纳米铝粉单质铝含量测定方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以电爆炸丝法制备的含有高活性铝含量的纳米铝粉作为研究对象,采用气体容量法测量了纳米铝粉中的活性铝含量,分析铝粉反应不完全可能存在的原因。并在传统的滴定法测量纳米铝粉活性含量的基础上,对锰滴法及铈滴法等实验方法进行改进,探讨体系中酸度、时间等各因素的影响,从而分别以最佳的反应体系进行反应测量活性铝含量。最后分别采用氧化模型理论计算和Rietveld结构精修的方法计算了纳米铝粉中活性铝的含量。
     实验中采用TEM、HRTEM、XRD等手段对纳米铝粉进行了物性表征,电爆法制备纳米铝粉为球形颗粒,粒径大约在20-130nm范围内呈正态分布,具有明显的核壳结构,表面Al2O3壳层厚度大约在3nm左右。
     气体容量法测得纳米铝粉中活性铝含量只有75.75%,由TEM及SEAD分析得知纳米铝粉始终反应不完全,这可能与溶液中离子的溶剂化作用有关,离子间相互作用形成离子氛从而限制了离子的行动,使得溶液中OH-不能充分与内部金属铝接触而反应不完全。
     锰滴法中,采用无水乙醇作为溶剂,有效抑制了纳米铝粉与水的反应。同时采用硝酸铁作为氧化剂,在纳米铝粉约50mg左右时,在搅拌反应2h后加入0.1mol/L的硝酸28mL继续反应约24h,测得纳米铝粉中单质铝含量达到最高,约94.45%。并通过实验讨论了体系中少量水的存在是必要的,还对酸度、时间等各因素的影响进行了深入的分析。
     铈滴法中硫酸高铈溶液的酸度大小对活性铝含量的测量有影响,当酸的浓度为0.15mol/L时,测得的活性铝含量最高为87.70%。
     纳米铝粉在低温下慢氧化到一定程度会达到饱和状态,氧化层达到一定厚度停止生长。对此种核壳结构模型,由HRTEM表征结果设表面Al2O3壳层厚度为3nm,采用数学积分的方法计算内核金属铝的质量分数,得到金属铝的含量为78.79%。由于部分粒径较小的颗粒有可能已全部为氧化铝,因此此方法是一种近似计算。
     对纳米铝粉在X射线衍射仪上进行步进扫描收集数据,采用Fullprof程序对样品参数进行Rietveld结构精修,得到电爆炸法的纳米铝粉中含有杂质镁,金属单质铝的含量为90.44%。
     最后,对几种测量活性铝含量方法的优劣进行了综合评价和分析,选择以Rietveld精修的方法来作为较为准确的测定纳米铝粉中活性铝含量的测量方法。
The aluminum nanoparticles prepared by electrical explosion of wire (EEW) were studied. In the volumetric method, the phenomenon of the incomplete reaction between aluminum and NaOH solution was probably relevant to the ion solvation. Besides, on the basis of traditional titrimetric methods of determining the metallic aluminum content in the aluminum nanoparticles, in this article Permanganatometric and Cerimetric methods were improved, the effect factors of acid degree, reaction time and so on in the system were also discussed, then the content of metal aluminum was determined by the optimal system. Finally the metal oxidation model and Rietveld refinement were used to calculate the metallic aluminum content.
     In this work, the characterizations of aluminum was tested by TEM、HRTEM、XRD and the results indicated that the aluminum powders by EEW with the sphere shape showed gaussian distribution in a diameter range from 20nm to 130nm. Besides, the aluminum nanoparticles showed a core-shell structure and the Al2O3 cell thickness was 3nm or so.
     With the volumetric method the metal aluminum content was only about 75.75%, and the reaction between aluminum nanopowders and NaOH solution was incomplete due to the ion salvation.
     In the Permanganatometric method, ethanol was used as nonaqueous solvent to prevent the reaction between aluminum nanoparticles and water at room temperature. Besides, Fe(NO3)3 as oxidizing agent. The contrast results illustrated that the content can reach the highest when the aluminum powders were 50mg or so, and the concentration and volume of HNO3 were 0.1mol/L and 28mL, the reaction time was 24h. More over, the mechanism of effect factors were discussed.
     The concentration of sulphuric acid in the ceric sulfate solution had an effect on the metal content in the cerimetric method and it could reach 87.70% when the H2SO4 concentration was 0.15mol/L.
     The oxidation of aluminum nanoparticles at low temperature could be saturated to a certain extent and the oxide layer stopped growing. For this core-shell structure, the thickness of the oxide layer was assumed 3nm from the HRTEM result. Then the metal content calculated with the method of Mathematics with Calculus was 78.79%. However, this method was also an estimation for some of the nanoparticles may be oxidized completely.
     The Rietveld refinement was used to calculate the content of metal aluminum phase. The powder diffraction data was collected using X-Ray Diffractomer with step scanning. Then the fullprof program was used to refine the structural parameters and the result showed that the metallic content was 90.44%, while the impurity Mg was detectived with a content of 0.21% in the aluminum nanopowders by EEW.
     Finally, there was a comprehensive comparison and analysis among these methods to determined the metallic content in the aluminum nanopowders, and the Rietveld refinement was set as a standard to determined more precise.
引文
[1]张明,梁彦,唐庆明.纳米铝粉在固体推进剂中的应用.火箭推进. 2006, 32(1): 35-39
    [2]李颖,宋武林,谢长生,王爱华,曾大文.纳米铝粉在固体推进中的应用发展.兵工学报. 2005, 26(1): 121-125
    [3]李疏芬,金乐骥.铝粉粒度对含铝推进剂燃烧特性的影响.含能材料, 1996, 4(2): 68 - 74.
    [4]谢剑宏,焦继革,胡昭志,何静.国外纳米铝粉应用推进剂研究发展.化学推进剂与高分子材料. 2002, 89: 15-17
    [5]殷海权,潘清,张建亮,王国柱,杨前生.铝粉对炸药性能的影响.含能材料. 2004, 12(5): 318-320
    [6]黄辉,黄亨建,黄勇,王晓川.以RDX为基的含铝炸药中铝粉粒度和氧化剂形态对加速金属能力的影响.爆炸与冲击. 2006, 26(1): 7-11
    [7] Finger M, Helm F, Lee E, et a1. Characterization of commercial, composite explosives. Proceedings of the Sixth International Symposium on Detonation. White Oak, MD, USA: Naval Surface Weapons Center, 1976: 729-739
    [8] Lee J, Kuk J H. Cho Y S, et a1. Numerical modeling of underwater explosion properties for an aluminized explosive. Propellants, Explosives, Pyrotechnics, 1997, 22: 337-346
    [9]蒋黎,曾雁,张力,刘小强.纳米材料在火炸药中的应用研究现状.河北化工. 2007, 30(2): 21-23
    [10] Mench M M. Comparison of the thermal behavior of regular and ultra-fine aluminum powders (Alex) made from plasma explosion process. Combustion science and technology. 1998, 135: 269-292
    [11] Randall L. Simpson, Ronald S. Lee. Sol-gel manufactured energetic materials.UP6666935 B1, 2003:12-23
    [12] Dr. Andrzej W. Miziolek. Nanoenergetics: an emerging technology area of national importance. Weapons and Materials Research Directorate, US Army Research Laboratory. The AMPTIAC Newsletter. 2004, 6(1).
    [13]王昕.纳米含能材料研究进展.火炸药学报. 2006, 29(2): 29-32
    [14] Michelle L. Pantoya, John J. Granier. Combustion Behavior of Highly Energetic Thermites: Nano versus Micron Composites. Propellant,Explosive, Pyrotechnics. 2005, 30(1): 53-62
    [15] S. F. Son, M. A. Hiskey, D. L. Naud, J. R. Busse and B. W. Asay. The International Pyrotechnics Society, The Twenty-Ninth Inernational Pyrotechnics Seminar, Westminster, Colorado, USA, July 14-19,2002, 203-212.
    [16] Jan A. Puszynski. Reactivity of Nanosize Aluminum with Metal Oxides and Water Vapor. Mat. Res. Symp. Proc. 2004, 800: 223-232
    [17] John J. Granier, Michelle L. Pantoya. Laser ignition of nanocomposite thermites. Combustion and Flame. 2004, 138:373-383
    [18] Y. Yang, S. Wang, Z. Sun, D. D. Dlott, Propagation of Shock-Induced Chemistry in Nanoenergetic Materials: the First Mircometer, J. Appl. Phys. 2004, 95, 3667-3676
    [19]符全军,杜宗罡,兰海平,鱼升堂,杨超. UDMH/NTO双组元凝胶推进剂的制备及性质研究.火箭推进. 2006, 32(1): 48-53
    [20]张蒙正,仲伟聪.非金属凝胶推进剂热力特性计算及分析.火箭推进. 2008, 34(2): 55-58
    [21] Ivanov. V. G, Gavtilyuk, O. V. Glazkov. O. V, Safronov. M. N. Specific features of the reaction between ultrafine aluminum and water in combustion regime. Combustion, Explosion and Shock Waves. 2000, 36:213-219
    [22] Evgeny Shafirovich, Pablo Escot Bocanegra, Christian Chauveau, Iskender Gǒkalp. NANOALUMINUM-WATER SLURRY: A NOVEL“GREEN”PROPELLANT FOR SPACE APPLICATIONS. Proc.2th Int. Conference on Green Propellants forSpace Propulsion. Cagliari, Sardinia, Italy 7-8 July 2004 (ESA SP-557, October 2004)
    [23]江治,李疏芬.纳米铝粉在含能材料中的应用之初探.飞航导弹. 2001, 9: 38-41
    [24]刘香翠,张炜,朱慧,王春华.纳米铝粉及纳米铝粉/煤油凝胶体系能量性能研究.固体火箭技术. 2005, 28(3): 198-200
    [25] Chiaverini. M. J, Kuo. K. K, Peretz. A, Hartion, G. C. Heationg flux and internal ballistic characterization of a hybrid rocket motor analog.,33rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. AIAA No.1997-3080,1997: 1-15
    [26] Fang Chong, Li Shufen. Experimental Research of the Effect of Superfine Aluminum Powders on the Combustion Characteristics of NEPE Propellants. Propellant,Explosive, Pyrotechnics. 2002, 27: 34-38
    [27] L. Meda, G. Marra, L. Galfetti, F. Severini, L. De Luca. Nano-aluminum as energetic material for rocket propellants. Materials Science and Engineering C. 2007, 27: 1393-1396
    [28] Jiang Zhi, Li Shufen. Research on the Combution Properties of Propellants with Low Content of Nano Metal Powders. Propellant,Explosive, Pyrotechnics. 2006, 3(2): 139-147
    [29] L. T. De Luca, L. Galfetti, F. Severini, L. Meda, G. Marra, A. B. Vorozhtsov, V. S. Sedoi, and V. A. Babuk. Burning of Nano-Aluminized Composite Roket Propellants. Combustion, Explosion, and Shock Waves. 2005, 41(6):680-692
    [30] L. Galfetti, L. T. De Luca, F. Severini, G. Colombo, L. Meda, G. Marra. Pre and post-buring analysis of nano-aluminized rocket propellants. Aerospace Science and Technology. 2007, 11:26-32
    [31] Jin Leji, Deng Kangqing, et al. Primary Research on Combustion Performances of Superfine Aluminum Powder. Journal of Propulsion Technology. 1993(6): 68-72
    [32] Ted A. Roberts, et al. Ignition and Combustion of Aluminum/Magnesium AlloyParticles in O2 at High Pressures. Combustion and Flame. 1993, 92:125-143
    [33] Yuri F. Ivanov, Mirswan N. Osmonoliev, Valentin S. Sedoi, et al. Productions of Ultra-fine Powders and Their Use in High Energetic Compositions. Propellant,Explosive, Pyrotechnics. 2003, 28(6):319-333
    [34]邵庆辉,古国榜,章丽娟,李新军.纳米材料的合成与制备进展研究.兵器材料科学与工程. 2002, 25(4): 59-63
    [35] H. J. FECHT. E. HELLSTERN, Z.FU, W. L. JOHNSON. Nanocrystalline Metals Prepared by High-Energy Ball Milling. METALLURGICAL TRANSACTIONS A. 1999, 21:2333-2337
    [36] J.C. Sanchez-Lopez, A.R. Gonzalez-Elipe, A. Fernandes. Passivation of nanocrystalline Al prepared by the gas phase condensation method: an x-ray photoelectron spectroscopy study. J. Mater. Res, 1998, 13:703-710
    [37]李星国,廖复辉.直流电弧等离子体法合成金属和陶瓷纳米颗粒.过程工程学报. 2002, 2(4): 295-300
    [38] Y. Sakka, H. Okuyama, T. Uchikoshi, S. Ohno. Characterization of degraded surfaces of Al and AlN ultrafine powders. NanoStructured Materials. 1995, 5(5): 577-58
    [39] John C. Weigle, Claudia C. Luhrs, et al. Generation of Aluminum Nanoparticles Using an Atmospheric Pressure Plasma Torch. J. Phys. Chem. B. 2004, 108(48): 18601-18607.
    [40] Alla Pivkina, D. Ivanov, Yu. Frolov, Svetlana Mudretsova, Anna Nickolskaya, J. Schoonman. Plasma synthesized nano-aluminum powders structure, thermal properties and combustion behavior. Journal of Thermal Analysis and Calorimetry. 2006, 86(3): 733-738
    [41] Yu A. Kotov. Electric explosion of wires as a method for preparation of nanopowders. Journal of Nanoparticle Research. 2003, 5: 539-550
    [42] Y.S. Kwon, Y.H. Jung, N.A. Yavorovsky, et al. Ultra-fine powder by wireexplosion method. Scripta mater. 2001, 44: 2247–2251.
    [43] T. M. Tillotson, A. E. Gash, R. L. Simpson, L. W. Hrubesh, J. H. Satcher Jr, J. F. Poco. Nanostructured energetic materials using sol-gel methodologies. Journal of Nano-Crystalline Solids. 2001, 285:338-345.
    [44]魏建红,官建国,袁润章.金属纳米粒子的制备与应用.武汉理工大学学报. 2001: 1-4
    [45]何林峰.电子束辐射法合成钴纳米粒子的表征. 2007: 7-9
    [46]邵庆辉,古国榜,章丽娟,李新军.纳米材料的合成与制备进展研究.兵器材料科学与工程. 2002, 25(4): 59-63
    [47] Hiroyuki Ohde, Fred Hunt, Chien M. Wai. Synthesis of Silver and Copper Nanoparticles in a Water-in-Supercritical-Carbon Dioxide Microemulsion. Chem. Mater. 2001, 13, 4130-4135
    [48] Young-Soon Kwon, Jin-Soo Moon, et al. Estimation of the reactivity of aluminum superfine powders for energetic applications. Combust. Sci. and Tech. 2004, 176:277-288
    [49] T. D. Fedotova. Chemical Analysis of Aluminum as a Propellant Ingredient and Determination of Aluminum and Aluminum Nitride in Condensed Combustion Products. Propellant, Explosive, Pyrotechnics. 2000, 25: 325-332
    [50]周激,张翠梅,李改香,曹海燕.氟离子选择电极测定火药中的铝粉含量.火炸药. 1996, 2: 33-36
    [51] M. Kolthoff. Tredtise on Analytical Chemistry. 2nd ed. Wiley, New York. 1978.
    [52] L. M. Budanova, R. S. Volodarskaya, N. A. Kanaev. Analysis of Aluminum and Magnesium Alloys. Metallurgiya. Moscow 1966.
    [53] P. Il’in, A. A. Gromov. Combustion of ultra-fine aluminum and boron. Tomsk State University Publ, Tomsk, 2002
    [54] T. D. Fedotova, O. G. Glotov, V. E. Zarko. Peculiarities of Chemical Analysis of Ultra Fine Aluminum. 36th Int. Annual Conference of ICT combined with the 32th Int. Pyrotechnics Seminar, Karlsruhe, Germany, June 28-July 1, 2005, 1:147
    [55] T. D. Fedotova, V. V. Malachov, O. G. Glotov, A. G. Kir’yanova. Permanganatometric Determination of Metallic Aluminum in Condersed Combustion Products. Siberian Chemical Journal. 1992, 2: 37-38
    [56] G. A. Risha. Enhancement of hybrid rocket combustion performance using nano-sized energetic particles. Thesis. The Pennsylvania State University, 2003.
    [57]傅献彩,沈文霞,姚天阳.物理化学.高等教育出版社. 1990: 541-558
    [58] Alexander Gromov, Alexander IIyin, etc. Characterization of Aluminum Powders: II. Aluminum Nanopowders Passivated by Non-Inert Coatings. Propellant, Explosive, Pyrotechnics. 2006, 5(31): 401-409
    [59] Paulenova, S. E. Creaer, J. D. Navratil, Y. Wei. Redox potentials and kinetics of the Ce3+/Ce4+ redox reaction and solubility of cerium sulfates in sulfuric acid solutions. Journal of Power Sources. 2002,109: 431-438
    [60] Young-Soon Kwon, Alexander A. Gromov, Alexander P. IIyin, Geun-Hie Rim. Passivation process for superfine aluminum powders obtained by electrical explosion of wires. Applied Surface Science. 2003, 211: 57-67
    [61] F. P. Fehlner, N. F. Mott. Low-Temperature Oxidation. Oxidation of Metals. 1970,2(1): 59-99
    [62] Norbert Eisenreich, Harald Fietzek, eta. On the Mechanism of Low Temperature Oxidation for Aluminum Particles down to the Nano-Scale. Propellant, Explosive, Pyrotechnics. 2004, 29(3): 137-145
    [63] B. Rufino, F. Boulc’h, M. Coulet, G. Lacroix, R. Denoyel. Influence of particles size on thermal properties of aluminium powder. Acta Materialia. 2007,55(8):2815-2827
    [64]马礼敦. X射线粉末衍射的新起点—Rietveld全谱拟合.物理学进展. 1996, 16(2): 251-265
    [65]马礼敦.近代X射线多晶体衍射—实验技术及数据分析.化学工业出版社.2004: 400-430
    [66] AN INTRODUCTION TO THE PROGRAM Fullprof 2000. Juan Rodríguez-Carvajal Laboratolre I.éon Brillouin(CEA-CNRS)
    [67]刘明光,郭虎森. NH4ZnPO4晶体结构Rietveld法精修.现代仪器. 2003, (3)
    [68] M. Karolus. Applications of Rietveld refinement in Fe-B-Nb alloy structure studies. Journal of Materials Processing Technology. 2006, 175: 246-250
    [69]马礼敦.高等结构分析.复旦大学出版社. 2002: 395
    [70]尚飞,蒋莉,简基康,孙言飞,郑毓峰.水热合成NiS2粉晶及Rietveld结构精修.人工晶体学报. 2008, 37(4): 936-941
    [71]王建军,宋武林,郭连贵,谢长生.表面钝化纳米铝粉的制备及氧化机理分析.表面技术. 2008, 37(2): 42-44

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700