基于广义线性模型的森林植物多样性估测的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在系统分析国内外生物多样性理论发展的基础上,总结了具有代表性的生物多样性度量模型和预测模型,评述了生物多样性的概念和多种生物多样性指数的适用性,并详细地论述了广义线性模型建模的基本原理以及实现的方法,结合我国东北林区的实际情况,构造了关于森林植物多样性的联立方程组模型。以下是本文的一些主要观点和结论:
     首先,探索生物物种的丰富度和多样性是近几十年来生态学的核心问题,生物多样性的度量,仍将是今后生物多样性研究中一个非常重要的研究领域。由于生物多样性的定义有多达12种以上的不同解释,产生了众多的概念和评价方法,这势必造成诸多混乱和不便。从研究的实际出发,一个好的定义,不仅要包含物种数目,而且还要包括绝对多度或相对多度,加强在这方面的理解对今后生物多样性的度量和估测尤为必要。
     其次,本文综述了生物多样性及其度量方面的大量研究资料,经综合分析认为,生物多样性研究一般分为四个层次或水平。其中包括基因多样性、物种多样性、生态系统多样性和景观多样性。在尺度研究上,多样性指数可分为三个大类:α多样性指数、β多样性指数和γ多样性指数。α多样性指数是指一定区域内生物群落的物种丰富度,是以物种数目的多寡进行测量的。本文主要集中研究生物物种多样性,它通常用作一个群落的多样性指数,有着丰富的内涵,其中包括物种丰富度、均匀度、优势度、稀有度、相对物种多度等。一定区域生物群落多样性的测定是从物种丰富度开始,这也构成了许多生态模型的研究基础。
     第三,本研究数据来自我国东北林区几个林业局调查的标准地资料。为了模型的有效性验证(本文采用交叉验证),把一个大的样本数据集分成几个数据子集:①一个数据子集(205块)用作数据分析与建模,②其它的子集(98+64=162块)被保留下来,称为验证或检验子集,随后作为模型的有效性验证和检验用。
     调查因子主要包括优势树种或树种组、起源、胸径、树高及株数,此外还在每个标准地中又设置了1个5m×5m样方调查灌木层、4个2m×2m样方调查草本层。本文用不同的方法对森林群落水平的调查数据进行了研究。用各种多样性指数公式计算了主要群落内乔木层、灌木层和草本层的物种多样性,特别地分析了相对物种多度分布。在相对多度研究上选用了九种概率分布模型,这九种概率密度分布函数依次为:贝塔分布、Weibull分布、对数正态分布、泊松分布、二项分布、负二项分布、几何分布、对数分布和奈曼A型分布,并进行了严格的卡方检验,结果表明:其它八种分布均被遭到拒绝,只有贝塔分布获得了通过,且拟合的结果非常理想。因此在这套数据集中用它来描述森林群落的相对多度非常合适。
     第四,本文定义了拟最大物种数的概念。估计物种丰富度是生物多样性研究领域中的一个基本目标,由于物种丰富度作为对生物多样性十分敏感的指数,它通常是总体物种数的偏小估计,从而造成生物多样性指数是一个偏序集。在一个有限的样本中,如何能够估计最大物种数,这是一个有待解决的问题。在一些可获得的方法中,刀切法和自助估计法可以弥补物种数估计偏小的问题,原因在于刀切法和自助估计法比其它估计方法在估计变量时能够最大程度地减少偏差。此法利用模拟和再抽样技术可获得最接近总体的物种数。
     最后,也是本文的重点,主要集中在生物多样性广义线性模型的建模研究上。虽然回归分析及模型预测技术在生物多样性度量模型中获得了越来越多的应用,但是系统性地应用新的统计技术仍十分有限。应用现代回归分析方法研究物种或群落的生物多样性模型是非常有益的。以下是模型实现的一般过程。
     广义线性模型是线性模型的扩展,对数据的要求不必局限于服从正态分布,同时放松了对“方差一致性”的要求,这在传统的一般线性模型假设检验中是必不可少的,而在广义线性模型假设检验中,响应变量也可以服从其它分布(如:泊松分布,二项分布及多项分布等)。例如:一些不服从正态分布的计算数据却在广义线性模型的背景下,作为服从泊松分布的随机变量,却能够获得合适的分析结果。
     本文通过实例由浅入深地描述了森林群落多样性广义线性模型的建模过程。在似乎不相关模型的基础上,分析了森林植物多样性模型方程中相互依赖关系,引入三个内生变量Y_1(乔木层多样性指数)、Y_2(灌木层多样性指数)、Y_3(草本层多样性指数),同时引入三个外生变量X_1(优势林分)、X_2(起源)和X_3(龄组),则联立方程组模型用矩阵方程表示为:YB+xΓ二ε(其中,B和Γ是两个结构参数矩阵,ε是一个不可观察的残差矩阵)。根据方程中隐含的参数间约束条件,生成线性限制方程HA=L,这是多样性联立方程组模型求解必不可少的条件。虽然,普通最小二乘法(OLS)在单个方程参数的估计中被广泛应用,但是,如果用普通最小二乘法单独去估计每一个方程的参数而不考虑方程组中的其他方程时,势必忽略方程组间的相关关系,用此方法估计的参数不但有偏,而且是非一致的。在大多数情况下,生物多样性指数联立方程组模型间存在着相互依存关系,结构方程中的误差项也存在着依赖关系,这就要求探索其它的途径,选择合适的估计方法对联立方程组模型参数进行估计,比较实用的有广义最小二乘法、二步最小二乘法和三步最小二乘法。特别是,三步最小二乘法综合了各种限制因子和结构方程估计的优点,或将成为一种很有前途的估计方法。最终通过参数求解获得了森林植物多样性联立方程组模型。经方差分析的结果表明:该模型的自变量优势林分、起源、龄组的作用均显著。
Based on systematic analysis of the development of theory of biodiversity in internal and external, this paper summed up biodiversity measurement models and estimating models which are representative, discussed the concept of biodiversity and the application of several biodiversity indices, also, discussed the basic principle of the Generalized Linear Models (GLM) and the implementing method,. In the end, through combing the theory with the situation of northeast forest area of China, the simultaneous equation models for forest biodiversity were designed and constructed based on GLM. The main idea and conclusions were as follow.
     Firstly, Searching for abundance and diversity of species has been in the heart of ecology for decades, and the problem of biodiversity measurement still continues to be a core area of biodiversity research. If one wants to measure "biodiversity" there are no less than 12 different definitions to choose from, all of them different. The major problem with biodiversity in general is that most people interpret the concept differently. It is far too vague and generalized to be of any practical use in a situation and needs to be better defined. From a practical viewpoint, the definitions of biodiversity should involve a formula that includes not only the number of species in a place, but the abundances (absolute or relative) of those species, as well. Increasing this understanding is important, because it is necessary for biological diversity measurement in the distribution, abundance and diversity of forest species before biodiversity measurement can be rigorously estimated.
     Secondly, I put forward a critical review on a set of biodiversity and biodiversity measurement. The main conclusion is that biodiversity is generally recognized on four levels: (a) Genetic diversity; (b) Species diversity; (c) Ecosystem diversity and (d) landscape diversity; The measurement of biodiversity on scale involves three aspects: alpha diversity, beta diversity and gamma diversity, this paper focuses on the Alpha diversity and Species diversity, Alpha diversity (a-diversity) is species richness within a particular area, community or ecosystem, and is measured by counting the number of species. Species diversity is usually used as an index of community, and is incorporated by species richness, evenness, dominance, species rarity, relative species abundance, etc. Species richness is a fundamental measurement of forest community and regional diversity, underlies many ecological models
     Thirdly, Forest community-level survey data is analyzed in this paper in different ways, which focus on biodiversity index modeling. The data is derived from at several forest bureaus in the Northeast forest area of China (Heilongjiang province and Jilin province). In order to validate the models and the initial analysis, this paper adopts the Cross-validation method, which is the statistical practice of partitioning a sample of data into subsets such that the analysis is initially performed on a single subset, while the other subset(s) are retained for subsequent use in confirming and validating the initial analysis. The initial subset of data is called the training set (205 field plots); the other subset(s) are called validation or testing sets (98 plus 64 field plots), totally 367 field plots.
     In each field plot, The dominant stands (or dominant tree species groups), the age class, the DBH, the height of tree, and the number of trees were measured, also in each field plot, there are one sample plot (5m×5m) for shrub investigation, and four small sample plots (2m×2m) for herb investigation. I have calculated the species diversity for 3 layers (i.e. tree layer, shrub layer and herb layer) by means of various biodiversity index formulas and analyzed the relative species abundance using 9 models of the probability density distribution functions, such as, (3 Distribution (or Beta Distribution), Weibull Distribution, Lognormal Distribution, Poisson Distribution, Binomial Distribution, Negative Binomial Distribution ,Geometric Distribution, etc.. chi-square analyses were conducted on species distribution by using the chi-square test formulated by Pearson to test which distribution function is better, the result of chi square test made it possible to reject the other 8 distribution functions, theβdistribution function performs better than other probability density functions, it has a very close approximation, which can be used for the description of relative abundances of species in forest communities in this data set.
     Fourthly, this paper defined the concept of the quasi maximum number of species. Estimating species richness (i.e., the actual number of species present in a given area) is a basic objective of biodiversity studies field. Because the species richness is a kind of sensitive index for biodiversity and usually systematic underestimation (bias) for the number of species in a population, the index of biodiversity is a biased data set. The basic problem is that from a limited sample, how to estimate the maximum number of species that would be found in a complete survey, but that have not yet been observed. Of the available methods, the Jackknife and Bootstrap estimation can be used to compensate for the underestimation associated with simple richness estimation (or the sum of species counted in a sample). The reason is that in general Jackknife and Bootstrap estimation methods will provide estimators with less bias and variance at maximum than the other estimation methods. These methods through using the estimators with simulation and resampling technique can provide a maximum number of species, which is close to the population, in measurement of biodiversity.
     Finally, this paper primarily focuses on the model-building of generalized linear models in biodiversity index. Regression analyses and Predictive models are increasingly used in biodiversity measurement. However, systematic applications of novel statistical techniques are still limited. The modern regression approaches are particularly useful for the modeling of the biodiversity of species and communities. The procedure is as follows.
     Generalized Linear Models (GLM) are an extension of the linear modeling process that allows models to be fit to data that follow probability distributions other than the Normal distribution, such as the Poisson, Binomial, Multinomial, and etc.. Generalized Linear Models also relax the requirement of equality or constancy of variances that is required for hypothesis tests in traditional linear models. Hypothesis tests applied to the Generalized Linear Model do not require normality of the response variable, nor do they require homogeneity of variances. Hence, Generalized Linear Models can be used when response variables follow distributions other than the Normal distribution, and when variances are not constant. For example, the count data can often be poorly represented by classical Gaussian distributions (i.e. Normal distribution) but the data would be appropriately analyzed as a poisson random variable within the context of the Generalized Linear Model.
     This paper demonstrates the GLM model-building procedures step-by-step for the biodiversity of forest community in the northeast of china. Based on seemingly unrelated model, this paper analyzed the equation's relationship among forest plant-diversity index models, and introduced 3 endogenous variables: Y_1 (Shannon' biodiversity index of tree layer), Y_2 (Shannon' biodiversity index of shrub layer), Y_3 (Shannon' biodiversity index of herb layer), also 3 exogenous variables, X_1 (dominant stands); X_2 (Origin of forest) and X_3 (age class group or cohort). The linear simultaneous equation model can be represented by the matrix equation, which is described as follow YB + xΓ=ε(where B andΓare two structural parameter matrices,εis a matrix of unobserved residuals). Y_1, Y_2, and Y_3 as the independent variables can be put to another equation to construct simultaneous equation models, according to the latent relation between structural parameter matrices, the linear constrained equation HA = L is need This is very important and necessary constraint condition for obtaining estimates of the parameters of the structural equation. Generally, ordinary least squares method (OLS) is widely used for estimating a single equation, if estimating the parameters of the simultaneous equation model was done separately by OLS, it would be ignored the relationship between the equations, and should be yield biased and inconsistent estimates. In most cases, the species diversity index models are interdependent simultaneous-equation models, i.e., models which incorporate mutual causation, and there is dependence between the errors of the structural equations. Appropriate estimation techniques are usually required in this situation. The other techniques which can be used include generalized least squares (GLS), 2-stage least squares (2SLS) and 3-stage least squares (3SLS), 3SLS (combining constrained factor analysis and structural equation estimation) may be very useful. In the end, The final form of simultaneous equation models for forest plant-diversity was as follows,According to the results of variance analysis, there are significant effects among dominant stands, origin of forest and age class group.
引文
[1]安树青,朱学雷,王峥峰等.海南五指山热带山地雨林植物物种多样性研究.生态学报,1999,19(6):803-809
    [2]白降丽,彭道黎等.森林景观生态研究现状与展望.生态学杂志,2005,24(8):943-947
    [3]常杰等.生物多样性的自组织、起源和演化.生态学报,2001,2:1-7
    [4]常罡,廉振民.生物多样性研究进展[J].陕西师范大学学报(自然科学版),2004,9(32):152-157.
    [5]陈杰,陈欣,方治国.南方丘陵区小流域生态系统杂草物种多样性的空间分布特征.生态学报,2002,22(3):440-443.
    [6]陈灵芝.主编.中国森林多样性及其地理分布.北京:科学出版社,1997
    [7]陈仲新,谢海生.毛乌素沙地景观生态类型与灌丛生物多样性初步研究[J].生态学报,1994,14(4):345-354,.
    [8]方精云,沈泽昊,唐志尧.中国山地植物物种多样性调查计划及若干技术规范.生物多样性科学,2004,12(1):5-9
    [9]高贤明,马克平.北京东灵山地区植物群落多样性的研究山地草甸β多样性.生态学报,1998,18(1):24-32.
    [10]郭志华,彭少麟,王伯荪等.GIS和RS支持下广东省植被吸收PAR的估算及其时空分布.生态学报,1999,19(4):441-447
    [11]贺金生,陈伟烈.陆地植物群落物种多样性的梯度变化特征生态学报,1997,17(1):91-99
    [12]黄建辉.物种多样性的空间格局及其形成机制初探.生物多样性,1994,2(2):103-107
    [13]蒋有绪,刘世荣.关于区域生物多样性保护研究的若干问题.自然资源学报,1993,8(4):289-298
    [14]蒋有绪.区域生物多样性保护的基本构想.见刘世荣等主编:中国暖温带森林生物多样性研究.北京:中国林业出版社,1998,37-44
    [15]琚存勇,邸雪颖,蔡体久.变量筛选方法对郁闭度遥感估测模型的影响比较.林业科学,2007,43(12):33-38
    [16]郎奎建,唐守正.IBM PC系列程序集.北京:中国林业出版社,1989
    [17]雷相东,唐守正.群落本质多样性排序及应用.林业科学研究,2002,15(3):285-290
    [18]雷相东,唐守正等.东北过伐林灌木层物种多样性与林分因子的典型相关分析.应用与环境生物学报,2002,8(4):346-35
    [19]李昌龙,王继和,孙坤,李爱德,李得禄.民勤连古城自然保护区群落结构和物种多样性特征分析.西北植物学报,2006,26(11):2338-2344
    [20]李林,周小勇,黄忠良,魏识广,史军辉.鼎湖山植物群落α多样性与环境的关系.生态学报,2006,26(7):2301-2306
    [21]林开敏,黄宝龙.杉木人工林林下植物物种β多样性的研究.生物多样性,2001,9(2):157-161.
    [22]刘灿然,马克平.生物群落多样性的测度方法v.生态学报,1997,17(6):601-610.
    [23]刘灿然,马克平,于顺利,王巍.北京东灵山地区植物群落多样性的研究Ⅵ,几种类型植物群落物种数目的估计.生态学报,1998,18(2):138-150.
    [24]刘烂然,马克平等.北京东灵山地区植物群落多样性研究(种一面积曲线的拟合与评价).植物生态学报,1999,23(6):490-500.
    [25]刘灿然,马克平,于顺利,王巍.北京东灵山地区植物群落多样性的研究Ⅳ样本大小对多样性测度的影响.生态学报,1997,17(6):585-592.
    [26]刘灿然,马克平.生物多样性的测度方法.V生物群落物种数目的估计方法.生态学报,1997.17(6):601-610.
    [27]刘秋锋,康幕谊,刘全儒.混沟森林植被物种多样性梯度分析与环境解释.西北植物学报,2006,26(8):1686-1692
    [28]刘世荣,蒋有绪,史作民.中国暖温带森林生物多样性研究.北京:中国林业出版社,1998
    [29]马克平.生物群落多样性的测度方法1α多样性的测度方法(上).生物多样性,1994.2(3):162-168
    [30]马克平,蒋志刚等.生态系统多样性.保护生物学[M].杭州:浙江科学技术出版社,1997.34-50.
    [31]马克平.中国科学院生物多样性委员会.生物群落多样性的测度方法.生物多样性的原理与方法[M].北京:中国科学技术出版社,1994..
    [32]马克平,刘灿然,于顺利,王巍.北京东灵山地区植物群落多样性的研究Ⅲ几种类型森林群落的种—多度关系研究.1997.17(6):573-583.
    [33]马克平,叶万辉,于顺利,马克明,王巍,关文杉.北京东灵山地区植物群落多样性研究Ⅶ.群落组成随海拔梯度的变化.生态学报,1997,17(6):593-600.
    [34]马月辉.边际多样性方法及其在绵羊品种保护中应用.生物多样性,200513(1):70-74
    [35]彭少麟,郭志华,王伯荪.RS和GIS在植被生态学中的应用及其前景.生态学杂志,1999,18(5):52-64
    [36]钱迎倩,马克平.生物多样性研究的原理与方法.北京:中国科学技术出版社,1994
    [37]茹文明,张金屯,张峰,张桂萍,刘瑞祥.历山森林群落物种多样性与群落结构研究.应用生态学报,2006,17(4):561-566
    [38]唐守正、李勇.生物数学模型的统计学基础北京:科学出版社2002
    [39]唐守正等.ForStat2.0(统计之林)教程,2005
    [40]唐小平,黄桂林.中国湿地分类系统的研究[J]林业科学研究,2003,16(5)531-539.
    [41]王本洋,罗富和.中国森林生物多样性动态的灰色预测.生物多样性科学,2007,15(4):393-399
    [42]王峥峰,安树青,Campbell D G等.海南吊罗山热带雨林的物种多样性.生态学 报,1999,19(1):45-51
    [43]汪殿蓓,陈飞鹏.植物群落物种多样性研究综述(J).生态学杂志,2001,20(4):5-60.
    [44]伍超标,经济计量学导论[M].北京:中国统计出版社,1998
    [45]伍业钢,李哈滨.景观生态学的理论发展,见:刘建国等主编.当代生态学博论.北京:中国科学技术出版社,1992,30-39.
    [46]吴晓莆,朱彪,赵淑清等.东北地区阔叶红松林的群落结构及其物种多样性比较[J].生物多样性,2004,12(1):174-180
    [47]邬建国.生态学范式变迁综论[J].生态学报,1996,16(5):449-460,.
    [48]谢晋阳,陈灵芝.中国暖温带若干灌丛群落多样性问题的研究[J].植物生态学报,1997,21(3):197-207
    [49]杨利民,王仁忠.松嫩平原主要草原群落放牧干扰梯度对植物多样性的影响[J].草地学报,1999,7(1):8-16,.
    [50]叶万辉.物种多样性与植物群落多样性的维持机制.生物多样性,2000,8(1):17-
    [51]岳天祥.生物多样性研究及其进展.生态学报,2001,21(3):462-467.
    [52]臧润国,刘静艳,董大方.林隙动态与森林生物多样性.北京:中国林业出版社,1999
    [53]臧润国,刘世荣,蒋有绪.森林生物多样性保护原理概述.林业科学,1999,35(4):71-79
    [54]臧润国,余世孝,刘静艳等.海南霸王岭热带山地雨林林隙更新规律的研究.生态学报,1999,19(2):151-158
    [55]张宏达.植物的特有现象与生物多样性.生态科学,1998,16(2):9-17
    [56]张淑梅,李勇.线性联立模型的确定性问题,北京师范大学学报(自然科学版),1996 21(2):23-57
    [57]赵淑清,方精云,朴世龙等.大兴安岭呼中地区白卡鲁山植物群落结构及其多样性研究[J].生物多样性,2004,12(1):182-189
    [58]赵秀海,张春雨,郑景明.阔叶红松林林隙结构与树种多样性关系研究.应用生态学报,2005,16(12):2236-2240
    [59]赵志模,郭依泉.群落生态学原理与方法[M].北京:科学文献出版社,1989.148-149.
    [60]《中国生物多样性保护行动计划》编写组.中国生物多样性行动计划.北京:中国环境科学出版社,1994,1998两期
    [61]周国法.应用一维空间序列方法研究空间分布型与时空相关[J].生态学报,1997,17(2):202-208
    [62]周会萍,牛德奎,张继红等.湿地松人工林群落林下植被物种多样性研究.江西农业大学学报,2006,28(1):78-83
    [63]周晓峰.中国森林与生态环境[M].北京:科学出版社,1999.102-104.
    [64]祖元刚,马克明,张喜军一植被空间异质性的分形分析方法.生态学报,1997,17(3):333-337.
    [65]祖元刚,马克明等.植被空间异质性的分形分析方法[J].生态学报,1997,17(3):333-337.
    [66]Zurik.K.森林生物多样性和自然遗产的保护.第一届林业大会,1998,123-133
    [67]Andelman,SJ.& Fagan,W.F.Umbrellas and flagships:efficient conservation surrogates or expensive mistakes? Proceedings of the National Academy of Sciences,USA,2000,97:5954—5959.
    [68]Baldi,A.Using higher taxa as surrogates of species richness:a study based on 3700 Coleoptera,Diptera,and Acari species in Central Hungarian reserves.Basic and Applied Ecology,2003,4:589-593.
    [69]Balmford,A.,Green,M.J.B.& Murray,M.G.Using higher-taxon richness as a surrogate for species richness.I.Regional tests.Proceedings the Royal Society of London B,1996,263:1267-1274.
    [70]Bienabe,E.,and R.R.Hearne.Public preferences for biodiversity conservation and scenic beauty within a framework of environmental services payments.Forest Policy and Economics,2006.9:335-348
    [71]Boero,F,and E.Bonsdorff.A conceptual framework for marine biodiversity and ecosystem functioning.Marine Ecology an Evolutionary Perspective,2007.28:134-145
    [72]Brack,C.L.National forest inventories and biodiversity monitoring in Australia.Plant Biosystems,2007.141:104-112
    [73]Brigatti,E.,J.S.S.Martins,and I.Roditi.Evolution of biodiversity and sympatic speciation through competition in a unimodal distribution of resources,a Statistical Mechanics and Its Applications 2007.376:378-386
    [74]Bunge J and Fitzpatrick M.Estimating the unmber of speciecies a review.Jornai of the American statistical association,1993,88:364-373.
    [75]Burgess,N.D.,A.Balmford,N.J.Cordeiro,J.Fjeldsa,W.Kuper,C.Rahbek,E.W.Sanderson,J.P.W.Scharlemann,J.H.Sommer,and P.H.Williams.Correlations among species distributions,human density and human infrastructure across the high biodiversity tropical mountains of Africa.Biological Conservation 2007.134:164-177
    [76]Carlson,K.M.,GP.Asner,R.F.Hughes,R.Ostertag,and R.E.Martin.Hyperspectral remote sensing of canopy biodiversity in Hawaiian lowland rainforests.Ecosystems 2007.10:536-549
    [77]Caro,T.M.& O'Doherty,G.On the use of surrogate species in conservation biology.Conservation.Biology,1999.13,805-814.
    [78]Caruso,T.,G Pigino,F Bernini,R.Bargagli,and M.Migliorini.The Berger-Parker index as an effective tool for monitoring the biodiversity of disturbed soils:a case study on Mediterranean oribatid (Acari:Oribatida)assemblages.Biodiversity and Conservation,2007.16:3277-3285
    [79]Chong,GW,and T.J.Stohlgren.Species-area curves indicate the importance of habitats'contributions to regional biodiversity.Ecological Indicators 2007.7:387-395
    [80]Clark,J.S.,M.Dietze,S.Chakraborty,P.K.Agarwal,I.Ibanez,S.LaDeau,and M.Wolosin.Resolving the biodiversity paradox.Ecology Letters,2007.10:647-659
    [81]Colwell, R.K. & Coddington, J.A. Estimating terrestrial biodiversity through extrapolation. Philosophical Transactions of the Royal Society London B, 1994,345,101-118.
    [82]Condit, R., Pitman, N., Leigh, E.G, Chave, J., Terborgh, J., Foster, R.B., Nunez, P., Aguilar, S., Valencia, R., Villa, G, Muller-Landau, H.C., Losos, E. & Hubbell, S.P. Beta-diversity in tropical forest trees. Science, 2002.295,666-669.
    [83] Convey, P., and M.I. Stevens. Antarctic biodiversity. Science, 2007.317:1877-1878
    [84]Costanza, R., B. Fisher, K. Mulder, S. Liu, and T. Christopher. Biodiversity and ecosystem services: A multi-scale empirical study of the relationship between species richness and net primary production. Ecological Economics, 2007.61:478-491
    [85] David Hill, Handbook of biodiversity methods: survey, evaluation and monitoring, Cambridge University Press, Cambridge, 2005.
    [86] Deal, R.L. Management strategies to increase stand structural diversity and enhance biodiversity in coastal rainforests of Alaska. Biological Conservation, 2007.137:520-532
    [87]Svenning, J.-C. & Wright, S.J. Beta diversity in tropical forests. Science, 2002.295,636-637.
    [88]Drechsler, M., V. Grimm, J. Mysiak, and F. Watzold. Differences and similarities between ecological and economic models for biodiversity conservation. Ecological Economics, 2007.62:232-241
    [89]Drechsler, M., and F. Watzold. Ecological-economic modelling for the sustainable use and conservation of biodiversity. Ecological Economics, 2007.62:203-206
    [90]Dunford W, Freemark KMatrix matters: effects of surrounding land uses on forest birds near Ottawa, Canada. Landscape Ecol 2004.20:497-511
    [91]Duro, D., N.C. Coops, and T. Han. Development of a large area biodiversity monitoring system driven by remote sensing. Progress in Physical Geography 2007. 31:235-260 132.
    [92]Eppink, F.V., and J.CJ.M. van den Bergh. Ecological theories and indicators in economic models of biodiversity loss and conservation: A critical review. Ecological Economics, 2007. 61:284-293 398.
    [93] Eriksson, S., and M. Hammer. The challenge of combining timber production and biodiversity conservation for long-term ecosystem functioning: A case study of Swedish boreal forestry. Forest Ecology and Management 2006. 237:208-217
    [94]Etienne, R.S., D. Alonso, and A.J. McKane. The zero-sum assumption in neutral biodiversity theory. Journal of Theoretical Biology 2007.248:522-536
    [95]Favreau, J.M., Drew, C.A., Hess, GR., Rubino, M.J., Koch, F.H. & Eschelbach, K.A. Recommendations for assessing the effectiveness of surrogate species approaches. Biodiversity and Conservation, 2006,15,3949-3969.
    [96]Ferrier, S., Drielsma, M., Manion, G & Watson, G Extended statistical approaches to modelling spatial pattern in biodiversity in north-east New South Wales: Ⅱ. Communitylevel modelling. Biodiversity and Conservation,2002.11,2309-2338.
    [97]Ferrier,S.,G Manion,J.Elith,and K.Richardson.Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment.Diversity and Distributions 2007.13:252-264
    [98]Ferrari,S.L.P.& Cribari-Neto,F.Beta regression for modelling rates and proportions.Journal of Applied Statistics,2004.31,799-815.
    [99]Ferrier,S.& Guisan,A.Spatial modelling of biodiversity at the community level.Journal of Applied Ecology,2006.43,393-404.
    [100]Fox,J.W.Using the Price Equation to partition the effects of biodiversity loss on ecosystem function.Ecology 2006.87:2687-2696
    [101]Francois,O.,and C.Mioland.Gaussian approximations for phylogenetic branch length statistics under stochastic models of biodiversity.Mathematical Biosciences 2007.209:108-123
    [102]Freeman Ⅲ,A.M.The Measurement of Environmental and Resource Values.Theory and Methods,2nd ed.,Washington,DC:Resources for the Future.2003.
    [103]Garcia,D.,and J.Canon.Application of marginal diversity and elasticity of the Weitzman approach to diversity.ITEA 2001.22 (1):167-169.
    [104]Gaston,K.J.,and R.A.Fuller.Biodiversity and extinction:losing the common and the widespread.Progress in Physical Geography 2007.31:213-225
    [105]Gjerde,I.,M.Saetersdal,and H.H.Blom.Complementary Hotspot Inventory-A method for identification of important areas for biodiversity at the forest stand level.Biological Conservation,2007.137:549-557
    [106]Guisan,A.,E.Spehn,and C.Korner.MRI newsletter 8:Georeferenced biological databases-A tool for understanding mountain biodiversity.Mountain Research and Development 2007.27:80-81
    [107]Haddock,J.,J.Tzanopoulos,J.Mitchley,and R.Fraser.A method for evaluating alternative landscape management scenarios in relation to the biodiversity conservation of habitats.Ecological Economics,2007.61:277-283
    [108]Haeussler,S.,Y.Bergeron,S.Brais,and B.D.Harvey.Natural dynamics-based silviculture for maintaining plant biodiversity in Populus tremuloides-dominated boreal forests of eastern Canada.Canadian Journal of Botany-Revue Canadienne,2007.85:1158-1170
    [109]Hastie,T.J.& Tibshirani,R.Generalised additive models.Chapman & Hall,London.1990
    [110]Hayri A-nal.A computationally convenient diversity measure:Theory and application,Environmental & Resource Economics,European Association of Environmental and Resource Economists,1997 9(4),409-427
    [111]Hermy,M.,and K.Verheyen.Legacies of the past in the present-day forest biodiversity:a review of past land-use effects on forest plant species composition and diversity.Ecological Research, 2007.22:361-371
    [112]Humbert, J.-F; Dorigo, U. Biodiversity and aquatic ecosystem functioning. Aquatic Ecosystem Health & Management, 2005 8(4) 367-374.
    [113]Hurlbert S.H. The non-concept of species diversity: a critique and slternative parameters. Ecology, 1971,52:577-586.
    [114]Jennings, M., J. Hoekstra, J. Higgins, and T. Boucher. A comparative measure of biodiversity based on species composition. Biodiversity and Conservation. Online:: http://www.springerlink.com/content/1075438374305343/2007
    [115]Jones, E.T., and K.A. Lynch. Nontimber forest products and biodiversity management in the Pacific Northwest. Forest Ecology and Management 2007.246:29-37
    [116]Karban, R. & Huntzinger, M. How to do Ecology: A Concise Handbook. Princeton University Press, Princeton, NJ, USA. 2006
    [117]Kerns, B.K., and A. Ager. Risk assessment for biodiversity conservation planning in Pacific Northwest forests. Forest Ecology and Management 2007.246:38-44
    [118]Koellner, T., and O.J. Schmitz. Biodiversity, ecosystem function, and investment risk. Bioscience, 2006. 56:977-985
    [119]Krebs, C.J. Ecological Methodology, 2nd Edition. Addison-Welsey, Menlo Park, CA, USA. 1999
    [120]Lamoreux, J.F., Morrison, J.C., Ricketts, T.H. et al. Global tests biodiversity concordance and the importance of endemism. Nature, 2006,440,212-214.
    [121]Lawton, J.H., Bignell, D.E., Bolton, B. et al. Biodiversity inventories, indicator taxa and effects of habitat modification in tropical forest. Nature, 1998.391, 72-76.
    [122]Legendre, P., Borcard, D. & Peres-Neto, P.R. Analyzing beta diversity: partitioning the spatial variation of community composition data. Ecological Monographs, 2005.75,435-450
    [123]Leroux, A.D., and J. Creedy. Optimal land conversion and growth with uncertain biodiversity costs. Ecological Economics 2007. 61:542-549
    [124]Lira-Noriega, A., J. Soberon, A.G Navarro-Siguenza, Y. Nakazawa, and A.T. Peterson. Scale dependency of diversity components estimated from primary biodiversity data and distribution maps. Diversity and Distributions 2007.13:185-195
    [125]Magurran, A.E. Ecological Diversity and its Measurement, Princeton University Press, New Jersey, 1988
    [126]Magierowski, R.H. & Johnson, C.R. Robustness of surrogates biodiversity in marine benthic communities. Ecological Applications, 2006.16,2264-2275.
    [127]Magurran, A.E. Ecological Diversity and its Measurement. Princeton University Press, Princeton, NJ, USA. 1988
    [128]Manly, B.F.J. Randomization and regression methods for testing for associations with geographical,environmental and biological distances between populations.Researches on Population Ecology,1986.28,201-218.
    [129]McCann,K.S.The diversity-stability debate,Nature,2000.405,228-233.
    [130]McCullagh,P.& Nelder,J.A.Generalized linear models,2nd Edition.Chapman & Hall,London.1989
    [131]Milder,J.C,J.P.Lassoie,and B.L.Bedford.Conserving biodiversity and ecosystem function through limited development:An empirical evaluation.Conservation Biology 2008.22:70-79
    [132]Milne,R.J.,and L.P.Bennett.Biodiversity and ecological value of conservation lands in agricultural landscapes of southern Ontario,Canada.Landscape Ecology,2007.22:657-670
    [133]Molina,R.,and R.White.Managing biodiversity in pacific northwest forests.Forest Ecology and Management 2007.246:1-3
    [134]Moritz,C,Richardson,K.S.,Ferrier,S.et al.Biogeographical concordance and efficiency of taxon indicators for establishing conservation priority in a tropical rainforest biota.Proceedings of the Royal Society of London B,2001.268,1875-1881.
    [135]Mortberg,U.M.,B.Balfors,and W.C.Knol.Landscape ecological assessment:A tool for integrating biodiversity issues in strategic environmental assessment and planning.Journal of Environmental Management,2007.82:457-470
    [136]Nakashizuka,T.An interdisciplinary approach to sustainability and biodiversity of forest ecosystems:Ecological Research,2007.22,359-360
    [137]Nehring,K.and C.Puppe.A theory of diversity,Econometrica,2002.70,1155-1198.
    [138]Oertli,S.,Muller,A.,Steiner,D.,Breitenstein,A.& Dorn,S.Crosstaxon congruence of species diversity and community similarity among three insect taxa in a mosaic landscape.Biological Conservation,2005,126,195-205.
    [139]Osinski,E.,J.Kantelhardt,and A.Heissenhuber.Economic perspectives of using indicators.Agriculture,Ecosystems & Environment,2003.98 (13):477-482.
    [140]Patil GP,Taillie C.Deversity as a cocept and its measurement,Journal of American Statistical Association,1982,77(379):548-561
    [141]Parresol,Bernard R.;McCollum,Joseph.Characterizing and Comparing Landscape Diversity:Using GIS and a Contagion Index.Journal of Sustainable Forestry,1997.5(12)::249-261
    [142]Purvis,A.and A.Hector.Getting the measure of biodiversity,Nature,2000.405,212-219.
    [143]Rickart,E.A.Elevational diversity gradients,biogeography and the structure of montane mammal communities in the intermountain region North America.Global Ecology and Biogeography,2001.10,77-100.
    [144]Ruokolainen,K.& Tuomisto,H.Beta-diversity in tropical forests.Science,2002.297,1439.
    [145]Sergio,E,Newton,I.,& Pedrini,P.Ecologically justified charisma:preservation of top predators delivers biodiversity conservation.Journal of Applied Ecology,2006.43,1049-1055.
    [146]Simianer,H.,S.B.Marti,J.Gibson,O.Hanotte,and J.E.O.Rege.An approach to the optimal allocation of conservation funds to minimize loss of genetic diversity between livestock breeds.Ecological Economics 2003.45 (3):377-392.
    [147]Simmons,M.T.& Cowling,R.M.Why is the Cape Peninsula so rich in plant species? An analysis of the independent diversity components.Biodiversity and Conservation,1996.5:551-573.
    [148]Smouse,P.E.,Long,J.C.& Sokal,R.R.Multiple regression and correlation extensions of the Mantel test of matrix correspondence.Systematic Zoology,1986.35,627-632.
    [149]Sokal,R.R.& Rohlf,F.J.Biometry,2nd edn.W.H.Freeman,San Francisco,CA,USA.1981
    [150]Solow,A.R.,and S.Polasky.Measuring biological diversity.Environmental and Ecological Statistics 1993.1 (2):95-103.
    [151]Solow,A.S.Polasky and J.Broadus.On the measurement of biological diversity,Journal of Environmental Economics and Management,1993.24,60-68.
    [152]Solow,A.R.,S.Polasky,and J.Broadus.On the measurement of biological diversity.Journal of Environmental Economics and Management 1993.24 (1):60-68.
    [153]Starzomski,B.M.& Srivastava,D.S.Landscape geometry determines community response to disturbance.Oikos,2007,116,690-699.
    [154]Steinitz,O.,Heller,J.,Tsoar,A.,Rotem,D.& Kadmon,R.Predicting regional patterns of similarity in species composition for conservation planning.Conservation Biology,2005.19,1978-1988.
    [155]Su,J.C,Debinski,D.M.,Jakubauskas,M.E.& Kindscher,K.Beyond species richness:community similarity as a measure of cross-taxon congruence for coarse-filter conservation.Conservation Biology,2004.18,167-173.
    [156]Thaon d'Aroldi,C,J.L.Foulley,and L.Ollivier.An overview of the Weitzman approach to diversity.Genetics,Selection,Evolution 1998.30 (2):149-161.
    [157]Tognelli,M.F.Assessing the utility of indicator groups for the conservation of South American terrestrial mammals.Biological Conservation,2005.121,409-417.
    [158]Tuomisto,H.& Ruokolainen,K.Analyzing or explaining beta diversity? Understanding the targets of different methods of analysis.Ecology,2006,87,2697-2708.
    [159]Vellend,M.Parallel effects of land-use history on species diversity and genetic diversity of forest herbs.Ecology,2004.85,3043-3055.
    [160]Wilson,D.S.,and K.J.Puettmann.Density management and biodiversity in young Douglas-fir forests:Challenges of managing across scales.Forest Ecology and Management 2007.1:123-134
    [161]Zar,J.H.Biostatistical Analysis.Prentice Hall,Englewood Cliffs,NJ,USA.1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700