螺旋气液分离器流场模拟及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在石油,化工等行业的许多场合都需要采用气液分离器对气液混合介质进行分离,以完成产品净化或满足工艺流程的技术要求。螺旋气液分离器是近年来在国内外广泛应用于石油石化行业的成熟的多相分离计量装置,具有制造成本低、质量轻、准确率高、自动化程度高、稳定性能好等优点,使其具有广阔的使用前景,可用于地面或井下天然气的油气分离,石油开采中的油分离,压缩空气的净化处理,航空宇宙中的氦气分离,还可以用作处理装置[1]。螺旋式气液分离器内部具有固定的螺旋结构及桥式通道,通过离心力的作用使得密度差较大的气液两相物质得以分离。
     该分离器的工作性能取决于螺旋的螺距、螺旋圈数、气泡直径、螺纹长度,螺纹叶片厚度、流速以及气液比。如何提高螺旋气液分离器的分离效率,一直是分离器研究的重点,为此本文采用数值模拟的方法结合实验研究对影响分离器性能的几个结构因素做了综合的评估,为研究气液分离器内部的流场情况及分离效率提供参考依据,同时,可对实际的情况起指导作用。本文利用PHOENICS软件在三维笛卡尔坐标系下建立了在分离器内部单相流动和两相流动的物理模型,采用SIMPLEST流场数值计算法的同时,应用IPSA两相流相间滑动算法,利用有限体积法来实现控制方程离散化,紊流计算模型选取k -ε两方程模型,近壁面采用壁面函数法来处理以实现所求变量的近似解。通过Tecplot、Sci和Origin等软件对数模数据进行后处理,得到了单相流动中,影响压降的因素以及螺旋分离器内部流场情况;以及两相流动时,影响气液分离效果的因素。
     本文采用的是一种新式的螺旋分离器,即具有双螺旋结构的螺旋气液分离器,模拟介质以聚合物溶液和空气来代替实际的工作介质。其模拟结果与实验所得数据的趋势基本复合,说明数值模拟可以作为有效的研究螺旋分离器气液分离效果的一种方法。
In petroleum and chemical industry, many places used to adopt gas-liquid separator in gas-liquid mixing medium separation to complete the purification or to meet the technical requirements of the process. In recent years, Spiral gas-liquid separator is widely used in the petroleum and petrochemical industry as a multiphase separation metering device. Due to its low cost, light quality, high accuracy , high degree of automation, and stable performance, it has broad-using prospects for the underground separation of gas or oil, oil and water separation in exploitation, purification in compressed air processing, separation helium in aerospace,and it also can be used as water treatment devices. Spiral liquid-vapor separator has the fixed screw construction; it can separate the gas and liquid material which has great density difference using the centrifugal force.
     The performance of the separator depends on thread pitch, spiral number, bubble diameter, screw length, thickness of screw leaf, velocity and gas liquid ratio. How to improve the separator efficiency of spiral liquid-vapor separator has been the focus of the separator research. This paper adopts the method of numerical simulation, combined with the experiment, to make a comprehensive evaluation of several structure factors which has effect on separators performance. So it can provide reference for the research of the internal flow field and separation efficiency, also has the guiding role in the actual situation. This paper using PHOENICS software makes a Physical model about single-phase flow and two-phase flow in separator under the 3D Cartesian coordinates to get the approximate solution of the variables by using SIMPLEST numerical calculation method of flow field, IPSA two-phase flow phase sliding algorithm, finite volume method to realize the control equations discretization, k-εtwo-equation calculating turbulence model, the method of wall functions is used near wall. It disposed. the data through the software of Tecplot、Sci、Origin and so on, getting influence factors of the pressure drop and internal flow field conditions in spiral separator about Single-phase flow, while getting the influence factors of gas-liquid separation effect about two-phase flow.
     This paper used a new-style spiral separator, which has the double spiral construction and the simulated medium were the polymer solution and air instead of the actual working medium. The basic trend of numerical simulation results was in accordance with the experimental data, so it proved that numerical simulation can serve as an effective research method of gas-liquid separation effect in spiral separator.
引文
[1]赵运兵.螺旋流在工业上的应用研究概况[J] .山西利,2007,1,74-75.
    [2]高晖,郭烈锦,张西民.螺旋管分离器中液固两相流颗粒相分布研究[J].工程热物理学报,2002(23增刊):205 - 208.
    [3]郭烈锦.螺旋管油气多相流动与原油管流除砂理论[J].工程热物理学报,2002,23 ( 1) : 14 - 16.
    [4]王志国.螺旋管气液两相流数值模拟[ D ].北京:中国石油大学,2007.
    [5]郭烈锦,李广军,陈学俊.卧式螺旋管内油-气-三相流流型的实验研究[J].西安交通大学学报,1997,31 (4) : 17 - 21.
    [6]薄启炜,张琪.螺旋式井下油气分离器设计与分析[J] .石油机械,2003(1):8-10.
    [7]是勋刚.湍流[M].天津:天津大学出版社,1994.
    [8]周帼彦,凌祥.螺旋片导流式分离器分离性能的数值模拟与实验研究[J].化工学报,2004,11(55):1821-1826.
    [9]周帼彦.螺旋片导流式分离器气液两相流的数值模拟与实验研究[D],南京工业大学,南京:2003.
    [10] Lee S J , Lahey R T , Jones O C. The prediction of two2phase turbulence and phase distribution using aκ-εmodel [J] .Jpn. J . Multiphase Flow , 1989 (3) :335 - 368. [11 ] Lopez de Bertodano M , Lee S J , Lahey R T , Drew D A. The prediction of Two-phase Turbulence and Phase Distribution Using a Reynolds Stress Model[J] . ASME. J . Fluids Eng. , 1990 ,112 :1072113.
    [12] Lopez de Bertodano M, Lahey R T , Jones O C. Phase distribution in bubbly two-phase flow in vertical ducts[J]. Int. J . Multiphase Flow , 1994 , 20 :805 - 818.
    [13] Lee S J , Lahey R T, Jones O C. The prediction of Two-phase Turbulence and Phase Distribution Using aκ-εModel [J]. Jpn. J . Multiphase Flow , 1989 , (3) :335 - 368.
    [14].高学平.高等流体力学[M].天津:天津大学出版社:100-102.
    [15]倪浩清,李福田.泥沙冲淤问题的湍流两相模型[J].利学报,2006,37 (4) :411 - 417.
    [16] J Westerweel. Fundamentals of digital particle image velocimetry[J]. Measurement Science and Technology, 1997, 8(12): 1379-1392.
    [17]王福军.计算流体动力学分析[M].北京:清华大学出版社2004.
    [18]周雪漪.计算力学[M].北京:清华大学出版社,1995.
    [19]陶文铨.数值传热学(第二版)[M].西安:西安交通大学出版社,2001. 1.
    [20]郭鸿志.传输过程数值模拟[M].北京:冶金工业出版社,1998.
    [21]周雪漪.计算力学[M].北京:清华大学出版社,1995.
    [22]阎庆绂等.泵系统轴向涡流的测试计算[J].农业机械学报, 1998, 29(1):60-65.
    [23]汪志明,崔海清.流体力学[M] .北京:石油工业出版社2006.
    [24]傅德薰.流体力学数值模拟[M].北京:国防工业出版社,1993.
    [25]朱云翔,郭日修.气液两相流理论与气幕降噪[J].力学与实践,1994.
    [26]佘梅卿.螺旋式油气分离器的设计与实验[J].石油机械,2006;34(7):56~59.
    [27]苏铭德,黄素逸.计算流体力学基础[M].北京:清华大学出版社,1997.
    [28]张艳娟.幂律流体偏心环空螺旋流紊流的PIV实验研究[D].大庆:大庆石油学院,2007.
    [29] Hasnaoui M, Bilgen E, Vasseur P, Robillard L. Mixed convection heat transfer in horizontal channel heated periodically from below[J]. Numer Heat Transfer, Part A, 1991. 20:297-315.
    [30] P. Rollet-Miet, D. Laurence, J. Ferziger. LES and RANS of turbulent flow in tube bundles. International Journal of Heat and Fluid Flow[J], 1999;20(3):241~254.
    [31]龚道童,吴应湘,郑之初.变质量流量螺旋管内两相流数值模拟[J].动力学研究与进展(A辑) ,2006,21 ( 5 ) : 36 - 39.
    [32]韩洪升,魏兆胜,崔海青,李昌连.石油工程非牛顿流体力学[M] .哈尔滨:哈尔滨工业大学出版社,1993. 1-14,116-140.
    [33]阎庆绂,孙西欢,马素霞.定常有涡管流的速度场和涡量场. [J].动力学研究与进展:2000;12(15):518-521.
    [34]佘梅卿.螺旋式油气分离器的设计与实验[J].石油机械,2006;34(7):56~59.
    [35] E.F.Caetano, O.Shoham et al. Upward Vertical Two-phase Flow through an Annulus. Int. Conf. on Multiphase Flow[M], 1989.
    [36] M.Stadatomi, Y.Sato. Two-phase Flow in Vertical Noncircular Channels.Int. J. Multiphase Flow[J], 1982; 6:641~655.
    [37] Taitel Y., Barnea D. et al. Modeling Flow Pattern Transition for Steady Upward Gas-liquid Flow in Vertical Tubes. AICHEJ1[J],1980;26:345~354.
    [38] V.C.Kelessidis, A.E.Dukler. Modeling Flow Pattern Transitions for Upward Gas-liquid Flow in Vertical Concentric and Eccentric Annuli.Int. J. Multiphase Flow[J],1989; 15:173~191.
    [39]邓志安,袁敏,徐建宁.重力式油气分离场中液滴沉降速度模型分析[J].石油学报,1999;20(1):83~87.
    [40]李晓平,赵必荣.气两相流井产能分析方法研究.油气井测试[J],2001;10(4):8~10.
    [41]谭立新,许唯临,杨永全等.二相流基本方程的封闭问题及水气二相流数学模型.陕西力发电[J],2000;16(4):1~4.
    [42]吴文渊,李静海,杨励丹等.颗粒—流体两相流中颗粒团聚物存在的临界条件[J].工程热物理学报,1992;13(3):324~328.
    [43] Visser J. Van der waals and other cobesive forces affecting powder fluidization. Powder Technology[J], 1989; (58):1~10.
    [44]李松波.耗散守恒格式理论[M].北京:高等教育出版社,1997.
    [45]蔡晋生,罗时钧. Navier-Stokes方程模拟湍流非对称脱体涡流动[M].数值计算与计算机应用[J],1996;2:140~145.
    [46]蔡树棠,刘宇陆.湍流理论[M].上海:上海交通大学出版社,1999.
    [47]周力行.湍流两相流动与燃烧的数值模拟[M] .北京:清华大学出版社,1991.
    [48]赵炜,王敏谦.螺旋式油气分离器的研究与实验.国外石油机械[J],1998,9(2):35-40.
    [49]王维,李佑楚.颗粒流体两相流模型研究进展.化学进展[J],2000,12(2):208-215.
    [50] S.V. Patanker, Numeirical Heat Tranfer and Fluid Flow[M]. Hemisphere, Washington, 1980.
    [51]陈玉华.气固两相流中基于碰撞的颗粒团聚的数值模拟.东南大学[D],南京,2002.
    [52]周力行.多相湍流反应流体力学[J].北京:国防工业出版社,2002.165-170.
    [53]张海红.旋风分离器流场与分离性能的数值模拟研究[D].郑州:郑州大学,2004.
    [54] De Hoxar, David. Separator plates put sludge in a spin[M]. Filtration and Separation, 2000;37(8):32~33 .
    [55]蒋明虎,赵立新,李枫等.旋流分离技术[M].哈尔滨:哈尔滨工业大学出版社, 2000 .
    [56] J.G. Wissink. DNS of separating low Reynolds number flow in a turbine cascade with incoming wakes. International Journal of Heat and Fluid Flow[M],2003; 24(4):626~635.
    [57] Cullivan J C, W illiams R A, Cross C R. UnderstandingtheHydrocyclone SeparatorThrough Computational FluidDynamics. Trans IChemE[J], 2003, 81, PartA: 455~466.
    [58]魏立新,刘扬,张乐天.液-液力旋流器的模拟分析与结构优化[J].石油机械,2006,34(1): 36~39.
    [59]邹宽等.力旋流器湍流流动的数值模拟.工程热物理学报[J],2004,25(1):127-129.
    [60]刘峰等.重介质旋流器流场的计算流体力学模拟[J].选煤技术,2004,5:10-15.
    [61]王尊策,时培明,吕凤霞.复合式力旋流器内部流场的数值模拟[J].石油学报.2005,26(1):125-128.
    [62]郭鸿志.传输过程数值模拟[M].北京:冶金工业出版社,1998.
    [63]郑应人.非牛顿流体环空螺旋流的精确解[J].石油学报. 1998,19(2):91~96.
    [64]黄卫星,陈文梅.工程流体力学[M].北京:化学工业出版社,2002. 233~235.
    [65]郭鸿志.传输过程数值模拟[M].北京:冶金工业出版社,1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700