液氦温区斯特林型脉管制冷机回热损失机理与多级脉管级联方式研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液氦温区低温制冷机在低温超导、航天深空探测、国防军事、医疗以及低温物理等研究领域有着重要应用。斯特林型脉管制冷机具有可靠性高、寿命长、重量轻及潜在的高效性高效率等优点,因此研制开发液氦温区斯特林型脉管制冷机具有重要的研究与应用价值。然而,相比于发展日趋成熟的80 K温区斯特林型脉管制冷机,4K温区斯特林型脉管制冷机理论和实验研究尚处于起步阶段,限制了其在相关领域的应用。鉴于此,本文以探索液氦温区回热器高频损失机理和寻找高频下采用氦-4工质获得液氦温区的有效途径为目标,开展了以下工作:
     1.脉管制冷机的热力学分析及液氦温区高频回热器损失机理研究
     基于热力学定律,分析了脉管制冷机内部各部件的热力学特性,并给出了脉管制冷机的各种损失。研究了制冷温度、工质种类、平均压力、压比等参数对液氦温区回热器在高频下损失的影响,对进一步了解液氦温区回热器的损失机理具有重要的指导意义。
     2.系统编制了液氦温区斯特林型脉管制冷机的结构图谱
     脉管制冷机的级间结构对脉管制冷机的性能有着重要影响。本文探索了液氦温区斯特林型脉管制冷机可采用的级间布置方式,并首次编制了液氦温区斯特林型脉管制冷机的结构图谱。为了进一步明确级联方式不当而导致的多级脉管制冷机损失,研究了不同声功下脉管热端温度布置方式对制冷机整机性能的影响,为液氦温区斯特林型脉管制冷机级联方式的优化指明了方向。
     3.低温惯性管调相的理论研究
     针对4K斯特林型脉管制冷机声功较小,运行频率较低而导致采用常规的室温惯性管调相能力不足的问题,本文研究了脉管热端温度对惯性管调相能力的影响,并提出采用低温惯性管作为4K斯特林型脉管制冷机调相装置的方案。对低温下实际气体性质进行了修正,并计算了压比、平均压力、气库容积对惯性管调相角度的影响。
     4.两级G-M型脉管制冷机预冷的单级斯特林型脉管制冷机的设计、制作
     本文基于回热器模拟软件REGEN3.3设计了带预冷的单级斯特林型脉管制冷机,重点研究了高频回热器在液氦温区的性能。给出了斯特林型脉管制冷机到达液氦温区所需要的预冷温度和预冷量,并设计了单级斯特林型脉管制冷机和两级G-M型脉管制冷机热耦合部件。搭建了整机和动态参数测试实验台,为脉管制冷机的实验研究打下了基础。
     5.带预冷的4K斯特林型脉管制冷机的实验研究
     为了验证理论计算结果并探索斯特林型脉管制冷机采用氦-4工质进入液氦温区的可行性,本文开展了运行参数(包括工作频率、平均压力、输入功率、预冷温度等)、回热器填料以及回热器结构等对4K斯特林高频脉管制冷机性能影响以及对预冷级制冷机预冷要求的实验研究。采用氦-4作为工质的斯特林型脉管制冷机首次进入液氦温区。
Cryocoolers working at liquid helium have important applications in the field of low temperature superconductivity (LTS), space exploration, military detection, medical examination and low temperature physics. Stirling type pulse tube cryocoolers have the advantage of high reliability, long life, light weight and have potentially high efficiency which makes them very appealing for 4 K applications. However, compared with the relatively efficient 80 K Stirling type pulse tube cryocoolers, both theoretical and experimental investigation on 4 K Stirling type pulse tube cryocoolers is only at the preliminary stage which limits their application in the liquid helium temperatures. In order to further understand the loss mechanism of 4 K regenerators at high frequency and explore the effective way of reaching 4 K with helium-4 as the working fluid, research work is carried out which focuses on the following sections:
     1. Thermodynamic analysis of pulse tube cryocooler and investigation on the loss mechanism of 4 K regenerator at high frequency
     Based on the first law and second law of thermodynamics, analysis is carried out on the thermodynamic characteristic of the components of a pulse tube cryocooler and the various losses in a pulse tube cryocooler are given. Effect of temperature region, working fluid, average pressure and pressure ratio on the losses of 4 K regenerator at high frequency is studied which can provide guidance for better understanding the loss mechanism of high frequency 4 K regenerators.
     2. Staging configuration diagram of multi-stage Stirling type pulse tube cryocooler working at liquid helium temperatures is drawn.
     The staging configuration of pulse tube cryocoolers has great influence both on the performance of the cryocooler and the compactness of the system. The possible staging configuration of 4 K Stirling type pulse tube cryocoolers is explored and the configuration diagram is drawn for the first time. In order to determine the loss caused by staging configuration, effect of warm end temperature of pulse tube on the performance of the cryocooler with different acoustic power is investigated which is helpful for the optimization of multi-stage 4 K Stirling type pulse tube cryocooler.
     3. Theoretical investigation on cold inertance tube
     The conventional inertance tube located at the ambient temperature as the phase shifter for 4 K Stirling type pulse tube cryocooler with small acoustic power and relatively low operating frequency is not able to shift the mass flow and pressure to the ideal phase angle efficiently. As a result, the effect of temperature on the phase shifting ability of inertance tube is investigated and the use of cold inertance tube as the phase shifter for the precooled 4 K Stirling type pulse tube cryocooler is proposed. Modification of real gas behavior at low temperatures is made and effect of average pressure, pressure ratio and reservoir volume on phase angle of inertance tube is studied.
     4. Design and fabrication of a 4 K single-stage Stirling type pulse tube cryocooler precooled by a two-stage G-M type pulse tube cryocooler
     In order to focus on the behavior of the high frequency regenerator at liquid helium temperatures, a precooled 4 K Stirling type pulse tube cryocooler is designed based on the regenerator simulation model known as REGEN 3.3. The precooling requirement including the precooling temperature and the precooling power for the Stirling type pulse tube cryocooler to reach 4 K is given. And the thermal coupling component between the G-M type pulse tube cryocooler and the Stirling type pulse tube cryocooler is designed. Experimental setup of the precooled pulse tube cryocooler and the dynamic parameters measuring system was built up which lays the foundation for the experimental investigation of the 4 K Stirling type pulse tube cryocooler.
     5 Experimental investigation of the 4 K precooled Stirling type pulse tube cryocooler
     In order to verify the theoretical calculation and explore the possibility of reaching 4 K with helium-4 as the working fluid for a Stirling type pulse tube cryocooler, the effect of operating parameters which includes operating frequency, average pressure, input power and precooling temperature, regenerator matrix and regenerator geometry on the performance of the 4 K Stirling type pulse tube cryocooler and the precooling condition for the precooler is carried out. Liquid helium temperature was obtained with helium-4 as the working fluid for a Stirling type pulse tube cryocooler for the first time.
引文
1. Olson, J.R., Moore, M., Champagne, P., Roth, E., Evtimov, B., Jensen, J., Collaco, A., Nast, T., Development of a space-type 4-stage pulse tube cryocooler for very low temperature, in Advances in Cryogenic Engineering, Vols 51A and B, J.G. Weisend, et al., Editors.2006. p.623-631.
    2. Nast T, O.J., Roth E, Evtimov B, Frank D, Champagne P, Development of Remote Cooling systems for Low-Temperature, Space-Borne Systems. Cryocoolers,2007.14: p.33-40.
    3. Nast, T., Olson, J., Champagne, P., Mix, J., Evtimov, B., Roth, E., Collaco, A., Development of a 4.5 K pulse tube cryocooler for superconducting electronics, in Advances in Cryogenic Engineering, Vols 53a and 53b, J.G. Weisend, et al., Editors. 2008. p.881-886.
    4. Walker, G., Cryocoolers.1983:Plenum Press.
    5. Gifford, W.E., Longsworth, R.C., Pulse tube refrigeration. Journal of Engineering for Industry-Transactions of the ASME (J Eng Ind Trans ASME),1964.86:p.264-270.
    6. Gifford, W.E., Kyanka, G.H. Reversible pulse tube refrigeration. in Adv.Cryo.Eng. 1967. New York.
    7. Gifford, W.E., Longsworth, R.C., Surface Heat Pumping. Adv. Cryo. Eng.,1966.11: p.171-179.
    8. Mikulin, E.I., Tarasov, A.A., Shkrebyonock, M.P., Low-temperature expansion pulse tubes. Adv. Cryo. Eng.,1984.29:p.629-637.
    9. Radebaugh, R., Zimmerman, J., Smith, D.R., Louie, B., A comparison of three types of pulse tube refrigerators-New methods for reaching 60 K. IN:Advances in cryogenic engineering.,1986.
    10. Radebaugh, R. A review of pulse tube refrigeration, in Adv.Cryo.Eng.1990.
    11. Zhu, S.W., Wu, P.Y., Chen, Z.Q., Double inlet pulse tube refrigerators:an important improvement. Cryogenics,1990.30(6):p.514-520.
    12. Gedeon, D., DC gas flows in Stirling and pulse-tube cryocoolers, in Cryocoolers 9. 1997, Plenum Publishers:New York. p.385-392.
    13. Kanao, K., Watanabe, N., Kanazawa, Y, A miniature pulse tube refrigerator for temperatures below 100 K. Cryogenics,1994.34(suppl):p.167-170.
    14. Godshalk, K.M., Jin, C., Kwong, Y.K. Characterization of 350 Hz thermoacoustic driven orifice pulse tube refrigerator with measurements of the phase of the mass flow and pressure. in Advances in Cryogenic Engineering.1996.
    15. Marquardt, E.D., Radebaugh, R. Pulse Tube Oxygen Liquefier. in Advances in Cryogenic Engineering.2000.
    16. Dai, W., Hu, J.Y., Luo, E.C., Comparison of two different ways of using inertance tube in a pulse tube cooler. Cryogenics,2006.46(4):p.273-277.
    17. Tward, E., Chan, C.K., Raab, J., High efficiency pulse tube cooler, in Cryocoolers 11. 2001, Kluwer Academic/Plenum Publishers:New York. p.163-167.
    18. Vanapalli, S., Lewis, M., Gan, Z.H., Radebaugh, R.,120 Hz pulse tube cryocooler for fast cooldown to 50 K. Applied Physics Letters,2007.90(7):p.072504-3.
    19. 杨俊玲,侯小锋,杨鲁伟,惯性管在300Hz脉冲管制冷机中的应用.工程热物理学报,2008.29(7):p.1099-1102.
    20. Matsubara, Y., Kaneko, M., Miyake, A., Conceptual Design of Modified Pulse Tube Refrigerator, in Proceedings of International Conference of Cryogenics and Refrigeration 1989:Zhejiang University, Hangzhou, China.
    21. Matsubara, Y., Tanida, K., Gao, J.L., Four-valve pulse tube refrigerator. JSJS-4, Beijing,1994.4:p.54.
    22. Li, R., Kanao, K., Watanabe, N., Kanazawa, Y.A., Single Stage Four-valve Pulse Tube Cryocooler with a Cooling Power Over 30 W at 80. JSJS-5. Japan:Osaka,1997: p.60-65.
    23. Cai, J.H., Wang, J.J., Zhu, GX., Experimental analysis of the multi-bypass principle in pulse tube refrigerators. Cryogenics,1994.34(9):p.713-715.
    24. Zhu, S.W., Kakimi, Y., Matsubara, Y, Investigation of active-buffer pulse tube refrigerator. Cryogenics,1997.37(8):p.461-471.
    25. Gao, J.L., Matsubara, Y. An inter-phasing pulse tube refrigerator for high refrigeration efficiency. in Proceedings of the Sixteenth International Cryogenic Engineering Conference/International Cryogenic Materials Conference.1997.
    26. Jeffrey, R., Olson, S.M., Cold inertance tube for multi stage pulse tube cryocooler. 2005:United States Patent.
    27. Kirkconnell C S, H.R.C., Roberts T, Raytheon Stirling/pulse tube cryocooler maturation programs. Cryocoolers 15,2009:p.31-37.
    28. Qiu, L.M., Li, Z.P., Gan, Z.H., Dai, L., Design of a 4K single-stage Stirling type pulse tube cooler precooled by a GM type pulse tube cooler. Cryogenics and Refrigeration, Proceedings, ed. R. Wang and P. Zhang.2008.313-316.
    29. Gan, Z.H., Li, Z.P., Chen, J., Dai, L., Qiu, L.M., Design and preliminary experimental investigation of a 4 K Stirling-type pulse tube cryocooler with precooling. Journal of Zhejiang University-Science A,2009.10(9):p.1277-1284.
    30. 甘智华,范炳燕,陈杰,许婷,王仁杰,邱利民,35 K两级高频脉管制冷研究--Ⅱ:实验验证.浙江大学学报(工学版),2009.43(8):p.1454-1457.
    31. Gao, J.L., Matsubara, Y, Experimental investigation of 4 K pulse tube refrigerator. Cryogenics,1994.34(1):p.25-30.
    32. Wang, C., Thummes, G., Heiden, C., Experimental study of staging method for two-stage pulse tube refrigerators for liquid 4He temperatures. Cryogenics,1997. 37(12):p.857-863.
    33. Thummes, G., Wang, C., Heiden, C., Small scale He-4 liquefaction using a two-stage 4 K pulse tube cooler. Cryogenics,1998.38(3):p.337-342.
    34. Wang, C., Thummes, G., Bestk, J., Oswald, B., Heiden, C. Use of a two-stage pulse tube refrigerator for cryogen free operation of a superconducting niobium-tin magnet. in ICEC 17.1998. Bournemouth:IOP Publishing.
    35. Chen, G.B., Qiu, L.M., Zheng, J., Yan, P.D., Gan, Z.H., Experimental study on a double-orifice two-stage pulse tube refrigerator. Cryogenics,1997.37(5):p.271-273.
    36. URL:http://www.cryomech.com.
    37. Xu, M.Y., De Waele, A.T.A.M., Ju, Y.L., A pulse tube refrigerator below 2 K. Cryogenics,1999.39(10):p.865-869.
    38. Jiang, N., Lindemann, U., Giebeler, F., Thummes, G., A He-3 pulse tube cooler operating down to 1.3 K. Cryogenics,2004.44(11):p.809-816.
    39. Tanaeva, I.A., Bos, C.G.K., Waele, A.T.A.M.d., High-frequency Pulse-tube Refrigerator for 4 K, I. J. G Weisend, et al., Editors.2006, AIR p.821-828.
    40. Xu, M., Takayama, H., Nakano, K., Development of high efficiency 4K two-stage pulse tube cryocooler, in Cryocoolers 16.2010, Kluwer Academic/Plenum Publishers: Atlanta. p. to be published.
    41. Matsubara, Y., Gao, J.L., Novel configuration of three-stage pulse tube refrigerator for temperatures below 4 K. Cryogenics,1994.34(4):p.259-262.
    42. Wang, C., Thummes, G., Heiden, C., A two-stage pulse tube cooler operating below 4 K. Cryogenics,1997.37(3):p.159-164.
    43. Qiu, L.M., He, Y.L., Gan, Z.H., Chen, G.B., Development of a 4 K Separate Two-Stage Pulse Tube Refrigerator with High Efficiency. AIP Conference Proceedings,2006.823(1):p.845-852.
    44. Xu, M.Y., Gao, J.L., Seitz, E., Longsworth, R.C., Saito, M., Ikeya, Y., Development of SHI 1.0 W 4 K Two-stage Pulse Tube Cryocoolers, I. J. G. Weisend, et al., Editors. 2006, AIR p.837-844.
    45. Wang, C., Dynamic operation of 4K pulse tube cryocooler with an inverter driven compressor, in Cryocoolers 16.2010, Kluwer Academic/Plenum Publishers:Atlanta. p. to be published.
    46. Ross, R.G., Johnson, D.L., NASA's Advanced Cryocooler Technology Development Program (ACTDP), in Advances in Cryogenic Engineering, Vols 51A and B, J.G. Weisend, et al., Editors.2006, Amer Inst Physics:Melville, p.607-614.
    47. URL:http://www.jwst.nasa.gov/.
    48. Nast, T.C., Olson, J., Evtimov, B., Development of a two-stage pulse tube cryocooler for 35 K cooling, in Cryocoolers 12.2003, Kluwer Academic/Plenum Publishers: New York. p.213-218.
    49. Olson, J., Nast, T.C., Evtimov, B., Development of a 10 K pulse tube cryocooler for space applications, in Cryocoolers 12.2003, Kluwer Academic/Plenum Publishers: New York. p.241-246.
    50. Olson, J., Champagne, P., Cryocooler with multiple charge pressure and multiple pressure oscillation amplitude capabilities. United States Patent,2004.6813892.
    51. Tward, E., Chan, C.K., Jaco, C., High Efficiency Cryocooler. Advances in Cryogenics Engineering,2002.47:p.1077-1084.
    52. Jaco, C., Nguyen, T., Harvey, D., High Capacity Staged Pulse Tube, in Cryocoolers 13.2005, Kluwer Academic/Plenum Publishers:New York. p.109-113.
    53. Raab, J., Colbert, R., Harvey, D., Michaelian, M., Nguyen, T., Petach, M., Orsini, R., Tward, E., Waterman, M., NGST advanced cryocooler technology development program (ACTDP) cooler system. Cryocoolers 13, ed. R.G. Ross.2005.9-14.
    54. Olson, J.R., Davis, T., Development of a 3-stage pulse tube cryocooler for cooling at 10k and 75k, in Advances in Cryogenic Engineering, Vols 51A and B, J.G. Weisend, et al., Editors.2006. p.1885-1892.
    55. Nguyen, T., Colbert, R., Durand, D., Jaco, C., Michaelian, M., Tward, E.,10K pulse tube cooler. Cryocoolers 14,2007:p.27-31.
    56. Swift, G.W., Thermoacoustic engines and refrigerators. Encyclopedia of Applied Physics,1997.21:p.245-264.
    57. Rawlins, W., Radebaugh, R., Bradley, P.E., Timmerhaus, K.D. Energy flows in an orifice pulse tube refrigerator, in Advances in Cryogenic Engineering.1994.
    58. Radebaugh, R., Huang, Y.H., O'Gallagher, A., Gary, J., Calculated regenerator performance at 4 K with helium-4 and helium-3, in Advances in Cryogenic Engineering, Vols 53a and 53b, J.G. Weisend, et al., Editors.2008. p.225-234.
    59. 黄永华,陈国邦,V.D. Arp氦-3热物性程序:He3Pak,版本1.1.2006,中国浙江大学与美国Cryodata公司.
    60. Gary, J., O'Gallagher, A., REGEN3.3:USER MANUAL.2006.
    61. Radebaugh, R., O'Gallagher, A., Regenerator operation at very high frequencies for micro-cryocoolers, in Advances in Cryogenic Engineering 51B, J.G. Weisend, Editor. 2006, Plenum Press:New York. p.1919-1928.
    62. Nguyen, C., Yeckley, A., Culler, A., Hydrogen/oxygen propellant densifier using a two—stage pulse tube cryocool. Advances in Cryogenics Engineering,2004.49(B):p. 1703-1709.
    63. Yoshimura, N., Zhou, S.L., Matsubara, Y, Chandratilleke, G.R., Ohtani, Y, Nakagome, H., Okuda, H., Shinohara, S., Performance dependence of 4K Pulse Tube Cryocooler on working pressure, in Cryocooler 10.1999. p.227-232.
    64. Chan, C.K., Tward, E., Multi-stage pulse tube cooler.1992.5107683.
    65. Wang, C., Cai, J.H., Zhu, X.H., Miniaturization of a co-axial pulse tube cooler with linear motor drive compressor. Adv. Cryo. Eng.,1996.41:p.1419-1425.
    66. Thummes, G., Bender, S., Heiden, C., Approaching the 4He lambda line with a liquid nitrogen precooled two-stage pulse tube refrigerator. Cryogenics,1996.36(9):p. 709-711.
    67. ter Brake, H.J.M., Wiegerinck, G.F.M., Low-power cryocooler survey. Cryogenics, 2002.42(11):p.705-718.
    68. Qiu, L.M., He, Y.L., Gan, Z.H., Zhang, X.B., Chen, G.B., Regenerator performance improvement of a single-stage pulse tube cooler reached 11.1K. Cryogenics,2007. 47(1):p.49-55.
    69. Qiu, L.M., He, Y.L., Gan, Z.H., Chen, G.B., A single-stage pulse tube cooler reached 12.6 K. Cryogenics,2005.45(9):p.641-643.
    70. Qiu, L.M., He, Y.L., Gan, Z.H., Chen, G.B., Development of a 4 K separate two-stage pulse tube refrigerator with high efficiency, in Advances in Cryogenic Engineering, Vols 51A and B, J.G. Weisend, et al., Editors.2006. p.845-852.
    71. Zhang, X.B., Qiu, L.M., Gan, Z.H., He, Y.L., CFD study of a simple orifice pulse tube cooler. Cryogenics,2007.47(5-6):p.315-321.
    72. Zhang, X.B., Gan, Z.H., Qiu, L.M., Liu, H.X., Computational fluid dynamic simulation of an inter-phasing pulse tube cooler. Journal of Zhejiang University-Science A,2008.9(1):p.93-98.
    73. Dong, W.Q., Qiu, L.M., Gan, Z.H., Sun, H., He, Y.L., Performance improvement of cold heat exchanger for high power single-stage pulse tube cooler. Cryogenics and Refrigeration, Proceedings, ed. R. Wang and P. Zhang.2008.196-199.
    74. Zhang, X.B., Qiu, L.M., Gan, Z.H., He, Y.L., Effects of reservoir volume on performance of pulse tube cooler. International Journal of Refrigeration-Revue Internationale Du Froid,2007.30(1):p.11-18.
    75. Gan, Z.H., Liu, H.Z., Cheng, Z.Z., Qiu, L.M., Chen, G.B., Experiment on a single-stage GM type pulse tube cryocooler near 20K. Icec 20:Proceedings of the Twentieth International Cryogenic Engineering Conference, ed. L. Zhang, L. Lin, and G.B. Chen.2005.221-224.
    76. Gan, Z.H., Thummes, G., Temperature hysteresis in a GM-Type orifice pulse tube refrigerator. Icec 20:Proceedings of the Twentieth International Cryogenic Engineering Conference, ed. L. Zhang, L. Lin, and G.B. Chen.2005.297-300.
    77. Gan, Z.H., Dong, W.Q., Qiu, L.M., Zhang, X.B., Sun, H., He, Y.L., Radebaugh, R., A single-stage GM-type pulse tube cryocooler operating at 10.6 K. Cryogenics,2009. 49(5):p.198-201.
    78. Qiu, L.M., He, Y.L., Gan, Z.H., Wan, L.H., Chen, G.B., A separate two-stage pulse tube cooler working at liquid helium temperature. Chinese Science Bulletin,2005. 50(10):p.1030-1033.
    79. Radebaugh, R., Marquardt, E., Bradley, P., Development of a Pulse Tube Refrigerator for Millimeter Array Sensor Cooling:Phase I. ALMA Memo,1999.281:p.1-26.
    80. 陈国邦,最新低温制冷技术,ed.1.2003:机械工业出版社.
    81. Barron, R., Cryogenics systems 2nd Edn.1986, New York, USA:McGraw Hill Book Co.
    82. 党海政,梁惊涛,周远,蓄冷器填料非金属化性能变化的机理分析.工程热物理学报,2005.26:p.29-31.
    83. 胡进勤,斯特林型脉管制冷机的理论和实验研究.浙江大学硕士学位论文,2007.
    84. Radebaugh, R., Development of the pulse tube refrigerator as an efficient and reliable cryocooler. Proc. Institute of Refrigeration(London),1999-2000.
    85. Radebaugh, R., Lewis, M., Luo, E., Pfotenhauer, J.M., Nellis, G.F., Schunk, L.A., Inertance Tube Optimization for Pulse Tube Refrigerators. AIP Conference Proceedings,2006.823:p.59-67.
    86. 李卓裴,甘智华,陈杰,邱利民,张小斌,张学军,液氦温区回热器高频损失特性研究.工程热物理学报,2010.31(9):p.1449-1452.
    87. 甘智华,李卓裴,陈杰,邱利民,代黎,带预冷的4K斯特林型脉管制冷机设计.工程热物理学报,2009.30(003):p.378-380.
    88. Gardner, D.L., Swift, G.W., Use of inertance in orifice pulse tube refrigerators. Cryogenics,1997.37(2):p.117-121.
    89. 罗志昌,流体网络理论.机械工业出版社,1988.
    90. Lemmon, E.W., McLinden, M.O., Huber, M.L., Reference Fluid Thermodynamic and Transport Properties. NIST Standard Reference Database 23, Version 7.1,2006.
    91. Timmerhaus, K.D., Flynn, T.M., Cryogenic Process Engineering.1989.
    92. 何永林,大功率单级G-M型脉管制冷机的理论与试验研究.浙江大学博士学位论文,2007.
    93. URL:http://www.lakeshore.com/temp/sen/crtd.html.
    94. 严兆大,热能与动力工程测试技术(第2版).2006,北京:机械工业出版社.
    95. Marquardt, E., Radebaugh, R., Kittel, P., Design equations and scaling laws for linear compressors with flexure springs, in Cryocoolers 7.1992, Plenum Publishing Corp.: Santa Fe. p.783-804.
    96. Yang, L.W., Dietrich, M., Thummes, G. Phase shift and compressor efficiency in Stirling-type pulse tube coolers. in ICEC 19.2003. New Delhi:Narosa Publishing House.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700