黄土高原半干旱区荒草地湍流和湍流能量传输特征及能量平衡状况
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用兰州大学半干旱气候与环境监测站(SACOL)连续四年(2006.09-2010.08)的近地层涡旋相关资料,研究了黄土高原半干旱区荒草下垫面地气之间物质与能量的交换特征;特别注重研究了近地层观测试验中的能量不闭合问题,不仅利用观测的涡旋相关资料详细分析了黄土高原半干旱区荒草下垫面能量平衡不闭合状况,讨论了影响能量平衡闭合的各个因子,而且从理论上概括了近地层大气运动和能量物质传输的理想模型和实际模型。研究得到以下主要结论:
     (1)通过对SACOL站各气象要素的分析及其footprint分析,得到SACOL观测站的资料具有比较好的时间和空间代表性;对资料进行质量评估与控制,得到SACOL观测站春、夏、秋、冬四个季节涡旋相关资料的有效数据分别为:77.5%,75.4%,68.3%和51.9%。
     (2)利用EdiRe涡旋相关处理软件对SACOL观测站的资料进行处理,平均时段取30min比较合理。
     (3)黄土高原半干旱区荒草下垫面湍流强度满足一般规律Iu>Iv>Iw;各个季节w分量的无因次标准差与平坦下垫面的系数比较接近,u分量的无因次方差也较接近于平坦下垫面,而v分量则较平坦下垫面的无因次方差系数偏大。
     (4)能量平衡闭合情况与目标区域内的通量贡献、大尺度涡旋、地表土壤热通量的计算方法、稳定度和摩擦速度都密切相关,不同的季节各因子对能量平衡闭合的影响有所差别但更多的是一致性。随着目标源区通量贡献率的增大,能量平衡闭合度是增大的,该因子与下垫面非均匀性相关,对能量平衡闭合的影响没有明显的季节变化。SACOL观测站春、夏、秋、冬四个季节30min平均时长感热通量基本包括所有湍流谱(casel)的数据比例分别为77.7%,75.4%,69.4%及60.3%;潜热通量满足casel的四个季节的比例分别为56.0%,54.5%,56.7%和42.0%;春夏两季受低频影响相对较小,秋冬两季相对较大,且潜热通量较感热通量的低估情况更严重;增加平均时长可以使得能量平衡闭合情况逐渐变好。地表土壤热通量计算方法对能量平衡闭合结果有重要的影响,但是季节变化不明显。稳定度的变化对能量平衡闭合情况有明显的影响,从不稳定经由近中性到稳定,总体上来说,各个季节能量平衡闭合情况逐渐变差的。各个季节白天能量平衡闭合情况较好,能量平衡闭合度较稳定,基本不随摩擦速度的变化而改变;夜间能量闭合度则随摩擦速度的增大而变大。
     (5)从理论上概括了近地层大气运动和能量物质的传输特征,以及近地层能量物质传输的理想模型和实际模型。据此推论,如果大气运动越是接近于湍流,那么目前的理论和观测计算得到的近地层能量应该是越接近于闭合的。从大气运动发展本身出发,定义了相对垂直湍强RIw来表征大气湍流的强弱,以此研究大气运动状态对能量平衡闭合的影响,利用SACOL站的资料证明得到实际观测的近地层能量闭合率决定于大气运动状态,总体上近地层能量平衡闭合程度随湍流混合度增大而增加。通过资料质量控制分级处理表明,资料的不同程度的处理及其地表土壤热通量的计算方法可以影响近地层能量的闭合程度,但是它不能影响近地层的能量平衡闭合程度决定于大气运动的状态的实质。另外,能量平衡闭合情况随大气湍流运动强弱的变化受季节的影响不大,均在相对垂直湍强为RIw为0.16左右时能量闭合情况达到最佳并趋于稳定。
     (6)黄土高原半干旱区能量平衡各分量有明显的日变化特征及其季节变化特征,不同季节的能量平衡各分量均在正午达到最大值;波文比有明显的日变化特征,呈“∩”型,正午达到最大值,昼夜交替时刻波文比较小,干季感热通量在能量平衡中明显占主要地位,冬季平均波文比为5.0,春季为2.0;湿季感热通量和潜热通量在能量平衡中的作用相当,夏秋两季平均波文比在1.0左右。春、夏、秋、冬四个季节白天的能量闭合残余量(残余量与有效能量的比值)结果分别为13.5%,21.6%,23.2%和32.9%,夜间的分别为74.2%,76.0%,73.4%和72.9%。能量平衡闭合有明显的季节变化特征,按春、夏、秋、冬四个季节依次变差;四个季节的能量平衡闭合情况有明显的日变化特征,并且日变化趋势一致;白天OLS斜率大,能量闭合情况好,夜间较差。
     (7)虽然能量不闭合程度明显,但对SACOL观测站近地层能量平衡的季节性特征及其短期能量交换特征的分析可知,SACOL观测站的观测是成功的,近地层湍流观测结果可以代表黄土高原半干旱区荒草下垫面的地气交换特征。
     (8)春、夏、秋、冬四个季节大气层结近中性时的动量输送系数CDN分别为7.71×10-3,6.63×10-3,7.20×10-3和7.55×10-3;热量输送系数CHN分别为3.41×10-3,3.76×10-3,3.82×10-3和2.60×10-3。
In the context of September 2006-August 2010 eddy covariance data of the Semi-Arid Climate Change and Environment Observatory, Lanzhou University (SACOL), an intensive study is performed to analyze the exchange characteristics of energy and matter in air-land interaction over the native grassland on Semi-Arid Loess Plateau of Northwest China. Specially emphasizing on the issue of energy balance unclosure in observation experiment of land surface, not only the condition of energy balance unclosure and all the factors affecting it have been analyzed in detail by using the eddy covariance data, but also the model of atmospheric motion in the ideal and the actual status and the transport of matter and energy in surface layer is summarized theoretically. The following are the main conclusions:
     (1) The data obtained by SACOL site can well represent the climate characteristic of this region both at time and space by analyzing the different meteorological elements and footprint; further more, by evaluating and controlling the quality of eddy covariance data, the valid data are 77.5%,75.4%,68.3% and 51.9% in spring, summer, autumn and winter, respectively.
     (2) By using the EdiRe software to deal with the data, we found that the reasonable average interval of the eddy covariance data at SACOL site is 30min.
     (3) The turbulence intensity over the native grassland underlying surface on Semi-Arid Loess Plateau satisfied the general law Iu>Iv>Iw;the dimensionless standard deviation of w and u components in all seasons are closed to the coefficients of homogeneous surface, while the v component is relatively larger than homogeneous surface.
     (4) The energy balance closure (EBC) is closely related with the flux contribution from the target area, large-scale eddy, calculation of surface soil heat flux, atmospheric stability and friction velocity, in different seasons these factors have different effect on EBC, but more is the uniform. With the flux contribution from the target area increasing, the energy balance closure was enhanced, and this factor was associated with the underlying surface heterogeneity but independent on season. On the SACOL sites, the sensible heat flux of average time,30min, in spring, summer, autumn and winter included all the data of turbulence spectrum (case 1) by and large, and the radios were 77.7%,75.4%,69.4% and 60.3%, respectively, the radios for latent heat flux were 56.0%,54.5%,56.7% and 42.0%. The low frequency part had relatively little effect in spring and summer but large in autumn and winter, and the latent heat flux underestimated more than sensible heat flux; Furthermore, increasing the average time interval can improve the EBC; the calculation of soil surface heat flux have significant effect to EBC, but also independent on season. The atmospheric stability is of great importance to EBC, on the whole, the EBC gradually decreased with the stability change from unstable by neutral to stable in each season. EBC is well in all seasons and stable in daytime and not change with friction velocity, but increased with friction velocity in nighttime.
     (5) This paper theoretically summarized the characteristics of atmospheric motion and the transport of energy and matter in surface layer, as well as the ideal and the actual model. Based on it and deduced that if the atmosphere motion is more close to the turbulence, then the closure of energy in the surface layer calculated and observed by present theory is well. On the view of the atmosphere motion itself, defined the relative vertical turbulence intensity RIw to characterize the strength of atmospheric turbulence, so as to study the impacts of atmospheric motion states on energy balance closure. By using the SACOL sites data, it proved that the actual observed degree of energy balance closure on surface layer was determined by the state of atmospheric motion. Overall, EBC was increased with the increasing degree of turbulent mixing. After the data classifying of quality control, it showed that although the available data and calculation methods of surface soil heat flux can affect the energy balance closure, it cannot change the essence that the state of atmospheric motion determined the EBC degree on surface layer. In addition, the energy balance closure changing with the strength of atmospheric turbulence had little effect by the season. When the relative vertical turbulence intensity was around 0.16 RIw, the EBC reached best and closed to stability.
     (6) All the energy balance components on Semi-arid Loess Plateau have obvious characteristics of diurnal and seasonal variation, and they have reached the maximum at noon in different seasons. Bowen ratio also has obvious diurnal variation which shows as "n" reaching the highest value at noon, and when day and night is alternate, it will be relatively small. Sensible heat flux in the dry seasons was dominant in energy balance, the average Bowen radio was 5.0 in winter and 2.0 in spring; in wet seasons, sensible heat flux and latent heat flux had a considerable effect on energy balance, and the average Bowen radio was around 1.0 in summer and autumn. In the four seasons of spring, summer, autumn and winter, the residual of the energy (the radio of the residual and available energy) during the day were 13.5%,21.6%,23.2% and 32.9%, respectively; the night were 74.2%,76.0%73.4% and 72.9%. Energy balance closure has obvious seasonal variation, and it became worse from spring to winter. All seasons'situation of energy balance closure had obvious diurnal variation which changed as the same trend. When the OLS slope value was big, the energy closure condition was good, but it was bad at night.
     (7) Although the energy balance unclosure is obvious, by analyzing the seasonal characteristics and the short-term transfer features of energy balance on surface layer at SACOL station, the observation at SACOL station is successful, and the observation results of turbulence on surface layer can represent the land-air exchange characteristics of underlying surface over the native grassland on Semi-Arid Loess Plateau of Northwest China.
     (8) When the atmosphere is near-neutral stratification, the momentum transfer coefficients CDN in spring, summer, autumn and winter were 7.71×10-3,6.63×10-3, 7.20×10-3 and 7.55×10-3, respectively; the heat transfer coefficients CHN were 3.41×10-3,3.76×10-3,3.82×10-3 and 2.60×10-3, respectively.
引文
Andre J. C., Goutorbe J. P. and Perrier A.:HAPEX-MOBILHY:a hydrologic atmospheric experiment for the study of water budget and evaporation flux at climatic scale. B. Am. Meteorol. Soc.,67,138-144,1986.
    Aubinet M., Heinesch B. and Yernaux M.:Horizontal and vertical CO2 advection in a sloping forest. Bound.-Lay. Meteorol.,108,397-417,2003.
    Aubinet M., Grelle A., Ibrom A., et al.:Estimates of the annual net carbon and water exchange of forests:The EUROFLUX methodology. Adv. Eco.Res.,30,113-175,2000.
    Baldocchi D. D., Falge E., Gu L., et al.:FLUXNET:A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. B. Am. Meteorol. Soc.,82,2415-2434,2001.
    Baldocchi D. D., Law B. E. and Anthoni P. M.:On measuring and modeling energy fluxes above the floor of a homogeneous and heterogeneous conifer forest. Agr. Forest Meteorol.,102, 187-206,2000.
    Baldocchi D. D. and Rao K. S.:Intra-field variability of sealer flux densities across a transition between a desert and an irrigated potato field. Bound.-Lay. Meteorol.,76,109-136,1995.
    Beyrich F., DeBruin H. A. R., Meijninger W. M. L., et al.:Results from one-year continuous operation of a large aperture scintillometer over a heterogeneous land surface. Bound.-Lay. Meteorol.,105,85-97,2002.
    Bolle H. J., Andre J. C., Arrue J. L., et al.:EFEDA:European field experiment in a desertification-threatened area. Annanles Geophysicae,11,173-189,1993.
    Brock F. V. and Richardson S. J.:Meteorological measurement systems. Oxford University Press, New York, USA,2001.
    Businger J. A., Wangaard J. C., Izumi Y., et al.:Flux profile relationships in the atmospheric surface layer. J. Atmos. Sci.,28,181-189,1971.
    Culf A. D., Foken T. and Gash J. H. C.:The energy balance closure problem, in:Vegetation, water, humans and the climate. A new perspective on an interactive system, edited by:Kabat P., Claussen M., Dirmeyer P. A., et al. Springer, Berlin, Heidelberg.,159-166,2004.
    Desjardins R. L., MacPherson J. I. and Schuepp P. H.:An evaluation of aircraft flux measurements of CO2, water vapor and sensible heat. Bound.-Lay. Meteorol.,47,55-69,1989.
    Eugster W. and Senn W.:A cospectral correction for measurement of turbulent NO2 flux. Bound.-Lay. Meteorol.,74,321-340,1995..
    Finkelstein P. L. and Sims P. F.:Sampling error in eddy correlation flux measurements. J. Geophys. Res., D106,3503-3509,2001.
    Finnigan J. J., Clement R. and Malhi Y.:A re-evaluation of long-term flux measurement techniques. Part I:averaging and coordinate rotation. Bound.-Lay. Meteorol.,107,1-48,2003.
    Foken T. and Wichura B.:Tools for quality assessment of surface-based flux measurements. Agr. Forest Meteorol.,78,83-105,1996.
    Foken T., Wimmer F., Mauder M., et al.:Some aspects of the energy balance closure problem. Atmos. Chem. Phys.,6,4395-4402,2006.
    Foken T.:The energy balance closure problem:an overview. Ecol. Appl.,18,1351-1367,2008.
    Foken T., Gerstmann W., Richter S. H., et al.:Study of the energy exchange processes over different types of surface during TARTEX-90. DWD, Abteilung Forschung, Arbeitsergebn. Nr. 4,34pp,1993.
    Foken T., Gockede M. and Mauder M.:Post-field data quality control. Pages 181-208 in Lee X., Massman W. J. and Law B., editors. Handbook of micrometeorology:a guide for surface flux measurement and analysis. Kluwer, Dordrecht, The Netherlands,2004.
    Foken T. and Oncley S. P.:Results of the workshop "Instrumental and methodical problems of land surface flux measurements." B. Am. Meteorol. Soc.,76,1191-1193,1995.
    Friehe C. A.:Air-sea fluxes and surface layer turbulence around a sea surface temperature front. J. Geophys. Res., C96,8593-8609,1991.
    Gao Z., Chen G. T. J. and Hu Y. B.:Impact of soil vertical water movement on the energy balance of different land surfaces. Int. J. Biometeorol.,51,565-573,2007.
    Gockede, M., Rebmann C. and Foken T.:A combination of quality assessment tools for eddy covariance measurements with footprint modelling for the characterisation of complex sites. Agr. Forest Meteorol.,127,175-188,2004. Russian.] Izvestia AN SSSR, seria Geofizika,3,49-68,1951.
    Obukhov A. M.:O strukture temperaturnogo polja I polja skorostej v uslovijach konvekcii (Structure of the temperature and velocity fields under conditions of free convection). [In Russian.] Izvestia AN SSSR, seria Geofizika,1392-1396,1960.
    Ohmura A., Dutton E. G., Forgan B., et al. Baseline Surface Radiation Network (BSRN/WCRP): new precision radiometry for climate research. B. Am. Meteorol. Soc.,79,2115-2136,1998.
    Oncley S. P., Foken T., Vogt R., et al.:The energy balance experiment EBEX-2000. Part Ⅰ: overview and energy balance. Bound.-Lay. Meteorol.,123,1-28,2007.
    Oncley S. P., Businger J. A., Itsweire E. C., et al. Surface layer profiles and turbulence measurements over uniform land under nearneutral conditions. Pages 237-240 in 9th Symposium on Boundary Layer and Turbulence. American Meteorological Society, Washington, D.C., USA,1990.
    Panin G. N., Tetzlaff G. and Raabe A.:Inhomogeneity of the land surface and problems in the parameterization of surface fluxes in natural conditions. Theor. Appl. Climatol.,60,163-178, 1998.
    Rebmann C., Gockede M., Foken T., et al.:Quality analysis applied on eddy covariance measurements at complex forest sites using footprint modelling. Theor. Appl. Climatol.,80, 121-141,2005.
    Richardson A. D., Hollinger D. Y., Burba G. G., et al.:A multi-site analysis of random error in tower-based measurements of carbon and energy fluxes. Agr. Forest Meteorol.,136,1-18, 2006.
    Sakai R. K., Fitzjarrald D. R. and Moore K. E.:Importance of low-frequency contributions to eddy fluxes observed over rough surfaces. J. Appl. Meteorol.,40,2178-2192,2001.
    Schmid H. P.:Experimental design for flux measurements:matching scales of observations and fluxes. Agr. Forest Meteorol.,87,179-200,1997.
    Schotanus P., Nieuwstadt F. T. M. and Bruin H. A. R.:Temperature measurement with a sonic anemometer and its application to heat and moisture fluctuations. Bound.-Lay. Meteorol.,26, 81-93,1983.
    Schuep P. H., Leclerc M. Y., MacPherson J. I., et al.:Footprint prediction of scalar fluxes from analytical solutions of diffusion equation. Bound.-Lay. Meteorol.,50,355-373,1990.
    Sellers P. J., Hall F. G., Asrar G., et al.:The first ISLSCP field experiment (FIFE). B. Am. Meteorol. Soc.,69(1),22-27,1988.
    Staebler R. M. and Fitzjarrald D. R.:Observing subcanopy CO2 advection. Agr. Forest Meteorol., 122,139-156,2004.
    Sun J., Desjardins R., Mahrt L., et al.:Transport of carbon dioxide, water vapor, and ozone by turbulence and local circulations. J. Geophys. Res.,103,258-273,1998.
    Sun X. M., Zhu Z. L., Wen X. F., et al.:The impact of averaging period on eddy fluxes observed at ChinaFLUX sites. Agr. Forest Meteorol.,137,188-193,2006.
    Swinbank W. C.:The measurement of vertical transfers of heat water vapor by eddies in the lower atmosphere. J. Atmos. Sci.,8,135-145,1951.
    Tsvang L. R., Fedorov M. M., Kader B. A., et al.:Turbulent exchange over a surface with chessboard-type inhomogeneities. Bound.-Lay. Meteorol.,55,141-160,1991.
    Unland H. E., Houser P. R., Shuttleworth W. J., et al.:Surface flux measurement and modeling at a semi-arid Sonoran Desert site. Agr. Forest Meteorol.,82,119-153,1996.
    Webb E. K., Pearman G. I. and Leuning R.:Correction of the flux measurements for density effects due to heat and water vapour transfer. Q. J. Roy. Meteor. Soc.,106,85-100,1980.
    Wilczak J. M., Oncley S. P. and Stage S. A.:Sonic anemometer tilt correction algorithms. Bound.-Lay. Meteorol.,99,127-150,2001.
    Wilson K. B., Baldocchi D. D., Aubinet M., et al.:Energy partitioning between latent and sensible heat flux during the warm season at FLUXNET sites. Water Resour. Res.,38,1294, doi: 10.1029/2001WR000989,2002a.
    Wilson K. B., Goldstein A., Falge E., et al.:Energy balance closure at FLIXNET sites. Agr. Forest Meteorol.,113,223-243,2002b.
    Yang K. and Wang J. M.:A temperature prediction-correction method for estimating surface soil heat flux from soil temperature and moisture data. Sci. China Ser. D.,5,721-729,2008.
    胡隐樵,陈晋北,左洪超。湍流强度定理和湍流发展的宏观机制。中国科学D辑:地球科学,37(2),272-281,2007。
    胡隐樵,张强。论大气边界层的局地相似性。大气科学,17(1),10-20,1993。
    胡隐樵。黑河试验(HEIFE)能量平衡和水汽输送研究进展。地球科学进展,9(4),30-34,1994。
    胡隐樵,左洪超。黑河试验(HEIFE)研究获重大成果。中国科学院院刊,6,447-451,1996。
    吕达仁,陈佐忠,陈家宜等。内蒙古半干旱草原土壤-植被-大气相互作用(IMGRASS)综合研究。地学前缘,9(2),295-305,2002。
    王介民。陆面过程试验和地气相互作用研究—从HEIFE到IMGRASS和GAME-Tibet/TIPEX。高原气象,18(3),280-294,1999。
    Gockede M., Corinna R., Forken T.:A combination of quality assessment tools for eddy covariance measurements with footprint modeling for the characterization of complex sites. Agr. Forest Meteorol.,127,175-188,2004.
    Gryning S. E., Holtslag A. A. M., Irwin J. S., et al.:Applied dispersion modeling based on meteorological scaling parameters. Atmos. Environ.,21,79-89,1987.
    Horst T. W., Weil J. C.:How far is far enough the fetch requirements for micrometeorological measurement of surface fluxes. J. Atmos. Ocean. Tech.,11,1018-1025,1994.
    Huang J. P., Zhang W., Zuo J. Q., et al.:An overview of the semi-arid climate and environment research observatory over the Loess Plateau. Adv. Atmos. Sci.,25(6),906-921,2008.
    Leclerc M. Y., Thurtell G. W.:Footprint prediction of scalar fluxes using a Markovia analysis. Bound.-Lay. Meteorol.,52,247-258,1990.
    Leclerc M. Y., Shen S. H., Lamb B.:Observation and large-eddy simulation modeling of footprints in the lower convective boundary layer. J. Geophys. Res.,102,9323-9334,1997.
    Pasquill F. and Smith F. B.:Atmospheric Diffusion, III Ed., J. Wiley & Sons, New York,437pp, 1983.
    Schmid H. P.:Experimental design for flux measurements:matching the scales of observations and fluxes. Agr. Forest Meteorol.,87,179-200,1997.
    Schmid H. P., Oke T. R.:A model to estimate the source area contributing to turbulent exchange in the surface-layer over patchy terrain. Q. J. Roy. Meteor. Soc,116,965-998,1990.
    Schmid H. P.:Source areas for scalars and scalar fluxes. Bound.-Lay. Meteorol.,67,293-318, 1994.
    Schuepp P. H., Leclerc M. Y., Macpherson J. L., et al.:Footprint prediction of scalar fluxes from analytical solutions of the diffusion equation. Bound.-Lay. Meteorol.,50,353-373,1990.
    Van Ulden A. P.:Simple estimates for vertical diffusion from sources near the ground. Atmos. Environ.,12,2125-2129,1978.
    米娜,于贵瑞,温学发等。中国通量观测网络(ChinaFLUX)通量观测空间代表性初步研究。中国科学D辑:地球科学,36(增刊Ⅰ),22-33,2006
    赵晓松,关德新,吴家兵等。长白山阔叶红松林通量观测的footprint及源区分布。北京林业大学学报,27(3),17-23,2005。
    张文煜,张宇,陆晓静等。黄土高原半干旱区非均一下垫面粗糙度分析。高原气象,28(4),763-768,2009。
    Cave D., Contini D., Donateo A., et al:Analysis of short-term closure of the surface energy balance above short vegetation. Agr. Forest Meteorol.,148,82-93,2008.
    Eugster W. and Senn W.:A cospectral correction model for measurements of turbulent NO2 flux. Bound.-lay. Meteorol.,74,321-340,1995.
    Finnigan J. J., Clement R., Malhi Y., et al.:A re-evaluation of long-term flux measurement techniques, Part I:Averaging and coordinate rotation. Bound.-Lay. Meteorol.,107,1-48,2003.
    Foken T. and Wichura B:Tools for quality assessment of surface-based flux measurements. Agr. and Forest Meteorol.,78,83-105,1996.
    Foken T., Gockede M., Mauder M., et al.:Post-field data quality control. Handbook of Micrometeorology, pp181-208,2005.
    Foken T., Skeib G. and Richter S. H.:Dependence of the integral turbulence characteristics on the stability of stratification and their use for Doppler-Sodar measurements. Z.Meteorologie.,41, 311-315,1991.
    Gockede M., Rebmann C. and Foken T.:A combination of quality assessment tools for eddy covariance measurements with footprint modeling for the characterization of complex sites. Agr. Forest Meteorol.,127,175-188,2004.
    Kormann R. and Meixner F. X.:An analytical footprint model for non-neutral stratification. Bound.-Lay. Meteorol.,99,207-224,2001.
    Liu H., Peters G. and Foken T.:New equations for sonic temperature variance and buoyancy heat flux with an omnidirectional sonic anemometer. Bound.-Lay. Meteorol.,100,459-468,2001.
    Li Z. Q., Yu G. R., Wen X. F., et al.:Energy balance closure at ChinaFLUX sites. Sic. China Ser. D Earth Sci.,48 (Supp. I),51-62,2005.
    Mahrt L.:Flux sampling errors for aircraft and towers. J. Atmos. Ocean. Tech.,15,416-429,1998.
    Mauder M., Foken T., Clement R., et al.:Quality control of CarboEurope flux data-Part 2:Inter-comparison of eddy-covariance software. Biogeosciences,5,451-462,2008.
    Moncrieff J., Clement R., Finnigan J., et al.:Averaging, detrending, and filtering of eddy covariance time series. Handbook of Micrometeorology, pp7-31,2005.
    Moore C. J.:Frequency response corrections for eddy correlation systems. Bound.-Lay. Meteorol., 37,17-35,1986.
    Panofsky H. A., Tennekes H., Lenschow D. H., et al.:The characteristics of turbulent velocity components in the surface layer under convective conditions. Bound.-Lay. Meteorol.,11,355-361,1977.
    Panofsky H. A. and Dutton J. A.:Atmospheric Turbulence. Wiley, New York,1984.
    Rebmann C., Gockede M., Foken T., et al.:Quality analysis applied on eddy covariance measurements at complex forest sites using footprint modelling. Theor. Appl. Climatol.,80, 121-141,2005.
    Schmid H. P. and Oke T. R.:A model to estimate the source area contributing to turbulent exchange in the surface-layer over patchy terrain. Q. J. Roy. Meteor. Soc.,116,965-998,1990.
    Schotanus P., Nieuwstadt F. T. M. and DeBruin H. A. R.:Temperature measurement with a sonic anemometer and its application to heat and moisture fluctuations. Bound.-Lay. Meteorol.,26, 81-93,1983.
    Sun X. M., Zhu Z. L., Wen X. F., et al.:The impace of averaging period on eddy fluxes observed at ChinaFLUX sites. Agr. Forest Meteorol.,137,188-193,2006.
    Tanner B. D., Swiatek E. and Greene J. P.:Density fluctuations and use of the krypton hygrometer in surface flux measurements. American Society of Civil Engineers, New York, NY,945-952, 1993.
    Tillmann J. E.:The indirect determination of stability, heat and momentum fluxes in the atmospheric boundary layer from simple scalar variables during dry unstable conditions. J. Appl. Meteorol.,11,783-792,1972.
    Vickers D. and Mahrt L.:Quality control and flux sampling problems for tower and air craft data. J.Atmos. Ocean. Tech.,14,512-526,1997.
    Wesely M. L.:Use of variance techniques to measure dry air-surface exchange rates. Bound.-Lay. Meteorol.,44,13-31,1988.
    Webb E. K., Peatman G. I. and Leuning R.:Correction of the flux measurements for density effects due to heat and water vapour transfer. Q. J. Roy. Meteor. Soc.,106,85-100,1980.
    Wilczak J. M., Oncley S. P. and Stage S. A.:Sonic anemometer tilt correction algorithms. Bound.-Lay. Meteorol.,99,127-150,2001.
    Wilson J. D. and Swaters G. E.:The source area in fluencing a measurement in the planetary boundary-layer:the footprint and the distribution of contact distance. Bound.-Lay. Meteorol., 55,25-46,1991.
    Wyngaard J. C., Cote O. R. and Izumi Y.:Local free convection, similarity and the budgets of shear stress and heat flux. J. Atmos. Sci.,28,1171-1182,1971.
    Zuo J. Q., Huang J. P., Wang J. M., et al.:Surface turbulent flux measurements over the loess plateau for a semi-Arid climate change study. Adv. Atmos. Sci.,26(4),1-13,2009.
    米娜,于贵瑞,温学发等。中国通量观测网络(ChinaFLUX)通量观测空间代表性初步研究。中国科学D辑:地球科学,36(增刊Ⅰ),22-33,2006。
    Andreas E., Hill R. J., Gosz J. R., et al., Statistics of surface layer turbulence over terrain with metre-scale heterogeneity. Bound.-Lay. Meteorol.,86,379-408,1998.
    Businger J. A., Wyngaard J. C., Izumi Y., et al.:Flux-profile relationships in the atmospheric surface layer. J. Atmos. Sci.,28,181-189,1971.
    Choi T., Hong J., Kim Joon., et al.:Turbulent exchange of heat, water vapor, and momentum over a Tibetan prairie by eddy covariance and flux variance measurements, J. Geophys. Res.,109, D21106, doi:10.1029/2004JD004767,2004.
    Dyer A. J.:A review of flux-profile relationships. Bound.-Lay. Meteorol.,7,363-372,1974.
    Foken T., Skeib G. and Richter S. H.:Dependence of the integral turbulence characteristics on the stability of stratification and their use for Doppler-Sodar measurements. Z. Meteorologie,41, 311-315,1991.
    Foken T., Jegede O. O., Weisensee U., et al.:Results of the LINEX-96/2 Experiment., Deutscher Wetterdienst, Forschung und Entwicklung, Arbeitsergebnisse,48,75 pp.1997.
    Haugen D. A., Kaimal J. C. and Bradley E. F.:An experimental study of Reynold stressand heat flux in the atmospheric surface layer. Q. J. Roy. Meteor. Soc.,97,168-180,1971.
    Hinze J. O.:Turbulence, An introduction to it's mechanism and theory,2nd edition. McGraw-Hill, New York,790pp,1975.
    Ichiro T.:Turbulent characteristics and bulk transfer coefficients over the desert in the HEIFE area. Bound.-Lay. Meteorol.,77,1-20,1996.
    Panofsky H. A., Tennekes H., Lenschow D. H., et al.:The characteristics of turbulent velocity components in the surface layer under convective conditions. Boundary-Lay. Meteorol.,11, 355-361,1977.
    Panofsky, H.A. and Dutton, J.A.:Atmospheric Turbulence, Wiley, New York,1984.
    Roth M.:Turbulent transfer relationships over an urban surface, Ⅱ:integral statistics. Q. J. R. Meteorol. Soc.,119,1105-1120,1993.
    Tillmann J. E.:The indirect determination of stability, heat and momentum fluxes in the atmospheric boundary layer from simple scalar variables during dry unstable conditions. J. Appl. Meteorol.,11,783-792,1972.
    Wyngaard J. C., Cote O. R. and Izumi Y.:Local free convection, similarity and the budgets of shear stress and heat flux. J. Atmos. Sci.,28,1171-1182,1971.
    Wesely M. L.:Use of variance techniques to measure dry air-surface exchange rates. Boundary-Lay. Meteorol.,44,13-31,1988.
    Wyngaard J. C. and Clifford S. F.:Estimation momentum, heat and moisture fluxes from structure parameters. J. Atmos. Sci.,35,1204-1211,1978.
    卞林根,陆龙骅,程彦杰等。青藏高原东南部昌都地区近地层湍流输送的观测研究。应用气象学报,12(1),1-13,2001。
    陈铭夏,王庆安。近地层大气湍流微结构对比分析。南京气象学院学报,21(A01),459-468,1998。
    高会旺,顾明,王仁磊等。北黄海海域大气湍流强度特征及风速标准差相似性分析。中国洋大学学报,39(4),563-568,2009。
    苗曼倩,钱峻屏。陆面上总体输送系数的特征。气象学报,54(1),95-101,1996。
    盛裴轩,毛节泰,李建国等。大气物理学。北京:北京大学出版社,251pp,2003。叶笃正,高由禧等。青藏高原气象学。北京:科学出版社,2-8pp,1979。
    赵鸣,苗曼倩,王彦昌。边界层气象学教程。北京:气象出版社,84pp,1989。
    左洪超,胡隐樵。黑河试验区沙漠和戈壁的总体输送系数。高原气象,11(4),371-379,1992。
    Aubinet M., Grelle A., Ibrom A., et al.:Estimates of the annual net carbon and water exchange of forests:the EUROFLUX methodology. Adv. Ecol. Res.,30,113-175,2000.
    Fuchs M.:Heat flux. In:Klute, A. (Ed.), Methods of Soil Analysis, Part 1:Physical and Mineralogical Methods. Agronomy Monographs. ASA and SSSA, Madison, WI., pp.975-968, 1987.
    Finnigan J.:Advection and modeling. In:Lee X., Massman W. J., Law B. (eds.), Handbook of micrometeorology: a guide for surface flux measurement and analysis. Kluwer Academic Publishers, Dordrecht, pp209-244,2004.
    Gu J., Smith E. A. and Merritt J. D.:Testing energy balance closure with GOES-retrieved net radiation and in situ measured eddy correlation flux in BOREAS. J. Geophys. Res.104(D22), 27881-27893,1999.
    Li X., Fu H., Li X. D., et al.:Effects of land-use regimes on carbon sequestration in the Loess Plateau, Northern China. New Zeal. J. Agr. Res.,51,45-52,2008.
    Liebethal C., Huwe B. and Foken T.:Sensitivity analysis for two ground heat flux calculation approaches. Agr. Forest Meteorol.,132,253-262,2005.
    Mahrt L.:Flux sampling errors for aircraft and towers. J. Atmos. Ocean. Tech.15,416-429,1998.
    Meek D. W. and Prueger J. H.:Solutions for three regression problems commonly found in meteorological data analysis. In:Proceedings of the 23rd Conference on Agr. Forest Meteorol. American Meteorological Society, Albuquerque, NM, November 2-6,141-145,1998.
    Oncley S. P., Foken T., Vogt R., et al.:Then energy balance experiment EBEX-2000. Part Ⅰ: overview and energy balance. Bound.-Lay. Meteorol.,123,1-28,2007.
    Philip J. R.:The theory of heat flux meters. J. Geophys. Res.,66,571-579,1961.
    Sellers P. J., Randall D. A., Collatz G. J., et al.:A revised land surface parameterization (SiB2) for atmospheric GCMs. Part 1:model formulation. J. Climate.,9,676-705,1996.
    Shuttleworth W. J.:Evaporation. In:Maidment DR (ed.), Handbook of hydrology. McGraw-Hill, New York, pp 4.1-4.53,1993.
    Wilson K., Goldstein A., Falge E., et al.:Energy balance closure at FLIXNET sites. Agr. Forest Meteorol.,113,223-243,2002.
    Yang K., Wang J. M.:A temperature prediction-correction method for estimating surface soil heat flux from soil temperature and moisture data. Sci. China Ser. D.,5,721-729,2008.
    陈世强,文莉娟,吕世华等。金塔绿洲不同下垫面辐射特征对比分析。太阳能学报,27(7),713-718,2006。
    江灏,季国良。五道梁地区的辐射平衡特征。高原气象,7(2),145-155,1988。
    季国良,马晓燕,邹基玲等。黑河地区绿洲和沙漠地面辐射收支的若干特征。千旱气象,21(3),29-33,2003。
    刘辉志,涂钢,董文杰。半干旱区不同下垫面地表反照率变化特征。科学通报,53(10),1220-1227,2008。
    朱德琴,陈文,刘辉志等。我国西北典型干旱区和高原地区地表辐射能量收支特征的比较。气候与环境研究,11(6),683-690,2006。
    左大康,周允华。地球表层辐射研究。北京:科学出版社,37-39pp,1991。
    左洪超,胡隐樵,吕世华等.青藏高原安多地区干、湿季的转化及其边界层特征.自然科学进展,14(5),535-540,2004。
    Chen J. B., Hu Y. Q. and Zhang L.:Principle of cross coupling between vertical heat turbulent transport and vertical velocity and determination of cross coupling coefficient. Adv. Atmos. Sci.,24(1),89-100,2007.
    Finnigan J. J., Clement R., Malhi Y., et al.:A re-evaluation of long-term flux measurement techniques, Part I:Averaging and coordinate rotation. Bound.-Lay. Meteorol.,107,1-48, 2003.
    Foken T.:The energy balance closure problem:an overview. Ecol. Appl.,18(6),1351-1367,2008.
    Foken T., Wimmer F., Mauder M., et al.:Some aspects of the energy balance closure problem. Atmos. Chem. Phys.,6,4395-4402,2006.
    Hellman G.:Uber die bwegung der Luft in den untersten schichten der atmosphare. Meteor. Z.,32, 1-16,1915.
    Hu Y. Q. and Zuo H. C.:Convergence movement influence on the turbulent transportation in atmospheric boundary layer. Adv. Atmos. Sci.,20(5),794-798,2003.
    Lynn B. H.:Abramopoulos F and Avissar R. Using similarity theory to parameterize mesoscale heat fluxes generated by subgrid-scale landscape discontinuities in GCMs. J. Climate.,8, 932-951,1994.
    Li Z. Q., Yu G. R., Wen X. F., et al.:Energy balance closure at ChinaFLUX sites. Sci. China Ser. D.,48(Supp. I),51-62,2005.
    Pier L. V., Roger A. P. S., Louis T. S., et al.:Case study modeling of turbulent and mesoscale fluxes over the BOREAS region, J. Geophys. Res.,102,29167-29188,1997.
    Rebmann C, Gockede M., Foken T., et al.:Quality analysis applied on eddy covariance measurements at complex forest sites using footprint modelling. Theor. Appl. Climatol.,80, 121-141,2005.
    Turnipseed A. A., Anderson D. E., Blanken P. D., et al.:Airflows and turbulent flux measurements in mountainous terrain:Part 1. Canopy and local effects. Agr. Forest Meteorol., 119,1-21,2003.
    Turnipseed A. A., Anderson D. E., Burns S., et al.:Airflows and turbulent flux measurements in mountainous terrain:Part 2:Mesoscale effects. Agr. Forest Meteorol.,125,187-205,2004.
    van Bavel C. H. M., Fritschen L. J. and Reeves W. E.:Transpiration by sudangrass as an externally controlled process. Science,141,269-270,1963.
    Var der Hoven I.:Power spectrum of horizontal wind speed in the frequency range from 0.0007 to 900 cycles per hour. J. Atmos. Sci.,14,160-164,1957.
    胡隐樵,高由禧,王介民等。黑河试验(HEIFE)的一些研究成果。高原气象,13(3),225-236,1994。
    苏从先,胡隐樵。绿洲和湖泊的冷岛效应。科学通报,33(12),756-758,1987。
    王介民。陆面过程试验和地气相互作用研究:从HEIFE到IMAGRASS和GAME-Tibet/TIPEX。高原气象,18(3),280-294,1999。
    左洪超,吕世华,胡隐樵等。非均匀下垫面边界层的观测和数值模拟研究(Ⅰ):冷岛效应和逆湿现象的完整物理图像。高原气象,23(2),155-162,2004。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700