气控式坞门气交换数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卧倒门是船坞坞门的一种型式,主要用于干船坞,近年来随着船坞建设的发展,得到了普遍应用。它的卧倒与浮起是通过调节空气操作舱的进出气流实现的,对船坞的起卧性能起着至关重要的作用。一般设计主要是根据规范和相关经验满足其卧倒门基本的起卧性能,然而对于其起卧性能的评价主要还是依赖于物理模型试验,这主要是由于它在中的运动状态比较复杂,受到多种因素的影响,如潮汐舱的气孔的面积、空气操作舱气交换的相互作用、流、风浪等等。本文主要考虑了空气操作舱内的气交换对坞门性能的影响,对卧倒门呈卧倒状态时操作舱内的气液分布进行了数值计算与试验模拟。
     以福建泉州1#船坞卧倒门为原型,结合模型门的尺寸建立二维数学模型,对空气操作舱的气交换进行数值模拟研究。采用VOF模型追踪自由液面以确定流体的运动,并采用Reynolds平均法和低Re数的k ~ε模型进行计算。给定了边界条件:进口边界给定质量流量进口;出口为压力出口;采用对称边界取空气操作舱的一半,以减小网格数量,增加计算的速度;壁面使用固壁边界,通过壁面函数对近壁区域进行处理;对自由面的处理采用几何重构的办法。对计算模型建立控制方程,并采用有限体积法离散,压力—速度的耦合采用SIMPLE算法进行计算。通过对操作舱二维的计算,得到气液相瞬态分布和的体积分数。
     采用有机玻璃模型对操作舱进行了静态状况下气交换的模拟试验,通过改变空气压缩机的压力和位的变化,得到不同状况下操作舱内气交换的情况。并将试验数据和计算结果进行了对比分析。
The draping-down door which is one kind of all docks is mainly bulit in dry docks. In recent years, many draping-down doors have been bulit successfully with the dock construction. The door is made to fall down or get up by compressed air of operating cabin, which is important to the draping-down door. At present, it is designed according to the theory of statis balance and relate criterion. However, the analysis whether the door moves badly or stablely is merely depent on physical model, because many factors affect its movement, such as the size of hole in the tidal cabin, the gas-liquid exchange in operating cabin, wind and wave. While the gas-fluid exchange makes a significantly impact on the draping-down door, the paper mainly studys the gas-liquid distribution of operating cabin by numerical simulation and experiment.
     This paper is based on the 1# draping-down door in Quanzhou, Fujian province. Seting up the mathematical model in virtue of the model size of the operating cabin, the air intaking and water discharged is simulated. VOF model is to track the free surface to determine the volume fraction of water in accounting model, and using the Reynolds averaging method and k ~εmodel to calculate. The boundary condition is ensured. The import border boundary is mass flow condition, and the export boundary is pressure condition, the use of symmetric boundary is to calculate the half cabin in order to increase the speed and the precision, solid wall boundary wall is the wall function to treat with near wall region. The free surface is treated with the Geometric reconstruction. The control equations are discreted by the FVM method, and the model by the coupled of the pressure - speed calculated by the SIMPLE algorithm. We can get the transient gas-liquid distribution and the volume fraction of water.
     The operating cabin of model door is made by plexiglass to make experimentation. By changing the pressure of air compressor and water level, we can get the gas-liquid distribution and the displacement of the cabin. And the calculated results and experimental data were compared and analyzed.
引文
[1]黄勍,刘群志,邬志雄,第一座无上拔力配开口式绞座的气控卧倒式坞门在山海关船厂投入使用,造船工业建设,1999(3):30~53
    [2]白玉川,天津大学泥沙研究室,海西湾造修船基地1#、2#修船坞气动式坞门利模型报告,2003
    [3]白玉川,天津大学泥沙研究室,深圳友联造修船基地1#、2#修船坞气动式坞门利模型报告,2006
    [5]吕握南,船坞气控式卧倒门的起卧工艺设计与实践,运工程,1988,33~38
    [6]刘海青,张兴无等,船坞开口绞座气动卧倒坞门工艺设计与试验研究,船舶工程,1998,5:32~34,20
    [7]天津大学力系,《马耳它30万吨干船坞卧倒式坞门模型试验报告(工艺部分)》,天津:天津大学,1997
    [8]习和忠、习文,干船坞卧倒门的舱格设计计算,港工技术,1998(3):10~17
    [9]徐慎奇,气控式干船坞卧倒门动力学特性分析:[硕士学位论文],天津;天津大学,2003
    [10]黄涛,气控式卧倒门辅助设计软件的研究:[硕士学位论文],天津;天津大学,2005
    [11]中华人民共和国交通部,(JTJ 253——87),《干船坞设计规范》,北京:人民交通出版社,1987.131~143
    [12]白迎,气控式卧倒门起卧动态模拟软件设计:[硕士学位论文],天津;天津大学,2006
    [13]邱驹,港工建筑物,天津:天津大学出版社,2002.346~348
    [14]张效铭,船坞卧倒工艺设计的研究,运工程,1981
    [15]白玉川,天津大学泥沙研究室,大连大洋修船基地1#、2#修船坞气动式坞门利模型报告,2008
    [16] Harlow F H,Welch J E.Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid with Free Surface[J].The Physics of Fluids,1965,8(12):2 182-2 189
    [17]Hirt C W,Nichols B D.Computatioonal method for free surface hydrodynamics[J]. Journal of Pressure Vessel Technology,Transaction of the ASME,1981,103(2):136~141
    [18]王志东等,VOF方法中自由液面重构的方法研究[J].动力学研究进展:A辑,2003,18(1):52~56.
    [19]孙大鹏,李玉成.三维数值波动槽波浪变形计算的0—1混合型边界法[J].动力学研究进展,1999,14(4):429~437.
    [20]袁丽蓉,沈永明,郑永红,用VOF方法模拟横流下窄缝紊动射流,海洋学报,2005, 27(4):156~158
    [21]孔珑,两相流体力学,高等教育出版社,2004.54~60
    [22]是勋刚,湍流数值模拟的进展与前景,动力学研究与进展,1992. 104~106
    [23]周立行,湍流两相流动与燃烧的数值模拟,北京:清华大学出版社,1991.136~142
    [24]崔桂香,许春晓,张兆顺,湍流大涡数值模拟进展,空气动力学学报, 2004, 22(2),121~129
    [25]罗永钦等,闸孔处流水气二相流三维数值模拟,西南民族大学学报,2006,32(3):600~601
    [26]王福军,计算流体动力学分析—CFD软件原理与应用,北京:清华大学出版社,2004,91~92
    [27]金忠青,N-S方程的数值解与紊流模拟,河海大学出版社,1989,31~40
    [28]V.Yakhot, S.A. Orzag, Renormalization group analysic of turbulence: basic theory. J Scient Comput. 1:3-11,1986
    [29]T.H. Shih, W.W. Liou, A. Shabbir, Z. G. Yang, J. Zhu, A new k ~εeddy viscosity model for high Reynolds number turbulent flows. Comput Fluids.24(3):227-238,1995
    [30] W.P. Jones, B.E. Launde, The calculation of low-Reynolds-number phenomena with a two-equation model of turbulence. Int J Heat Mass Transfer,16:1119-1130,1973
    [31]王福军,计算流体动力学分析—CFD软件原理与应用,北京:清华大学出版社,2004,24~26
    [32]P K Khosla,S G Rubin. A diagonally dominant second-order accurate implicit scheme(finite difference method),Comput. Fluids,1974,2:207~209.
    [33]帕坦卡S V,传热与流动的数值计算(张政译),北京:科学出版社,1989. 49~53.
    [34] Jordan S A,Ragab S A. A large-eddy simulation of the near wake of a circular cylinder. ASME. J Fluids Engineering, 1998,120:243~252.
    [35]李孝伟,樊俊飞,一种自由界面追踪的模板化VOF方法,应用数学和力学, 2008, 29(7):803~804
    [36]李玲,陈永灿,李永红,三维VOF模型及其在溢洪道流计算中的应用,力发电学报,2007, 26(2):83~86
    [37]陶文栓,数值传热学,第2版,西安:西安交通大学与出版社,2001,211~218.
    [38]Patankar S V,Spalding D B. A calculation procedure for heat, mass andmomentum transfer in three-dimensional parabolic flows,Int. J. Heat Mass Transfer,1972,15:1787~1806.
    [39]Peri? M,Kessler R,Scheuerer G. Comparison of finite-volume numerical methods with staggered and colocated grids,Computers & fluids,1988,16:389~403.
    [40]韩占忠,王敬,兰小平,FLUENT流体工程仿真计算实例与应用,北京:北京理工大学出版社,2004,147~165
    [41]王瑞金,张凯,王刚,FLUENT技术基础与应用实例,北京:清华大学出版社,2007,135~137
    [42]赵鹏,船坞虹吸灌廊道力特性的数值模拟研究:[硕士学位论文],天津;天津大学,2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700