毫米波光纤无线传输的关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类社会信息化进程的提高,一方面人们对多媒体宽带业务的需求日益增强,另一方面目前无线通信拥塞的微波频段满足不了如此丰富的业务。因此,无线通信急需通过扩展频段解决两者之间的矛盾,毫米波频段能满足无线通信的高速数据传输,而光纤拥有丰富的频段资源和抗干扰能力,毫米波与光纤传输技术相融合就成为了研究的热点。光纤无线通信(Radio Over Fiber,ROF)系统充分结合光纤和无线通信系统的优点,可以提高容量,覆盖范围和可移动性,而且可以为固定和移动终端用户提供更多的业务。
     毫米波产生、传输和基站简化技术是毫米波ROF系统的关键技术,本文的主要工作就围绕这两方面来展开:首先简要介绍了毫米波通信与ROF通信的特点以及应用;然后详细介绍了毫米波生成和传输技术,阐明了这些技术的原理,比较了这些技术各自的优缺点以及讨论了这些技术的适用范围;其次着重研究了几种毫米波生成技术方案的设计及分析包括相位调制毫米波生成技术、并行调制结构毫米波生成技术和综合光学调制技术,理论和仿真相结合验证这些方案的可行性,并构建ROF下行链路系统,通过数值分析色散对综合光学调制技术产生毫米波的影响;论文最后研究基站简化技术,提出两种新的基于并行调制结构和基于综合光学调制技术的60GHz-ROF全双工通信系统,通过模拟仿真、性能测试,并比较既有的成熟技术方案,结果表明论文系统在传输距离、传输功率、抗色散性能以及系统成本等方面具有明显优势。
With the improvement of information process for human society, on the one hand the multimedia broadband services needed for people are in demand increasingly; on the other hand the currently congested microwave band of wireless communications can't meet the needs to such various businesses. Therefore, extending the frequency band is in great demand for wireless communications to solve the contradiction between them, among which millimeter-wave frequencies can satisfy the needs of high-speed data transmission for wireless communications and optical fiber is of a variety of frequency resources and great anti-interference ability, and the integration of millimeter-wave and optical fiber transmission technologies is becoming the research focus. The Radio Over Fiber (ROF) system fully combining the advantages of optical fiber with wireless communications system can not only improve capacity, coverage and mobility, but also can provide more business for fixed and mobile terminal users.
     The generation and transmission technology of millimeter-wave and base station simplified technology are the key technologies for millimeter-wave ROF system, and this paper mainly focus on these two aspects to spread around:Firstly, the features and applications of millimeter-wave and ROF communications are briefly introduced. Secondly, millimeter-wave generation and transmission technologies are depicted in detail with the illustrated principles of these technologies, the advantages and disadvantages of these technologies are compared and the applicable scope of these technologies respectively. Further, we focus on the design and analysis of several millimeter-wave generation schemes including phase modulation millimeter wave generation technique, parallel modulation structure millimeter wave generation technology and integrated optical modulation technology. The feasibility of these solutions is verifed through combining theory and simulation, ROF downlink system is constructed, numerical analysis on effect of dispersion on integrated optical modulation technology is fulfilled. Lastly, the base station simplified technology is innovatively studied to propose a 60GHz-ROF full-duplex communication system based on the parallel modulation structure millimeter-wave generation technique and the integrated optical modulation technology. Comparing with the existing technology scheme on transmission performance through simulation and performance testing, the result has shown that the system gets an obvius advantage in transmission power, transmission distance, dispersion tolerance and system cost.
引文
[1]甘忠民,张更新等.毫米波通信技术与系统[M].北京:电子工业出版社,2003.
    [2]TERABEAM CORPORATION. Performance Characteristics of 60-GHz Communication Systems[R].2002.
    [3]周喆赟.高速毫米波RoF系统的关键技术研究[D].上海:上海大学学报,2008.
    [4]IEEE Std 802.16:Part 16:Air Interface for Fixed Broadband Wireless Access Systems.6 Dec,2001.
    [5]IEEE Std 802.16:Part 1:Protocol Implementation Conformance Statement (PICS) Proforma for 10-66 GHz Wireless MAN-SC Air Interface.18 Aug, 2003.
    [6]IEEE Std 802.16.2:Coexistence of Fixed Broadband Wireless Access Systems.10 Sep,2001.
    [7]IEEE Std 802.16c:Part 16:Air Interface for Fixed Broadband Wireless Access Systems-Amendment 1:Detailed System Profiles for 10-66GHz.15 Jan,2003.
    [8]FCC:First report and order and second notice of proposed rule making, FCC 95-499. Dec.15,1995.
    [9]FCC:Third report and order, FCC 98-150. July 15,1998.
    [10]IHARA T, FUJIMURA K. Research and development trends of millimeter-wave short-range application system[J]. IEICE Trans. Communications,1996, E79-B(12):1741-1753,1996.
    [11]Performance Margins of Passive Pico-Cell Systems with an Electro absorption Modulator Using Radio-Over-Fiber Techniques[A]. SUB HUR, HODEOK JANG,YONGHOON KIM,et al. Microwave Photonics International Topical Meeting[C].2005,257-260.
    [12]Fiber Optics in Wireless Applications[A]. D NOVAK. OFC 2004 Short Course[C].2004,217.
    [13]Optical Generation and Delivery of Modulated mm-waves for Mobile Communications[A]. J J O REILLY, P M LANE, M H CAPSTICK. Analogue Optical Fiber Communications[B]. London:The Institute of Electrical Engineers,1995.
    [14]徐征.UMB超宽带无线通信技术[C].北京:中国电力教育,研究综述与技术论坛专刊,2006.
    [15]LIN CHEN, SHUANGCHUN WEN, YING LI, et al. Optical Front-Ends to Generate Optical Millimeter-Wave Signal in Radio-Over-Fiber Systems With Different Architectures[J]. IEEE/OSA Journal of Lightwave Technology, 2007,25(11):3381-3387.
    [16]TETSUYA KAWANISHI, TAKAHIDE SAKAMOTO, MASAYUKI IZUTSU. All-optical modulation format conversion from frequency-shift-keying to phase-shift-keying[J]. Optics Express,2005, 13(20):8038-8044.
    [17]BONG KYU KIM, SANGJO PARK, YOUNGHEE YEON, et al. Radio-Over-Fiber System Using Fiber-Grating-Based Optical CDMA With Modified PN Codes[J]. IEEE Photonics Technology Letters,2003,15(10): 1485-1487.
    [18]ANDREAS WIBERG, PERE PEREZ-MILLAN, MIGUEL V ANDRES. Fiber-Optic 40-GHz mm-Wave Link With 2.5-Gb/s Data Transmission[J]. IEEE Photonics Technology Letters,2005,17(9): 1938-1940.
    [19]SEBASTIEN R BLAIS, JIANPING YAO. Optical Single Sideband Modulation Using an Ultra narrow Dual-Transmission-Band Fiber Bragg Grating[J]. IEEE Photonics Technology Letters,2006,18(21):2230-2232.
    [20]A NARDSIMHA, X J MENG, M C WU, et al. Tandem single sideband modulation scheme for doubling spectral efficiency of analogue fiber links[J]. Electronics Letters,2000,36(13):1135-1136.
    [21]方祖捷,叶青,刘峰,瞿荣辉.毫米波副载波光纤通信技术的研究进展[J].中国激光,2006,33(4):481-488.
    [22]M GARCIA LARRODE, A M J KOONEN, J J VEGAS OLMOS, et al. Bidirectional Radio-Over-Fiber Link Employing Optical Frequency Multiplication[J]. IEEE Photonic Technology Letters 2006,18(1):241-243.
    [23]黄诚,陈林,余建军等.采用单个相位调制器产生毫米波[J].中国激光,2008,35(1):73-76.
    [24]JIANJUN YU, J GU, LEI XU, et al. Seamless Integration of an 8X2.5Gb/s WDM-PON and Radio-Over-Fiber Using All-optical Up-convention Based on Raman-assisted FWM[J]. IEEE Photonics Technology Letters,2005,17(9): 1986-1988.
    [25]JIANXIN MA, CHONGXIU Yu, Zhen Zhou, et al. Optical mm-wave generation by using external modulator based on optical carrier suppression[J]. Optics Communications,2006,268(1):51-57.
    [26]KASZUBOWSKA A, HU L, BARRY L P. Remote downconversion with wavelength reuse for the radio/fiber uplink connection[J]. IEEE Photonic Technology Letters,2006,18(4):562-564.
    [27]KURI T, KITAYAMA K, TAKAHASHI Y. A single light-source configuration for full-duplex 60-GHz-band radio-on-fiber system[J]. IEEE Trans Microwave Theory Tech,2003,51(2):431-439.
    [28]CHEN L, WEN H, WEN S. A radio-over-fiber system with a novel scheme for millimeter-wave generation and wavelength reuse for up-link connection[J]. IEEE Photonic Technology Letters,2006,18(9):2056-2058.
    [29]Low-Cost Multimode Fiber-based Wireless LAN Distribution Systems Using Uncooled, Directly Modulated DFB Laser Diodes[A]. P HARTMANN, M WEBSTER, A WONFOR, et al. Proceedings of the ECOC[C].2003,3: 804-805.
    [30]U GLIESE, T N NIELSEN, S NORSKOV, et al. Multifunction Fiber-Optic Microwave Links Based on Remote Heterodyne Detection[J]. IEEE Trans. On Microwave Theory and Techniques,1998,46(5):458-468.
    [31]Optoelectronics for millimeter-wave radio over fiber systems[A]. D WAKE. Analogue Optical Fibre Communications[B]. London:The Institute of Electrical Engineers,1995.
    [32]High-Purity Millimeter-Wave Photonic Local Oscillator Generation and Delivery[A]. P SHEN, N J GOMES, P A DAVIES, et al. Proceedings of the International Topical Meeting on Microwave Photonics[C].2003,189-192.
    [33]L N LANGLEY, M D ELKIN, C EDGE, et al. Packaged Semiconductor Laser Optical Phase-Locked Loop(OPLL) for Photonic Generation, Processing and Transmission of Microwave Signals[J]. IEEE Trans. On Microwave Theory and Techniques,1999,47(7):1257-1264.
    [34]Y J WAEN, H F LIU, D NOVAK, et al. Millimeter-Wave Signal Generation from a Monolithic Semiconductor Laser via Sub-harmonic Optical Injection[J]. IEEE Photonics Tech. Letters,2000,12(8):1058-1060.
    [35]H FURUTA, M MAEDA, T NOMOTO, et al. Optical Injection Locking of a 38-GHz-Band Inp-Based HEMT Oscillator Using a 1.55-um DSB-SC Modulated Light-wave[J]. IEEE Photonics Tech. Letters,2001,11(1):19-21.
    [36]Microwave Multichannel System with a Sideband Injection Locking Scheme in the 60GHz Band[A]. C G SCHAFFER, F H LUBECK, R P BRAUN et al. Proceedings of the International Topical Meeting on Microwave Photonics[C].1998,67-69.
    [37]L A JOHANSSON, A J SEEDS. Millimeter-Wave Modulated Optical Signal Generation with High Spectral Purity and Wide-Locking Bandwidth Using a Fiber-Integrated Optical Injection Phase-Lock Loop[J]. IEEE Photonics Tech. Letters,2000,12(6):690-692.
    [38]L A JOHANSSON, A J SEEDS.36 GHz 140-Mb/s Radio-Over-Fiber Transmission Using an Optical Injection Phase-Lock Loop Source[J]. IEEE Photonics Tech. Letters,2001,13(8):893-895.
    [39]K E RAZAVI, P A DAVIES. Semiconductor laser sources for the generation of millimeter-wave signals[J]. IEEE Proc.-Optoelectronics,1998,145(3): 159-162.
    [40]J O REILLY, P LANE. Remote Delivery of Video Services Using mm-Waves and Optics[J]. JLT,1994,12(2):369-375.
    [41]C LIM, A NIRMALATHAS, D NOVAK et al. Millimeter-Wave Broadband Fiber-Wireless System Incorporating Baseband Data Transmission over Fiber and Remote LO Delivery[J]. JLT,2000,18(10):1355-1363.
    [42]D WAKE, S DUPONT, C LETHIEN et al. Radio frequency Transmission over Multimode Fiber for Distributed Antenna System Applications[J]. Electronic Letters,2001,37(17):1087-1089.
    [43]Optical Feeding of Base Stations in Millimeter-Wave Mobile Communications[A]. R P BRAUN, G GROSSKOPF. Proceedings of European Conference on Optical Communications[C].1998,665-666.
    [44]Full-Duplex Wireless-over-Fiber Transmission Incorporating a CWDM Ring Architecture with Remote Millimeter-Wave LO Delivery Using a Bi-Directional SOA[A]. T ISMAIL, C LIU, J E MITCHEL et al. Proceedings of the Optical Fiber Communications Conference[C].2005.
    [45]陈罗湘,卢嘉,董泽,等.采用两个级联外部调制器产生四倍频光载毫米波的光纤无线通信系统,中国激光,2009,35(12):1910-1913.
    [46]QI G, YAO JWEN, SEREGELYI J, et al. Optical generation and distribution of continuously tunable millimeter-wave signals using an optical phase modulator[J]. Light wave Technol.,2005,23(9):2687-2695.
    [47]A bidirectional radio-over-fiber system with all-optical up converted DPSK for downstream and re-modulated OOK for upstream[A]. JIA Zhensheng, YU Jianjun, HARIS M, et al.19th Annual Meeting of the IEEE[C], Canada, 2006:384-349.
    [48]陈根祥,光波技术基础[M].北京:中国铁道出版社,2000.
    [49]GOVIND P AGRAWAL, Fiber-Optic Communication Systems[M]. Wiley-Interscience,2002.
    [50]G H SMITH, D NOVAK, C LIM. A millimeter-wave full duplex fiber-radio star-tree Architecture incorporating WDM and SCM[J]. IEEE Photon. Technol. Lett.,1998,10:1650-1652.
    [51]A NIRMALATHAS et al. Wavelength reuse in the WDM optical interface of a millimeter-wave fiber-wireless antenna base station[J]. IEEE Trans. Microw. Theory Tech.,2001,49(10):2006-2012.
    [52]Optical interface without light sources for base-station designs in fiber-wireless system incorporating WDM[A]. A NIRMALATHAS, C LIM, D NOVAK, et al. IEEE Int. Microwave Photonics Topical Meeting Dig. [C] 1999, T-7.2:119-122.
    [53]胡黎亮,陈林,余建军,等.一种改进的双边带调制产生光毫米波的方案[J].光学学报,2008,28(2):238-242.
    [54]李晶,宁提纲,祁春慧,等.基于光学倍乘法产生光毫米波的全双工毫米波光纤传输系统设计[J].中国激光,2009,36(3):607-613.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700