北京主要造林树种生长及气体交换特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了北京市主要绿化树种的生长及生理生态特性,发现了北京市主要绿化树种油松、侧柏、栓皮栎光合速率、蒸腾速率及水分利用效率在生长季节的变化规律,并讨论了不同树种之间生理特征的差异。此外,本文还进一步比较了不同种源油松形态指标的差异,探讨对绿化树种油松进行种源选择的可能性,旨在为北京市的绿地建设和管护提供理论依据。
     研究表明:春季油松叶片的净光合速率较低,夏秋季油松的净光合速率较高,不同月份油松净光合速率的差别较大。九月份油松的净光合速率最高,四月份最低。而侧柏净光合速率的最高值和最低值也分别出现在九月份和四月份。栓皮栎的净光合速率在七月份最高,四月份处于最低值。干旱季节,侧柏的净光合速率大于油松,说明侧柏的耐旱能力要高于油松。油松、侧柏净光合速率的变化趋势与土壤含水量是一致的。
     北京市的主要绿化树种蒸腾速率在夏、秋较高。油松的蒸腾速率六月份、七月份较高,而四月份、五月份、十月份较低,其蒸腾速率与树干液流速率的变化趋势并不一致。九月份侧柏的蒸腾速率最高,四月份侧柏的蒸腾速率最低,但两者的差距并不明显。栓皮栎不同月份之间蒸腾速率变化较大,九月份蒸腾速率最大值(3.57mmol.m-2.s-1)达到五月份最大值(1.634mmol.m-2.s-1)的2.2倍。不同树种的蒸腾速率大小为:栓皮栎〉侧柏〉油松,阔叶树〉针叶树。侧柏蒸腾速率的变化趋势与土壤含水量、光强基本一致,说明土壤含水率、光强与蒸腾速率有很强的相关关系。
     不同季节,油松的水分利用效率大小依次为:秋季〉夏季〉春季。侧柏的水分利用效率变化为:秋季〉夏季〉春季。栓皮栎不同季节之间水分利用效率大小依次为:夏季〉秋季〉春季。与油松、侧柏相比,栓皮栎的单位时间内的耗水量虽然较大,但水分利用效率也较高。不同树种的稳定碳同位素值为:油松〉侧柏〉栓皮栎。对于油松而言,其水分利用效率的大小应为32a>18a>1a,随着树龄增长,稳定碳同位素值呈下降的趋势。无论是针叶树还是阔叶树,水分利用效率与胞间CO2浓度都呈负相关关系,但不同树种之间相关系数差别较大。
     对于不同种源的油松,树高、1a生针叶长、2a生针叶长均存在较高的变异系数。油松的树高与叶片长度并无显著的相关关系,因为油松树高、针叶长分别受到不同的遗传因素的控制。根据树高、针叶长,将不同种源的油松分为4个生态型:短针叶、低树高油松;短针叶、高树高油松;长针叶、低树高油松;长针叶、高树高油松。
The net photosynthetic rate,water transpiration rate and water use efficiency of the main green tree species in Beijing have been studied in this paper. The article also discusses characteristics in different tree species. Morphological characteristics of Pinus provenances have been studied in this paper, which provide theoretical foundation for vegetation construction and management in Beijing.
     Study showed:the net photosynthetic rate of Pinus tabulaeformis is lower in spring, compared with summer and autumn. Pinus tabulaeformis and Platycladus orientalis have highest net photosynthetic rate in September,but their photosynthetic rate is lowest in April. Quercus variabilis has highest photosynthetic rate in July, but its photosynthetic rate is lowest in April. The net photosynthetic rate of Platycladus orientalis is higher than Pinus tabulaeformis in dry season, which confirmed that the drought tolerance of Platycladus orientalis is stronger than Pinus tabulaeformis. The soil water content of Pinus tabulaeformis and Platycladus orientalis.has the similar trend.
     The water transpiration rate of the main green tree species in Beijing is higher in summer and autumn. The water transpiration rate of Pinus tabulaeformis is higher in June and July, but lower in April, May and October. The change trend of the water transpiration rate of Pinus tabulaeformis is different,compared with sap flow fluctuation. The water transpiration rate of Pinus tabulaeformis is highest in September, lowest in April. The water transpiration rate of Quercus variabilis is highest in September, the value is 2.2 times as much as it is in May. The water transpiration rate in different tree species is: Quercus variabilis> Platycladus orientalis> Pinus tabulaeformis. Soil water content and light radiation of Platycladus orientalis have strong relationship with water transpiration rate.
     The water use efficiency of Pinus tabulaeformis in different season is autumn > summer > spring. The water use efficiency of Platycladus orientalis is:autumn> Summer> Spring. The water use efficiency of Quercus variabilis is: Summer >autumn > Spring. Quercus variabilis has higher water use efficiency than other tree species. Theδ13C value in different tree species is: Pinus tabulaeformis.> Platycladus orientalis> Quercus variabilis. Theδ13C value of Pinus tabulaeformis is: 32a>18a>1a.WUE has negative relationship with intercellular CO2 concentration. But the Correlation coefficient is variable significantly in different tree species.
     Morphological characteristics of Pinus provenances varies significantly. Tree Height doesn’t has significant relationship with blade length, for they are controlled by different genetic factors. According to tree height and blade length, Pinus provenances are divided into four ecotypes: short-needle, low-tree-height type; Short-needle, high-tree-height type; long-needle, low-tree -height type; long-needle, Low-tree-height type.
引文
[1] 陈云明,吴钦孝,刘向东. 黄土丘陵区油松生长与气候因子相关分析. 水土保持通报,1996,16(2):38~42
    [2] 陈志辉. 水分胁迫对果树光合特性的影响. 干旱地区农业研究,1999,17(1)89~95
    [3] 邓雄,李小明,张希明等. 多枝柽柳气体交换特性研究. 生态学报,2003,23(1):180~187
    [4] 丁晓纲,李吉跃,哈什格日乐. 毛乌素沙地气候因子对樟子松、油松生长的影响. 河北林果研究,2005,20(4):309~313
    [5] 樊巍. 农林复合系统的林网对冬小麦水分利用效率影响的研究. 林业科学,2000,36(4):16~20
    [6] 郭连生,田有亮. 9种针阔叶树种的蒸腾速率、叶水势和环境因子关系的研究. 生态学报,1992,12(1):47~52
    [7] 郭江红,王百田,田晶会. 黄土半干旱区土壤水分对侧柏叶片水气交换影响. 水土保持学报,2004,18(2):157~165
    [8] 巨关升,刘奉觉,郑世凯. 选择树木蒸腾耗水测定方法的研究. 林业科技通讯,1998,10:12~14
    [9] 蒋明义等. 水分亏缺诱导的氧化胁迫和植物的抗氧化作用. 植物生理学通讯,1996,32(1);51~57
    [10] 蒋高明,何维明. 毛乌素沙地若干植物光合作用、蒸腾作用和水分利用效率种间及生境间差异. 植物学报,1999,41(10):1114~1124
    [11] 柯世省,金则新,李钧敏等. 七子花苗期光合生理生态特性研究. 武汉植物学研究,2002,20(2):125~130
    [12] 李延明,张济和,古润泽. 北京城市绿化与热岛效应的关系研究. 中国园林,2004,(1):72~75
    [13] 李荣生,许灿煌,尹光天等. 植物水分利用效率的研究进展. 林业科学研究,2003,16(3):366~371
    [14] 吕丽萍,马履一,王瑞辉. 北京市3种园林绿化灌木树种的耗水特性. 中南林业科技大学学报,2007,27(2):9~11
    [15] 刘家琼,蒲锦春,刘新民. 我国沙漠中部地区主要不同类型植物的水分与旱生结构的比较研究. 植物学报,1987,29(6)
    [16] 刘奉觉. 快速称重法蒸腾测值的订正. 杨树水分生理研究. 北京:北京农业大学出版社,1992.
    [17] 刘崇怀. 水分胁迫对葡萄几个生化指标的影响. 葡萄栽培与酿酒,1991;(3):12~17
    [18] 刘淑明,孙长忠. 油松和侧柏人工林适宜灌溉定额的研究. 林业科学,2004,40,6:85~90
    [19] 林平,李吉跃,马达. 北京山区油松林蒸腾耗水特性研究. 北京林业大学学报,2007,增刊1:17~51
    [20] 林植芳,林桂珠,孔国辉等. 生长光强对亚热带自然林两种木本植物稳定碳同位素比、细胞间CO2浓度和水分利用效率的影响. 热带亚热带植物学报,1995,3(2):77~82
    [21] 李吉跃,Huang Wending 等. SPAC 中油松栓皮栎混交林水分特征与气体交换. 北京林业大学学报,2004,26(1):30~34
    [22] 李卫国,杨吉华,冀宪领等. 不同桑树品种水分生理特性的研究. 蚕业科学,2003,29(1): 24~27
    [23] 李涛,韩兴国,陈灵芝. 华北暖温带山地落叶阔叶混交林的茎流研究. 生态学报,1997,17(4):371~376
    [24] 李良厚,李吉跃,付祥建等. 黑樱桃与山樱桃幼苗光合作用的比较研究. 林业科学研究,2007,20(1):130~134
    [25] 卢从明等. 水分胁迫抑制水稻光合作用的机理. 作物学报,1994,20(5):601~606
    [26] 马成仓,高玉葆,蒋福全等. 小叶锦鸡儿和狭叶锦鸡儿的生态和水分调节特性比较研究. 生态学报,2004,24(7):1442~1451
    [27] 孟凡荣,乔芳,张志强. 北京城区3种绿化树种蒸腾耗水性比较. 福建林学院学报,2005,25(2):176~180
    [28] 聂华堂等. 水分胁迫下柑橘的生理生化变化与抗旱性的关系. 中国农业科学,1991;24(4):14~18
    [29] 冷平生,杨晓红,胡悦等. 5 种园林树木的光合与蒸腾特性研究. 北京农学院学报,2000,15(4):13~18
    [30] 彭祚登. 油松种源/家系抗旱性评价与选择的研究. 博士学位论文. 北京:北京林业大学图书馆,2000
    [31] 邱化蛟,程序,常欣等. 北京市水资源状况分析. 北京农学院学报,2004,19(4):4~9
    [32] 曲泽洲主编. 果树栽培学总论. 北京:农业出版社,1985:120~142
    [33] 秦采风,李悦,牛正田等. 油松种子园无性系性状变异与配子贡献研究. 北京林业大学学报,2000,22(1):20~24
    [34] 石岩等. 土壤水分胁迫对小麦衰老过程中脱落酸和细胞分裂素含量的影响. 植物生理学通讯,1998,34(1):32~34
    [35] 孙谷畴,林植芳. 不同光强下生长的几种亚热带森林树木的Rubisco羧化速率和碳酸酐酶的活性. 武汉植物学研究,2001,19,(4):304~310
    [36] 孙双峰,黄建辉,林光辉等. 三峡库区岸边共存松栎树种水分利用策略比较. 植物生态学报,2006,30(1): 57~63
    [37] 史江峰,刘禹,蔡秋芳等. 油松树轮宽度与气候因子统计相关的生理机制-以贺兰山地区为例 2006,26,(3):697~705
    [38] 田晶会,贺康宁,王百田等. 不同土壤水分下黄土高原侧柏生理生态特点分析. 生态学报,2005,19(2):175~183
    [39] 唐季林. 油松不同种源在北京地区水势和蒸腾速率的比较研究. 植物生态学与地植物学学报,1992,16(2):97~107
    [40] 王金铃等. 小麦对干旱的生理反应及抗性机理. 国外农学—麦类作物,1994,(5)44~46
    [41] 王茅雁等. 水分胁迫对玉米保护酶系活力及膜系统结构的影响. 华北农学报,1995,15(3):207~211
    [42] 王颖,魏国印,张志强等. 7种园林树种光合参数和水分利用效率研究. 河北农业大学学报,2005,29(6):44~48
    [43] 谢会成,姜志林. 栓皮栎对CO2增长的生理生态响应. 西南林学院学报,2002,22(1):1~4
    [44] 谢会成,姜志林,李际红. 栓皮栎林光合特性的研究. 南京林业大学学报(自然科学版),2004,28(5):83~85
    [45] 严大义等. 葡萄对水分胁迫反应的研究. 葡萄栽培与酿酒,1994;(4):14~16
    [46] 姚允聪等. 土壤干旱与果树叶片膜质及脂质过氧化的关系. 林业科学,1993;29(6):485~491
    [47] 于界芬. 树木蒸腾耗水特点及解剖结构的研究. 硕士学位论文. 南京:南京林业大学图书馆
    [48] 张正斌. 小麦水分利用效率若干问题探讨. 麦类作物学报,1998 , 18 ( 1) : 36~38
    [49] 张正斌. 小麦水分利用效率若干问题探讨. 麦类作物学报,1998,18(1):36~38
    [50] 张正斌,山仑. 碳同位素分辨率在小麦水分利用效率研究中的应用进展. 西北农业学报,1999,8(1):108~111
    [51] 张建国,李吉跃,沈国舫. 树木耐旱特性及其机理研究. 中国林业出版社. 2000,55~65
    [52] 张劲松,孟平,尹昌军. 植物蒸散耗水量计算方法综述. 世界林业研究,2001,14(2):23~28
    [53] 赵则,曹建国,王文杰等. 不同生长年限栽培甘草与野生甘草光合特性对比研究. 草业学报.14(3):111-116
    [54] 赵平,曾小平,彭少麟等. 南红豆夏季叶片气孔交换、气孔导度和水分利用效率的日变化.热带亚热带植物学报,2000,8(1):35~42
    [55] 翟洪波. 中国北方主要造林树种水力结构研究. 博士学位论文. 北京:北京林业大学图书馆,2002
    [56] 翟丙年,李生秀. 不同水分状况下施氮对夏玉米水分利用效率的影响. 植物营养与肥料学报,2005,11(4):473~480
    [57] 郑淑霞,上官周平. 黄土高原油松和刺槐叶片光合生理适应性比较. 应用生态学报,2007,18(1):16~22
    [58] 邹琦等. 作物在水分逆境下的光合作用. 作物杂志,1994,(5):1~4
    [59] Aston, M. J. and D. W. Lawlor. 1979. The relationship between transpiration and, root water uptake, and leaf water potential. J. Exp. Bot. 30:169~181
    [60] Aussenae, G. & G. Levy. 1984. Effect of soil drying on the plant water relation and growth of pedunculate oak and Ash grown in buried cubs. Forestry Abstracts 45
    [61] Bachelard, E.P. 1986. Effects of soil moisture stress on the growth of seedlings of three eucalypt species.Ⅱ.Growth effects. Aust. For. Res. 16:51~61
    [62] Barnett, N.; Madramootoo, C.A.; Perrone, J. 1998. Performance of some evapotranspiration equations at a site in Quebec. Canadian Agricultural Engineering 40(2): 89~95
    [63] Bormann, H. et al. 1996. Effects of data availability on estimation of evapotranspiration. Physics and Chemistry of the Earth 21(3): 171~175
    [64] Becker P,Meinzer FC,Wullschleger SD. Hydraulic limitation of tree height:a critique Functional Ecology,2000,14:4~11
    [65] Condon A G,Richards R A,Farquhar G D. The effect of variation in soil water availability ,vapour pressure deficiy and nitrogen nutrition on carbon isotope discrimination in wheat. Aust.J.Agric.Res. 1992,43:935~947
    [66] Camillo, P.; R.Guerney & T. J. Schmugge. 1993. Soil and atmosphere boundary layer model for evapo- transpiration and soil moisture studies. Water Res. 19:371~380
    [67] Chiarella, J.V. and W.H. Beck. 1975. Water harvesting catchments on India lands in the Southwest. Proc. Water Harvesting Symp. Phoenix, AZ, ARS W-22, USDA pp104~114
    [68] Cluff, C.B. 1979. The use of the compartmented reservoir in water harvesting agrisystems. Arid Land Plant Resources pp 482~500
    [69] Cochard H, Tyree M T. 1990. Xylem dysfunction in Quercus: vessel sizes, tyloses, cavitation and seasonal changes in embolism. Tree Physiology 6: 393~407
    [70] Edwards, W.R.N.; R.E. Booker. 1984. Radial variation in the axial conductivity of populus and its significance in heat pulse velocity measurement. Journal of Experimental Botany33 (153): 551~561
    [71] Evans, L.T. 1973. Environmental control of plant growth. New York, Academic Press
    [72] Evenari, M., L. Shanan and N.H. Tadmor. 1971. The negen: the challenge of a desert. Harvard University Press, Cambridge, MA,
    [73] Ewers F.W, Fisher, J.B, Chiu S-T. 1989. Water transport in the liana Bauhinia fassoglensis (Fabaceae).Plant Physiology 91: 1625~1631
    [74] Ewers, F. W., P. Cruiziat. 1990. Measuring water transport and storage. In: Techniques and Approaches in Forest Tree Ecophysiology (Eds. by J.P. Lassoie and T. M. Hinckley), CRC Press, Boca Raton, Ann Arbor,Boston pp 91~115
    [75] Fahn, A. 1982. Plant anatomy (third edition). England Pergamon Press
    [76] Fink, D.H. and S.T. 1983. Ehrler. Runoff farming for growing christams trees. Soil Sci. Soc. Am. J. 47: 983~987
    [77] Fischer, R.A. & N.C. Turner. 1978. Plant productivity in the arid and semiarid zones. Ann. Rev. Plant Physiol. 29:227~317
    [78] Fristchen, L.J.; L. Cox and R. Kinerson. 1973. A 28-meter Douglas fir in a weighing lysimeter. For. Sci. 19:256~261
    [79] Greenidge, K.N.H. 1955. Observations on the movement of moisture in large woody stems. Can. J. Bot. 33: 202~210
    [80] Greenwood, E.A.N. and J.D. Beresford. 1979. Evaporation from vegetation in landscapes developing secondary salinity using the ventilated chamber technique. Ⅰ: Comparative transpiration from juvenile Eucalypus above saline ground-water seeps. J. Hydrol. 42:369~382
    [81] Hardan, A. 1975. Remarks during discussions. Proc. Water Harvesting Symp. Phoenix, AZ, ARS W-22, USDA pp 60~61
    [82] HeeMyong Ro. 2001. Water use of young `Fuji' apple trees at three soil moisture regimes in drainage lysimeters. Agricultural Water Management 50(3): 185~196
    [83] Hermann, G. 1996. Calculation and simulation of wind controlled canopy interception of a beech forest in Northern Germany. Agricultural and Forest Meteorology 79:131~148
    [84] Jackson MB. Are plant hormones involved in the toot to shoot communication? Adv Bot Res,1993,19:103~187
    [85] Jarvis, P.G. 1980. Stomatal responses to water stress in conifers. In: Turner N.C. and P.J. Kramer. (Eds.) Adaptation of plants to water and high temperature stress. New York: Wiley-Inerscience pp105~122
    [86] Jones, M.M.; et al. 1981. Mechanism of drought resistance. In: Paleg L.G. & D. Aspinall. (Eds.) The physiology and Biochemistry of Drought Resistance in Plant. Sydney: Academic Press pp15~35
    [87] Kline, J.R. 1970. Measurement of transpiration in tropical trees with titivated water. Ecology 5: 1068~1073
    [88] Knight, D.H., T.J. Fahey, S.W. Running, et al. 1981. Transpiration from 100-yr-old lodgepole pine forests estimated with whole-tree potometers. Ecology 62(3): 717~726
    [89] Kramer PJ. Changing concepts regarding plangt water relations. Plant Cell Environ, 1988,11:565~569
    [90] Lakso A N. The effects of water stress on physiological process in fruit crops. Acta Horticulture,1985;171:275~290
    [91] Read J R,Johnson C,Carver B F et al. Carbon isotope discrimination gas exchange and yield of spring wheat selection for ABA content. Crop sci. 1991,31:136~139
    [92] Ranney T G,Bassuk N L.Whitlow T H.Osmotic adjustment and solute const-iuents in leaves and roots of water-stressed cherry trees. J.Aver.Soc.Hort.Sci.,1991;116:684~688
    [93] Ryan MG,Yoder BJ. Hydraulic limits to tree height and tree growth. BioScience,1997,47:235~242
    [94] Schlze E D,Lange O L,Buschbom U et al. Stomatal responses to changes in humidity in plants growing in the dessert. Planta,1972,10(8):259~270
    [95] Schlesinger, W.H., P.J. Fonteyn and G.M. Marion. 1987. Soil moisture content and plant transpiration in the Chihuahuan Desert of New Mexico. J. Arid Environ. 12:119–126
    [96] Schlze, E.D., O.L. Lange, U. Buschbom, et al. 1972. Stomatal responses to changes in humidity in plants growing in the dessert. Planta 108: 259~270
    [97] Schulte, P.J., P.E. Marshall. 1983. Growth and water relations of black locust and pine seedlings exposed to controlled water stress. Can. J. For. Res. 13: 334~338
    [98] Seiler, J.R., J.D. Johnson. 1985. Photosynthesis and transpiration of loblolly pine seedlings as influenced by moisture-stress conditioning. Forest Sci. 31(3): 742~749
    [99] Shulze, E.D., R.H. Robichaux, T. Grace, et al. 1987. Plant water balances. BioScience 37(1): 30~37
    [100] Smith, D.M. and S.J. Allen. 1996. Measurement of sapflow in plant stems. J Exp Bot. 47: 1833~1844
    [101] Sperry, J.S., J.R. Donnelly, M.T. Tyree. 1988. A method for measuring hydraulic conductivity and embolism in xylem. Plant, Cell and Environment 11:35~40
    [102] Stahl, Peter D.; Gerald E. Schuman; Sandra M. Frost; Stephen E.Williams. 1998. Arbuscular mycorrhizae and water stress tolerance of Wyoming big sagebrush seedlings. Soil Science Society of America Journal 62(5): 1309~1313
    [103] Swanson, R.H. & D.W.A. Whitfield. 1981. A numerical and experimental analysis of implanted probe heat pulse theory. J Exp Bot. 32:221~239
    [104] Swanson, R.H. 1994. Significant historical development in thermal method for measuring sap flow in trees. Agric. For. Meteorol. 72: 113~132
    [105] Tabor, J.A. 1995. Improving crop in the Sahel by means of water harvesting. Journal of Arid Environments 30(1): 83~106
    [106] Tognetti, R., M. Michelozzi, G. Alessio. 1997. Geographical variation in water relations, hydraulic architecture and terpene composition of Aleppo pine seedlings from Italian provenances. Tree Physiology 17: 241~250
    [107] Turner, N.C. 1979. Drought resistance and adaptation to water deficits in crop plants. In: Harry Mussall (ed.). Stress Physiology in Crop Plants. New York: John Wiley and Sons pp 343~372
    [108] Turner, N.C. Plant physiology. Aust., 1986,13:175~190
    [109] Tyree, M.T. and U.T. Hammel. 1972. The measurement of the turgor pressure and the water relations of plants by the pressure-bomb technique. J. Exp. Bot. 23: 267~282
    [110] Tyree, M.T., F.W. Ewers. 1991. The hydraulic architecture of trees and other woody plants. New Phytol. 119:345~360
    [111] Wang Z C,Stutte G W. The role of carbohydrates in active osmotic adjustment in apple under water stress.J.Aver.Soc.Hort.Sci., 1992;117:816~823
    [112] Vu J C V,Yelenosky G.water deficit and associated changes in some photosynthetic parameters in leaves of Valencia’orange.Plant Physiol.,1988;88:375~378

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700