50]Li J.X., Hu J., Sheng G.D. Effect of pH, ionic strength, foreign ions and temperature on the adsorption of Cu(Ⅱ) from aqueous solution to GMZ bentonite[J]. Colloid Surface Physicochem Eng Aspect.2009,349:195-201.
    [1]梁素臣.常用吸附剂的基础性能及应用[J].低温与特气.1995,4:55-60.
    [2]UIImann's Eacycloptdia of Industrial Chem. Fifth[M]. Completely Revised Edition Vol.23 p.634.
    [3]Unger edited K.K.. Packings and Stationary Phases in Chromatographic Techniques[M]. New York and Basel. Marcel Dekker, Inc.1990.
    [4]谷岩翡.硅胶的制备及主要用途[J].河北化工.2010,33(7):40-42.
    [5]Arakaki L.N.H., Nunes L.M., Simoni J.A., et al. Ethyleneimine Anchored on Thiol-Modified Silica Gel Surface-Adsorption of Divalent Cations and Calorimetric Data[J]. J. Colloid Interface Sci.2000,228:46-51.
    [6]Buszewski B., Jezierska M., Welniak M.,et al. Survey and Trends in the Preparation of Chemically Bonded Silica Phases for Liquid Chromatographic Analysis[J]. J. High Resolut. Chromatogr.1998,21:267-281.
    [7]Mottola H.A, Steimetz J.R, in:Chemically Modified Surfaces[M]. Elsevier. New York.1992.
    [8]Alimarin I.P., Fadeeva V.I., Kudryavtsev G.V., et al. Concentration, separation and determination of scandium, zirconium, hafnium and thorium with a silica-based sulphonic acid cation-exchanger[J]. Talanta.1987,34:103-110.
    [9]Sarkar A.R., Dutta P.K., Sarkar M. Sorption recovery of metal ions using silica gel modified with salicylaldoxime[J]. Talanta.1996,43:1857-1862.
    [10]Lygin V.I. The structure of the silica surface and its modification by thermal treatment[J]. Kinet. Catal.1994,35:480-486.
    [11]Scott R.P.W. Silica gel and bonded phase their preduction properties and use in LC[M]. J Wiley and sons. Baffins Lane-Chickester-England.1993.
    [12]阎国芳,李先国,沙春洁等.键合硅胶的制备和应用研究进展[J].化工进展.2010,29:577-581.
    [13]Weetall H.H.. Covalent Coupling Methods for Inorganic Supports Materials, Methods in Enzymology, Vol.135[M]. Academic Press. New York.1987.
    [14]朱祥兵.新型吸附材料的制备及其对溶液样品中痕量元素吸附性能的研究[博士论文].兰州:兰州大学.2009.
    [15]L.A. de Melo Gomes, P. de Magalhaes Padilha, J.C. Moreira, N.L.D. Filho, Y. Gushikem. J. Braz. Chem. Soc.1998,9:494-498.
    [16]Soliman E.M., Mohmoud M.E., Ahmed S.A. Synthesis, characterization and structure effects on selectivity properties of silica gel covalently bonded diethylenetriamine mono-and bis-salicyaldehyde and naphthaldehyde Schiff's bases towards some heavy metal ions[J]. Talanta.2001,54:243-253.
    [17]Pourreza N., Zolgharnein J., Kiasat A.R., et al. Silica gel-polyethylene glycol as a new adsorbent for solid-phase extraction of cobalt and nickel and determination by flame atomic absorption spectrometry[J]. Talanta.2010,81(3):70-76.
    [18]Chai X.L., Chang X.J., Hu Z., et al. Solid-phase extraction of trace Hg(II) on Silica gel modified with 2-(2-oxoethyl)hydrazine carbothioamide and determination by ICP-AES[J]. Talanta.2010,82(5):1791-1796.
    [19]Tu Z.F., Hu Z., Chang X.J., et al. Silica gel modified with l-(2-aminoethyl)-3-phenylurea for selective solid-phase extraction and preconcentration of Sc(III) from environmental samples[J]. Talanta.2010,80(3):1205-1209.
    [20]Pereira A.S., Ferreira G., Caetano L., et al. Preconcentration and determination of Cu(II) in a fresh water sample using modified Silica gel as a solid-phase extraction adsorbent[J]. J. Hazard. Mater.2010,175(1-3):399-403.
    [21]Sadeghi S., Sheikhzadeh E. Solid phase extraction using silica gel modified with murexide for preconcentration of uranium (VI) ions from water samples[J]. J. Hazard. Mater.2009,163 (2-3):861-868.
    [22]Edmar Martendal, Heloisa Franca Maltez. Eduardo Carasek Speciation of Cr(Ⅲ) and Cr(Ⅵ) in environmental samples determined by selective separation and preconcentration on silica gel chemically modified with niobium(V) oxide[J]. J. Hazard. Mater.2009,161(1):450-456.
    [23]Qu R., Wang M., Sun C, et al. Ping Yin Chemical modification of silica-gel with hydroxyl-or amino-terminated polyamine for adsorption of Au(Ⅲ)[J]. Appl. Surf. Sci.2008,255(5): 3361-3370.
    [24]Tayyebeh Madrakian, Mohammad Ali Zolfigol, Mohammad Solgi. Solid-phase extraction method for preconcentration of trace amounts of some metal ions in environmental samples using silica gel modified by 2,4,6-trimorpholino-1,3,5-triazin[J]. J. Hazard Mater.2008, 160(2-3):468-472.
    [25]Chang X., Lu H., Cui Y., et al. ICP-OES determination of trace metal ions after preconcentration by 4-(8-hydroxy-5-quinolylazo)naphthalenesulfonic acid modified silica gel[J]. J. Mol Struct.2008,891(1-3):45-49.
    [26]Zhang L., Chang X., Zhai Y., et al. Selective solid phase extraction of trace Sc(III) from environmental samples using silica gel modified with 4-(2-morinyldiazenyl)-N-(3-(trimethylsilyl)propyl)benzamide[J]. Anal Chim Acta.2008, 629(1-2):84-91.
    [27]Huang X., Chang X., He Q., et al. Tris(2-aminoethyl) amine functionalized silica gel for solid-phase extraction and preconcentration of Cr(Ⅲ), Cd(Ⅱ) and Pb(Ⅱ) from waters[J]. J. Hazard. Mater.2008,157(1):154-160.
    [28]Hatay I., Gup R., Ersoz M. Silica gel functionalized with 4-phenylacetophynone 4-aminobenzoylhydrazone:Synthesis of a new chelating matrix and its application as metal ion collector[J]. J. Hazard. Mater.2008,150(3):546-553.
    [29]Heloisa F.M., Mariana A.V., Anderson S.R. et al, Simultaneous on-line pre-concentration and determination of trace metals in environmental samples by flow injection combined with inductively coupled plasma mass spectrometry using silica gel modified with niobium(Ⅴ) oxide[J]. Talanta.2008,74(4):586-592.
    [30]Xie F., Lin X., Wu X., et al. Solid phase extraction of lead (Ⅱ), copper (Ⅱ), cadmium (II) and nickel (II) using gallic acid-modified silica gel prior to determination by flame atomic absorption spectrometry[J]. Talanta.2008,74(4):836-843.
    [31]Perminova I.V., Karpiouk L.A., Shcherbina N.S., et al. Preparation and use of humic coatings covalently bound to silica gel for Np(V) and Pu(V) sequestration[J]. J. Alloys Compd.2007, 444-445:512-517.
    [32]Mehran J., Alireza B., Mohammad R.G., et al. Use of organofunctionalized nanoporous silica gel to improve the lifetime of carbon paste electrode for determination of copper(II) ions[J]. Anal Chim Acta.2007,601(2):172-182.
    [33]Cui Y., Chang X., Zhu X.,et al. Chemically modified silica gel with p-dimethylaminobenzaldehyde for selective solid-phase extraction and preconcentration of Cr(III), Cu(II), Ni(II), Pb(II) and Zn(II) by ICP-OES[J]. Microchem J.2007,87(1):20-26.
    [34]Edesio F.C. Alcantara E.A., Deyse V.R., et al. Modification of silica gel by attachment of 2-mercaptobenzimidazole for use in removing Hg(II) from aqueous media:A thermodynamic approach[J]. J. Colloid Interface Sci.2007,311(1):1-7.
    [35]Fan J., Wu C, Wei Y., et al. Preparation of xylenol orange functionalized silica gel as a selective solid phase extractor and its application for preconcentration-separation of mercury from waters[J]. J. Hazard Mater.2007,145(1-2):323-330.
    [36]Wittaya N., Wanlapa A., Thawatchai T. Chemically modified silica gel with aminothioamidoanthraquinone for solid phase extraction and preconcentration of Pb(II), Cu(II), Ni(II), Co(II) and Cd(II)[J]. Talanta.2007,71(3):1075-1082.
    [37]Qu R., Niu Y, Sun C, et al. Syntheses, characterization, and adsorption properties for metal ions of silica-gel functionalized by ester-and amino-terminated dendrimer-like polyamidoamine polymer[J]. Microporous Mesoporous Mater.2006,97(1-3):58-65.
    [38]Luiza N.H.Arakaki, Maria G. da Fonseca, Edson C. da Silva Filho, et al. Extraction of Pb(II), Cd(II), and Hg(II) from aqueous solution by nitrogen and thiol functionality grafted to silica gel measured by calorimetry[J]. ThermochimicaActa.2006,450(1-2):12-15.
    [39]Newton L., Dias Filho, Devaney R., do Carmo and Andre H.Rosa. An electroanalytical application of 2-aminothiazole-modified silica gel after adsorption and separation of Hg(II) from heavy metals in aqueous solution[J]. Electrochimica Acta.2006,52(3):965-972.
    [40]Tayyebeh Madrakian, Abbas Afkhami, Mohammad Ali Zolfigol, et al. Separation. Preconcentration and determination of silver ion from water samples using silica gel modified with 2,4,6-trimorpholino-l,3,5-triazin[J]. J. Hazard Mater.2006,128(l):67-72.
    [41]Oksana Yu, Nadzhafova, Olga A.Zaporozhets, Irina V.Rachinska, Leonid L.Fedorenko, Nikolai Yusupov. Silica gel modified with lumogallion for aluminum determination by spectroscopic methods[J]. Talanta.2005,67(4):767-772.
    [42]Heloisa Franca Maltez, Eduardo Carasek. Chromium speciation and preconcentration using zirconium(IV) and zirconium(IV) phosphate chemically immobilized onto silica gel surface using a flow system and FAAS[J]. Talanta.2005,65(2):537-542.
    [43]Paulo S.Roldan, Ilton L.Alcantara, Cilene C.F.Padilha, et al. Determination of copper, iron, nickel and zinc in gasoline by FAAS after sorption and preconcentration on silica modified with 2-aminotiazole groups[J]. Fuel.2005,84(2-3):305-309.
    [44]Akl M.A.A., Kenawy I.M.M., Lasheen R.R.. Organically modified silica gel and flame atomic absorption spectrometry:employment for separation and preconcentration of nine trace heavy metals for their determination in natural aqueous systems[J]. Microchem J.2004, 78(2):143-156.
    [45]Anisia K.S., Mishra G.S., Kumar A. Reforming of n-hexane in presence of [1,2-bis(salicylidene amino)-phenylene]-zirconium complex chemically bound on modified silica gel support[J]. Journal of Molecular Catalysis A:Chemical.2004,215(1-2):121-128.
    [46]Jose A.A.Sales, Flavia P.Faria, Alexandre G.S.Prado, Claudio Airoldi. Attachment of 2-aminomethylpyridine molecule onto grafted silica gel surface and its ability in chelating cations[J]. Polyhedron.2004,23(5):719-725.
    [47]Matoso E., Kubota L.T., Cadore S.. Use of silica gel chemically modified with zirconium phosphate for preconcentration and determination of lead and copper by flame atomic absorption spectrometry[J]. Talanta.2003,60(6):1105-1111.
    [48]Anupama Goswami, Ajai K.Singh, B.Venkataramani.8-Hydroxyquinoline anchored to silica gel via new moderate size linker:synthesis and applications as a metal ion collector for their flame atomic absorption spectrometric determination[J]. Talanta.2003,60(6):1141-1154.
    [49]Nilgun Tokman, Suleyman Akman, Mustafa Ozcan. Solid-phase extraction of bismuth, lead and nickel from seawater using silica gel modified with 3-aminopropyltriethoxysilane filled in a syringe prior to their determination by graphite furnace atomic absorption spectrometry[J]. Talanta.2003,59(1):201-205.
    [50]Anupama Goswami, Ajai K.Singh.1,8-Dihydroxyanthraquinone anchored on silica gel: synthesis and application as solid phase extractant for lead(II), zinc(II) and cadmium(II) prior to their determination by flame atomic absorption spectrometry[J]. Talanta.2002, 58(4):669-678.
    [51]Luiza N.H.Arakaki, Jose G.P.Espinola, Severino F. de Oliveira, Jose M.P. de Freitas, Antonio G.Gouveia, Claudio Airoldi. Chemisorption of Cu(II) chloride and nitrate in aqueous and non-aqueous solutions on matrix containing ethylenimine anchored on thiol modified silica gel surface[J]. Colloids Surf. A.2002,203(1-3):129-136.
    [52]Anupama Goswami, Ajai K.Singh. Silica gel functionalized with resacetophenone:synthesis of a new chelating matrix and its application as metal ion collector for their flame atomic absorption spectrometric determination[J]. Anal Chim Acta.2002,454(2):229-240.
    [53]Zaporozhets O.A., Ivanko L.S., Marchenko I.V.,et al. Quercetin immobilized on silica gel as a solid phase reagent for tin(IV) determination by using the sorption-spectroscopic method[J]. Talanta,2001,55(2):313-319.
    [54]Alexandre G.S.Prado, Claudio Airoldi. Adsorption, preconcentration and separation of cations on silica gel chemically modified with the herbicide 2,4-dichlorophenoxyacetic acid[J]. Anal. Chim. Acta.2001,432(2):201-211.
    [55]Laxen D.P.H., Harrison R.M.. Cleaning methods for polythene containers prior to the determination of trace metals in fresh water samples[J]. Anal. Chem.1981,53:345-350.
    [56]Florence T M. The speciation of trace elements in waters[J]. Talanta.1982,29:345-364.
    [57]Miranda Carlos E.S., Reis B.F., Baccan N., et al. Automated flow analysis system based on multicommutation for Cd, Ni and Pb on-line pre-concentration in a cationic exchange resin with determination by inductively coupled plasma atomic emission spectrometry. Anal. Chim. Acta.2002,453(2):301-310.
    [58]Florence T.M.. The Speciation of Trace Elements in Waters. Talanta.1982,29:345-364.
    [59]Soliman E.M., Mahmoud M.E., Ahmed S.A. Synthesis, characterization and structure effects on selectivity properties of silica gel covalently bonded diethylenetriamine mono- and bis-salicyaldehyde and naphthaldehyde Schiff,s bases towards some heavy metal ions[J], Talanta.2001,54(2):243-253.
    [60]Maquieira A, Elmahadi H, Puchades R. Immobilized Cyanobacteria for Online Trace Metal Enrichment by Flow Injection Atomic Absorption Spectrometry[J]. Anal Chem.1994, 66:3632-3638.
    [1]刘成,高乃云,黄廷林.活性炭的表面化学改性研究进展[J].净水技术.2005,24(4):50-52.
    [2]程淑云.活性炭的改性及应用进展[J].河北化工.2007,30(6):48-49.
    [3]王鹏.表面化学改性吸附用活性炭的研究进展[J].炭素技术.2003,126(3):23-27.
    [4]彭怡,古昌红,傅敏.活性炭改性的研究进展[J].重庆工商大学学报(自然科学版).2007,24(6):577-580.
    [5]连会,彭奇均.活性炭的改性研究及对四环素的吸附[J].2007,32(4):48-51.
    [6]Tsutsumi K, Matsushima Y, Matsuoto A. Surface Heterogeneity of Modified Active Carbons [J]. Langmuir.1993,9:2665-2669.
    [7]刘守新,隋淑娟,孙承林.臭氧化对活性炭表面化学结构及Cr6+吸附性质的影响[J].林产化工业.2006,26(1):33-36.
    [8]Su W., Zhou Y.P., Wei L.F., et al. Effect of microstructure and surface modification on the hydrogen adsorption capacity of active carbons[J]. New Carbon Materials.2007, 22(2):135-140.
    [9]Valdes H., Sanchez M., Rivera J., et al. Effect of Ozone Treatment on Surface Properties of Activated Carbon[J]. Langmuir.2002,18(6):2111-2116.
    [10]王鹏,张海禄.表面化学改性吸附用活性炭的研究进展[J].炭素技术.2003,126(3):23-28.
    [11]万福成.活性炭富集溶液中Au(III)的研究[J].信阳农业高等专科学校学报.1999,9(2):39-41.
    [12]李开喜,凌立成,刘朗.氨水活化的活性炭纤维的脱硫作用[J].环境科学学报.2001,21(1):74-78.
    [13]高尚愚,安部郁夫.表面改性活性炭材料对苯酚及苯磺酸吸附的研究[J].林产化学与工业.1994,24(3):29-34.
    [14]刘桂芳.表面改性活性炭吸附酚类内分泌干扰物的性能与机理研究[博士论文].哈尔滨:哈尔滨工业大学.2008.
    [15]王红娟,奚红霞,张海兵等.正己醇在改性活性炭上的脱附活化能[J].华南理工大学学报(自然科学版).2002,30(7):35-38.
    [16]Huang C.P., Vane L.M. Enhancing As5+Removal by a Fe2+ -treat Activated Carbon[J]. J. Water Pollut. Contam. Fed.1989,61(9):1596-1603.
    [17]Leyva Ramos R., Ovalle-Turrubiartes J., Sanchez-Castillo M.A. Adsorption of Fluoride from Aqueous Solution on Aluminium-Impregnated Carbon[J]. Carbon.1999,37(4):609-617.
    [18]Hsu L.Y., Teng H. Influence of difference chemical reagents on the preparation of activated carbons from bituminous coal [J]. Fuel Proc Tech.2000,64(2):155.
    [19]Monser L., Adhoum N.. Modified Activated Carbon for the Removal of Copper, Zinc, Chromium and Cyanide Fromwastewater[J]. Sep.Purif. Technol.2002,26(2-3):137-146.
    [20]Laxen D.P.H., Harrison R.M.. Cleaning methods for polythene containers prior to the determination of trace metals in fresh water samples[J]. Anal. Chem.1981,53:345-350.
    [21]郑志民.化学实验中玻璃仪器的洗涤[J].中国实用医药.2006,1(3)124-125.
    [22]Florence T.M. The speciation of trace elements in watersfJ]. Talanta.1982,29(5):345-364.
    [23]Miranda Carlos E.S., Reis B.F., Baccan N., Packer A.P., Gine M.F. Automated flow analysis system based on multicommutation for Cd, Ni and Pb on-line pre-concentration in a cationic exchange resin with determination by inductively coupled plasma atomic emission spectrometry[J]. Anal. Chim. Acta.2002,453:301-310.
    [24]G.J. Wang, J.L.Guo, Z.H.Qu. Fiber Reinf. Plast./Compos.2006,8:34.
    [25]Tang H.T.. Organic Compound Spectra Determination[M]. Publishing House of Beijing University:Beijing.1992. pp 124-159.
    [26]Dong Q.N.. IR Spectrum Method[M]. Publishing House of the Chemical Industry:Beijing, 1979. pp 104-168.
    [27]Pearson R.G Hard and Soft Acids and Bases[J]. J. Am. Chem. Soc.1963,85(22):3533-3539.
    [28]Mahmoud M.E. Silica gel-immobilized Eriochrome black-T as a potential solid phase extractor for zinc (II) and magnesium (II) from calcium (II) [J]. Talanta.1997,45(2):309-315.
    [29]Maquieira A., Elmahadi H., Puchades R. Immobilized Cyanobacteria for Online Trace Metal Enrichment by Flow Injection Atomic Absorption Spectrometry [J]. Anal Chem.1994, 66:3632-3638.
    [30]Cui Y.M., Chang X.J., Zhai Y.H., et al. ICP-AES determination of trace elements after preconcentrated with p-dimethylaminobenzaldehyde-modified nanometer SiO2 from sample solution[J]. Microchem. J.2006,83:35-41.
    [31]R.K.Sharma, P.Pant. Preconcentration and determination of trace metal ions from aqueous samples by newly developed gallic acid modified Amberlite XAD-16 chelating resin[J]. J. Hazard. Mater.2009,163(l)295-301.
    [32]Mendil D., Tuzen M., Usta C, et al. Bacillus thuringiensis var. israelensis immobilized on Chromosorb 101:A new solid phase extractant for preconcentration of heavy metal ions in environmental samples[J]. J. Hazard. Mater.2008,150(2):357-363.
    [33]Starvin A.M., Prasada Rao T. Removal and recovery of mercury(II) from hazardous wastes using 1-(2-thiazolylazo)-2-naphthol functionalized activated carbon as solid phase extractant[J]. J. Hazard. Mater.2004,113(l-3):75-79.
    [34]Imamoglu M., Tekir O.. Removal of copper (II) and lead (II) ions from aqueous solutions by adsorption on activated carbon from a new precursor hazelnut husks[J]. Desalination.2008, 228:108-113.
    [35]Soylak M., Tuzen M.. Diaion SP-850 resin as a new solid phase extractor for preconcentration-separation of trace metal ions in environmental samplesfJ]. J. Hazard Mater B.2006,137:1496-1501.
    [36]Yin J., Jiang Z.C., Chang G.,et al. Simultaneous on-line preconcentration and determination of trace metals in environmental samples by flow injection combined with inductively coupled plasma mass spectrometry using a nanometer-sized alumina packed micro-column[J]. Analytica Chimica Acta.2005,540:333-339.
    [37]Yalcin S., Apak R. Chromium(III, VI) speciation analysis with preconcentration on a maleic acid-functionalized XAD sorbent[J]. Anal. Chim.Acta.2004,505:25-35.
    [38]Goswami A., Singh A., Venkataramani B.8-Hydroxyquinoline anchored to silica gel via new moderate size linker:synthesis and applications as a metal ion collector for their flame atomic absorption spectrometric determination[J]. Talanta.2003,60:1141-1154.
    [1]Iijima S. Helical microtubes of graphitic carbon[J]. Nature.1991,354:56-58.
    [2]Iijima S., Ichihashi T. Single-shell carbon nanotubes of 1 nm diameter[J]. Nature.1993, 363:603-605.
    [3]Bethune D.S., Kiang C.H., Devries M.S., et al. Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layerwalls[J]. Nature.1993,363:605-607.
    [4]Thess A., Lee R., Nikolaev P., et al. Crystalline ropes of metallic carbon nanotubes[J]. Science. 1996,273(5274):483-487.
    [5]朱赞赞.功能化碳纳米管复合材料的构筑及在电催化中的应用[硕士论文].兰州:兰州大学.2008.
    [6]吕德义,陈万喜,徐铸德.碳纳米管的纯化[J].材料科学与工程.2000,18(4):103-106.
    [7]侯鹏翔,白朔,成会明.碳纳米管提纯的研究进展[J].碳素技术.2001,(4):30-33.
    [8]成会明.纳米碳管制备、结构、物性及应用[M].北京:化学工业出版社.2002,106-107.
    [9]于金刚.碳纳米管的化学修饰及对甲磺酸帕珠沙星的缓释研究[博士论文].长沙:中南大学.2008.
    [10]Chen J., Collier C.P. Noncovalent Functionalization of Single-Walled Carbon Nanotubes withWater-Soluble Porphyrins[J]. J. Phys. Chem. B.2005,109(16):7605-7609.
    [11]Petrov P., Stassin F., Pagnoulle C, et al. Noncovalent functionalization of multi-walled carbonnanotubes by pyrene containing polylmers[J]. Chem. Commnun.2003,23:2904-2905.
    [12]Carrillo A., Swartz J.A., Gamba J.M., et al. Noncovalent Functionalization of Graphite and Carbon Nanotubes with Polymer Multilayers and Gold Nanopartieles[J]. NanoLett.2003, 3(10):1437-1440.
    [13]Hu C., Chen Z., Shen A., et al. Water-soluble single-walled carbon nanotubes via noncovalent functionalization by a rigid, planar and conjugated diazo dye[J]. Carbon.2006, 44(3):428-434.
    [14]Karajanagi S.S., Yang H., Asuri P., et al. Protein-assisted solubilization of single-walled carbon nanotubes[J]. Langmuir.2006,22(4):1392-1395.
    [15]Arnold M.S., Guler M.O., Hersam M.C., et al. Eneapsulation of carbon nanotubes by self-assembling peptide amphiphiles[J]. Langmuir.2005,21(10):4705-4709.
    [16]Moore V.C., Strallo M.S., Haroz E.H., et al. Individually Suspended Single-Walled Carbon Nanotubes in Various Surfactants[J]. NanoLett.2003,3(10):1379-1382.
    [17]Tsang S.C., Chen Y.K., Harris P.J.F., et al. A simple Chemical method of opening ang filling carbon nanotubes[J]. Nature.1994,372:159-162.
    [18]Dillon A.C., Gennett T., Jones K.M., et al. A simple and complete purification of single-walled carbon nanotube materials[J]. Ady. Mater.1999,11(16):1354-1358.
    [19]Yu R., Chen L., Liu Q., et al. Platinum Peposition on Carbon Nanotubes via Chemical Modification[J]. Chem. Mater.1998,10(3):718-722.
    [20]Liu J., Rinzler A.G., Dai H., et al. Fullerene pipes[J]. Science.1998,280:1253-1255.
    [21]Hernadi K., Siska A., Thien-Nga L., et al. Reactivity of different kinds of carbon during oxidative purification of catalytically prepared carbon nanotubes[J]. Solid State Ionics.2001, 141:203-209.
    [22]Chen J., Hamon M.A., Hu H, et al. Solution properties of single-walled carben nanotubes[J]. Science.1998,282(5386):95-98.
    [23]Fernando K.A.S., Lin Y., Sun Y.R. High aqueous solubility of functionalized single-walled carhan nanotubes[J]. Langmuir.2004,20(ll):4777-4778.
    [24]Huang W., Fernando S., Allard L.F., et al. Solubilization of single-walled carbon nanotubes with diamine-terminated oligomeric poly(ethylene glycol) in different functionalization reactions[J]. Nano Lett.2003,3(4):565-568.
    [25]Mickelson E.T., Huffman C.B., Rinzler A.G., et al. Fluorination of single-walled nanotubes[J]. Chem.Phys.Lett.1998,296:188-194.
    [26]Georgakilas V., Kordatos K., Prato M., et al. Organic functionalization of carbon nanotubes [J]. J. Anl. Chem. Soe.2002,124:760-761.
    [27]Kyotani T., Nakazaki S., Xu W.H., et al. Chemical modification of the inner walls of carbon nanotubes by HNO3 oxidation[J]. Carbon.2001,39(5):782-785.
    [28]Rao G.P., Lu C, Su F. Sorption of divalent metal ions from aqueous solution by carbon nanotubes:Areview[J]. Sep. Purif. Technol.2007,58(1):224-231.
    [29]Li Y.H., Wang S.G., Luan Z.K., et al. Adsorption of cadmium(II)from aqueous solution by surface oxidized carbon nanotubes[J]. Carbon.2003,41(5):1057-1062.
    [30]Li Y.H., Luan Z.K., Xiao X., et al. Removal of Cu2+ ions from aqueous solutions by carbon nanotubes[J]. AdsorptSci.Technol.2003,21(5):475-485.
    [31]Liang P., Guo L., Liu Y, Determination of trace rare earth elements by inductively coupled plasma atomic emission spectrometry after preconcentration with multiwalled carbon nanotubes[J], Spectrochim. Acta Part B 2005,60 (1,10):125-129.
    [32]Zang Z.P., Hu Z., Li Z.H., et al. Synthesis, characterization and application of ethylenediamine-modified multiwalled carbon nanotubes for selective solid-phase extraction and preconcentration of metal ions[J]. J. Hazard. Mater.2009,172(2-3):958-963.
    [33]Lu C, Chiu H. Adsorption of zinc(II) from water with purified carbon nanotubes[J]. Chem.Eng. Sci.2006,61 (4):1138-1145.
    [34]Lu C, Chiu H., Liu C. Removal of zinc(II) from aqueous solution by purified carbon nanotubes:kinetics and equilibrium studies[J]. Ind. Eng. Chem. Res.2006,45(8):2850-2855.
    [35]Long R.Q., Yang R.T. Carbon nanotubes as superior sorbent for dioxin removal[J]. J. Am.Chem. Soc.2001,123(9):2058-2059.
    [36]Yang K., Zhu L., Xing B. Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials[J]. Environ. Sci. Technol.2006a,40(6):1855-1861.
    [37]Yang K. and Xing B.S. Desorption of polycyclic aromatic hydrocarbons from carbon nanomaterials in water[J]. Environ. Pollut.2007,145 (2):529-537.
    [38]Fang G.Z., He J.X., Wang S. Multiwalled carbon nanotubes as sorbent for on-line coupling of solid-phase extraction to high-performance liquid chromatography for simultaneous determination of 10 sulfonamides in eggs and pork[J]. J. Chromatogr. A.2006,1127:12-17.
    [39]Peng X.J., Li Y.H., Luan Z.K., et al. Adsorption of 1,2-dichlorobenzene from w carbon nanotubes[J]. Chem. Phys. Lett.2003,376(1-2):154-158.
    [40]Lu C., Chung Y.L., Chang K.F. Adsorption thermodynamic and kinetic studies of trihalomethanes on multiwalled carbin nanotubes[J]. J. Hazard. Mater.2006,138(2):304-310.
    [41]Lu C., Chung Y.L., Chang K.F. Adsorption of trihalomethanes from water with carbon nanotubes[J]. Water Res.2005,39(6):1183-1189.
    [42]Yan X.M., Shi B.Y., Lu J.J., et al. Adsorption and desorption of atrazine on carbon nanotubes[J]. J.Colloid Interface Sci..2008,321(1):30-38.
    [43]D.P.H.Laxen, R.M.Harrison. Cleaning methods for polythene containers prior to the determination of trace metals in fresh water samples[J]. Anal. Chem.1981,53:345-350.
    [44]郑志民.化学实验中玻璃仪器的洗涤[J].实用医技杂志.2007,14(16).
    [45]Florence T.M. The speciation of trace elements in waters[J]. Talanta.1982,29(5):345-364.
    [46]Wang G.J., Guo J.L., Qu Z.H. Fiber Reinf. Plast./Compos.34 (2006) 8-11.
    [47]Tang H.T. Organic Compound Spectra Determination[M]. Publishing House of Beijing University:Beijing.1992. pp 124-159.
    [48]Dong Q.N.. IR Spectrum Method[M]. Publishing House of the Chemical Industry:Beijing. 1979. pp 104-168.
    [49]Pearson R.G. Hard and Soft Acids and Bases[J]. J. Am. Chem. Soc.1963,85(22):3533-3539.
    [50]Mahmoud M.E. Silica gel-immobilized Eriochrome black-T as a potential solid phase extractor for zinc(II) and magnesium(II) from calcium(II)[J]. Talanta.1997,45(2):309-315.
    [51]Maquieira A., Elmahadi H., Puchades R. Immobilized Cyanobacteria for Online Trace Metal Enrichment by Flow Injection Atomic Absorption SpectrometryfJ]. Anal Chem.1994, 66:3632-3638.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700