宇宙线测试平台研制与核碰撞中涨落现象研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核物理与粒子物理是研究物质基本结构的科学,这种研究是通过实验现象、实验数据、模拟计算和理论模型来对物质之间的相互作用和基本规律进行认识而实现的。实验中,根据不同粒子与物质的相互作用机制,人们设计了各种不同的探测器,研究物质与射线通过相互作用后产生的粒子的能量、动量、运动轨迹、带电的电性等性质,从而揭示物质的基本结构。高能物理界在建造加速器的同时,也建造了复杂的、大型的探测器系统(即谱仪),对粒子打靶和对撞产生的末态粒子进行探测研究。未来新探测器技术的开发以及研究,对于粒子物理学的持续发展具有重大的意义。
     本文的研究内容主要分为两部分,从第一章到第五章是作者对高能探测器的设计、制作、测量和数据分析的研究,第六章是理论模型方面的研究。
     第一、二和三章,介绍了宇宙线通用测试平台的研究。第一章是测试平台的设计背景,以及设计方案和原理。第二章主要利用宇宙线和采用有像增强功能的电荷耦合器件(ICCD)相机并行读出定位,测量了时间探测器的时间分辨。实验结果表明,时间探测器可以达到起始时间精度好于200ps,满足通用探测器测试平台的设计要求。第三章研究了测试平台的定位探测器电阻性极板室(RPC)的读出系统,根据实验测量数据,提出使用一个新型读出系统方案:激光器加ICCD读出,并对该方法进行了可行性研究,实验结果表明RPC工作在流光模式下,可以使小激光器发光。
     本文第四章对新型厚气体电子倍增器(THGEM)进行研究。介绍了THGEM探测器的工作原理,国产化生产的THGEM的结构特点以及制作步骤,重点研究了大面积THGEM (10x10cm2和20×20cm2)的工作性能,介绍了应用情况。本文第五章对CsI (Na)晶体探测Cherenkov光,进而用于粒子鉴别的可行性进行了初步研究。结果表明,CsI (Na)晶体在一定条件下可以探测到粒子的Cherenkov光。
     本文第六章研究了多源热模型,利用该模型分析了中高能强子-核(hA)及核-核(AA)碰撞中产生的末态核碎片的多重数分布,高能AA碰撞中一些其他整体观测量的逐事例涨落,以及低能重离子反应中轻带电粒子和蒸发余核的能谱。该模型能够很好地描述相关实验数据,这意味着,核碰撞中除了种类繁多的个性特征外,还蕴含着更基本的共性规律。
Nuclear physics and particle physics are subjects to research into the structure of matter. The research is through the experimental phenomena, the experiment data, the simulation calculation and theoretical model to study the material interactions and the most basic rules. According to the interactions between different particles and the materials, the physicists design different detectors to research the final-particles generated from interactions between material and ray, and get the final-particles energy, momentum, track, charge and so on. The high-energy physicists not only build the accelerators, but also build complex and large detector systems (spectrometers), to research the final-particles in fixed-target and collider experiments. So the new detector technology research for particle physics development is great significance.
     This thesis contains mainly two parts. The first part includes chapters1-5which investigate high-energy detectors including the design, manufacture, measurement, and data analysis. The second part includes chapter6which presents a modeling work.
     The first three chapters introduce the study of the common platform based on cosmic ray. The first chapter gives the background, principle, and design of the platform. The second chapter presents the time resolution of a Time-Of-Fly detector by using cosmic ray and the Intensified Charge-Coupled Device (ICCD) camera. It is shown that the time resolution of the Time-Of-Fly detector is better than200ps which meet the requirement of the platform. In the third chapter, the read out system of the Resistive Plate Chamber (RPC) detector is studied. According to the experimental data, a new solution method, laser and ICCD, is suggested. From the result we know that the RPC signal can make laser lighting and the solution is feasible.
     In the fourth chapter, a new detector, Thick Gaseous Electron Multipliers (THGEM), is investigated on its working principle, localization of structural characteristics, and production process. We focus our attention on the performances of two large-area THGEMs with sizes of10×10cm2and20×20cm2respectively. In the fifth chapter, a study is made to detect the Cherenkov ray by using CsI (Na), and this method can be used for particle identification. The results show that Csl (Na) can detect the Cherenkov ray.
     In the sixth chapter, the multiplicity distributions of nuclear fragments in hadron-nucleus (hA) and nucleus-nucleus (AA) collisions at intermediate and high energies, the event-by-event fluctuations in some global observables in AA collisions at high energies, and the energy spectra of light charged particles and evaporation residues in heavy ion induced reactions at low energies are investigateds by using the multisource thermal model. The modeling results are in agreement with the experimental data. This indicates that, except for special characteristics, common laws exist usually in nuclear collisions.
引文
[1]Perkins D H. Introduction to High Energy Physics[M]. The 4th Edition. Cambridge University Press,2000:1-33.
    [2]章乃森.粒子物理学(第一版)[M].北京:科学出版社,1978:346-358.
    [3]中国科学院高能物理研究所.北京正负电子对撞机重大改造工程BEPC Ⅱ-建设报告-BESⅢ探测器[R],2003,7:60-170.
    [4]刘建北,秦中华,伍灵慧,等BESⅢ漂移室模型的宇宙线测试.核电子学与探测技术[J],2005,25(4):353-357.
    [5]尚雷,蔡晓,王曼,等.利用宇宙线对BESIII量能器CsI(T1)晶体探测器单元的测量.中国物理C[J],2007,31(2):177-182.
    [6]蔡啸,尚雷,边渐明,等CsI(T1)晶体量能器探测单元的宇宙线实验的建立与调试.核电子学与探测技术[J],2008,28(2):386-390.
    [7]李家才,吴元明,沈激,等BEPC电子直线加速器束流线改进和e,π试验束.中国物理C[J],2004,28(12):1269-1278.
    [8]王晓东.暗物质探测中的反符合读出研制及BGO量能器改造[D].山西大学硕士论文,2010:36-47.
    [9]Wilson G J. Progress in Cosmic Ray Physics(Vol.l)[M], Amsterdam:North-Holland, 1952.
    [10]Hayakawa S. Cosmic Ray Physics[M], New York:Wiley-Inter science,1969.
    [11]Yin J, Ye Y L, Ban Y, et al. Study of an avalanche-mode resistive plate chamber. J. Phys. G:Nucl. Phys[J],2000,26(8):1291-1298.
    [12]Zhang J W, Li R B, Du Z Z. Study of Different Gas Mixtures for RPC Detector. High Energy Physics and Nuclear Physics(CPC)[J],2003,27(11):1019-1022.
    [13]单增罗布,孟宪茹,袁爱芳,等.羊八井ARGO阵列结构的研究.西藏大学学报[J],2004,19(4):81-84.
    [14]王孝良,王朝俊,王德武,等.海平面宇宙线μ子垂直绝对强度及积分动量谱测量.高能物理与核物理[J],1983,7(4):401-407.
    [15]Fabjan C W, Fischer H G. Particle detectors. ReP. Prog. Phys.[J],1980,43: 1003-1005.
    [16]王德武,楼家恕,李志刚,等.高密度多丝室中性粒子探测器的研究.高能物理与核物理(CPC)[J],1987,11(5):589-595.
    [17]吕军光,胡敬亮,郑阳恒,等.双层飞行时间探测器(TOF)的性能研究.高能物理与核物理(CPC)[J],1999,23(6):505-511.
    [18]Stanford Computer Optics Inc. The most compact intelligent ICCD nano-fast camera system[OL]. [2012]. http://www.stanfordcomputeroptics.com/PDF/4e-data.pdf
    [19]Saint-Gobain Ceramics & Plastics Inc. Plastic Scintillating Fibers[OL]. [2012]. http://www.detectors.saint-gobain.com/uploadedFiles/SGdetectors/Documents/Brochures/ Scintillating-Optical-Fibers-Brochure.pdf
    [20]Fu Z W, Qian S, Ning Z, et al. Chinese Physics C (CPC)[J],2011,35(10):946-951.
    [21]王贻芳.大亚湾反应堆中微子实验.中国基础科学[J],2007,1:20-25.
    [22]姚宁,张飞云,陈静.阻性板表面光洁度对RPC性能的影响.中国测试技术[J],2008,34(1):43-49
    [23]Walter Janssen波导与带状线[M].北京:国防工业出版社,1981:133-145.
    [24]邓志杰,郑安生.半导体材料[M],北京:化学工业出版社,2004:215-247.
    [25]Sauli F. GEM:A new concept for electron amplification in gas detectors. Nucl. Instrum. Methods Phys. Res.,Sect. A [J],1997,386:531-534.
    [26]Chechik R, Breskin A, Shalem C, et al. Thick GEM-like hole multipliers:properties and possible applications. Nucl. Instrum. Methods Phys. Res.,Sect. A [J],2004,535: 303-308.
    [27]Breskin A, Alon R, Cortesi M, et al. A concise review on THGEM detectors. Nucl. Instrum. Methods Phys. Res.,Sect. A [J],2009, A598:107-111.
    [28]Shalem C, Chechik R, Breskin A, et al. Advances in Thick GEM-like gaseous electron multipliers-Part Ⅱ:Low-pressure operation. Nucl. Instrum. Methods Phys. Res.,Sect.A[J],2006,558.
    [29]安正华,蔡晓,董明义,等.单层THGEM气体探测器的实验与模拟研究.第七届全国核仪器及其应用学术会议暨全国第五届核反应堆用核仪器学术会议文章[C],2009:146-179.
    [30]AN Z H, Lii J G, Wang Z G, et al. Experimental study on the performance of a single-THGEM gas detector. Chinese Physics C [J],2010,34(1):83-87.
    [31]Liu H B, Zheng Y H, Xie Y G, et al. Study of the THGEM detector with a reflective CsI photocathode. Chinese Physics C [J],2011,35(4):363-367.
    [32]安正华.基于CCD光读出的气体闪烁探测器研制[D].中国科学院高能物理研究所博士论文,2009:36-47.
    [33]Zhang A W, Yu B X, Xie Y G et al. Experimental study of a THGEM detector with mini-rims. Chinese Physics C [J],2012,36(2):142-145.
    [34]M. Alexeev, R Birsa, F Bradamante, et al. The quest for a third generation of gaseous photon detectors for Cherenkov imaging counters. Nucl. Instrum. Methods Phys. Res.,Sect. A [J],2009,610:174-177.
    [35]中国科学院高能物理所.北京正负电子对撞机重大改造工程BEPCⅡ-建设报告-BESⅢ探测器[R].2003:119-131.
    [36]Yoshimura Y, Maki A, Suzuki I, et al. New Lead Glassses for Cherenkov Counters. Nucl ear Instruments and Methods [J],1975,126:541-547.
    [37]孙希磊.暗物质探测数字量能器研究与CsI(Na)晶体性能研究[D].中国科学院高能物理研究所博士论文,2011.
    [38]Zeitlin C, Heilbronn L, Miller J, et al. Heavy fragment production cross sections from 1.05 GeV/nucleon 56Fe in C, Al, Cu, Pb, and CH2 targets. Phys. Rev.C [J],1997,56: 388-397.
    [39]Westfall G D, Wilson L W, Lindstrom P J, et al. Fragmentation of relativistic 56Fe. Phys. Rev. C [J],1979,19:1309-1323.
    [40]Tsao C H, Silberberg R, Barghouty A F, et al. Scaling algorithm to calculate heavy-ion spallation cross sections. Phys. Rev. C[J],1993,47:1257-1262.
    [41]Webber W R, Kish J C, and Schrier D A. Individual charge changing fragmentation cross sections of relativistic nuclei in hydrogen, helium, and carbon targets. Phys. Rev. C [J],1990,41:533-546.
    [42]Webber W R, Kish J C, Rockstroh J M, et al. Production Cross Sections of Fragments from Beams of 400-650 MeV per Nucleon 9Be, 11B,12C, 14N,15N,16O,20Ne,22Ne,56Fe and 58Ni Nuclei Interacting in a Liquid Hydrogen Target. Ⅰ. Charge Changing and Total Cross Sections. Astrophys. J [J],1998,508:940-948.
    [43]Webber W R, Kish J C, Rockstroh J M, et al. Production Cross Sections of Fragments from Beams of 400-650 MeV per Nucleon 9Be, 11B,12C,14N,15N, 16O,20Ne,22Ne,56Fe and 58Ni Nuclei Interacting in a Liquid Hydrogen Target. Ⅱ. Isotopic Cross Sections of Fragments. Astrophys. J. [J],1998,508:949-959.
    [44]Meulders J P, Koning A, and Leray S, High and Intermediate Energy Nuclear Data for Accelerator-Driven Systems (HINDAS Final Report) [R]. Contract number: FIKW-CT-2000-00031,2005, January.
    [45]Letourneau A, Galin J, Goldenbaum F, et al. Neutron production in bombardments of thin and thick W, Hg, Pb targets by 0.4,0.8,1.2,1.8 and 2.5 GeV protons. Nucl. Instrum. Methods Phys. Res.,Sect. B [J],2000,170:299-322.
    [46]Leray S et al. Spallation neutron production by 0.8,1.2, and 1.6 GeV protons on various targets. Phys. Rev. C [J],2002,65:044621.
    [47]Herbach C M, Hilscher D, Jahnke U, et al. Charged-particle evaporation and pre-equilibrium emission in 1.2 GeV proton-induced spallation reactions. Nucl. Phys. A [J],1994,765:426-463.
    [48]Fredriksson S, Eilam G, Berlad G, and Bergstrom L. High-energy collisions with atomic nuclei:The experimental results. Phys. Rep.[J],1987,144:187-320.
    [49]Villagrasa-Canton C et al. Spallation residues in the reaction 56Fe+p at 0.3A,0.5A, 0.75A,1.0A, and 1.5A GeV. Phys. Rev. C [J],2007,75:044603.
    [50]Napolitani P, Schmidt K H, and Tassan-Got L. Intermediate-mass fragments from fission and multifragmentation in the spallation of 136Xe [OL]. arXiv:0806.3372v1 [nucl-ex],2008.
    [51]Benlliure J, Fernandez-Ordonez M, Audouin L, et al. Production of medium-mass neutron-rich nuclei in reactions induced by 136Xe projectiles at 1 A GeV on a beryllium target. Phys. Rev. C [J],2008,78:054605.
    [52]Henzlova D, et al. Experimental investigation of the residues produced in the 136Xe+Pb and 124Xe+Pb fragmentation reactions at 1 A GeV. Phys. Rev. C [J],2008,78: 044616.
    [53]Chemakin I, et al. Measuring centrality with slow protons in proton-nucleus collisions at 18 GeV/c. Phys. Rev. C [J],1999,60:024902.
    [54]Hegab M K and Hufner J. How often does a high-energy hadron collide inside a nucleus? Phys. Lett. B [J],1981,105:103-106.
    [55]Andersson B, Otterlund I, and Stenlund E. On the correlation between fast target protons and the number of hadron-nucleon collisions in high-energy hadron-nucleus reactions. Phys. Lett. B[J],1978,73:343-346.
    [56]Soltz R A, Newby R J, Klay J L, et al. Centrality dependence of the thermal excitation-energy deposition in 8-15 GeV/c hadron-Au reactions. Phys. Rev. C [J],2009, 79:034607.
    [57]Liu F H. Unified description of multiplicity distributions of final-state particles produced in collisions at high energies. Nucl. Phys. A [J],2008,810:159-172.
    [58]Liu F H and Li J S. Isotopic production cross section of fragments in 56Fe+p and 136Xe(124Xe)+Pb reactions over an energy range from 300A to 1500A MeV. Phys. Rev. C [J],2008,78:044602.
    [59]Abduzhamilov A, Barbier L, Chernova L P, et al. Charged-particle multiplicity and angular distributions in proton-emulsion interactions at 800 GeV. Phys. Rev. D [J],1987, 35:3537-3540.
    [60]Heckman H H, Crawford H J, Greiner D E, et al. Central collisions produced by relativistic heavy ions in nuclear emulsion. Phys. Rev. C [J],1978,17:1651.
    [61]Jain P L, Sengupta K, and G. Singh. Production of fast and slow particles in nucleus-nucleus collisions at ultrarelativistic energies. Phys. Rev. C [J],1991,44:844-853.
    [62]Jain P L and Singh G. Rise and fall of multifragment emission at relativistic energy. Phys. Rev. C [J],1992,46:R10-R14.
    [63]Jain P L and Singh G. Multifragment disintegration of 238U at IA GeV. Phys. Rev. C [J],1993,47:2382-2385.
    [64]Joseph R R, Ojha I D, Singh B K, and Tuli S K. Some general properties of projectile fragments in 40Ar interactions in nuclear emulsions at 1.8 A GeV. J. Phys. G [J],1992,18: 1817-1826.
    [65]Singh V, Tuli S K, Bhattacharjee B, et al. Multifragmentation Studies in 84Kr Interactions with Nuclear Emulsion at around 1 A GeV [OL]. arXiv:nucl-ex/0412049, 2004.
    [66]Jia H M. Master Degree Thesis, Shanxi Normal University, Linfen, Shanxi, China, 2005.
    [67]Liu F H, Abd Allah N N, and Singh B K. Integral frequency distribution of projectile alpha fragments in nuclear multifragmentations at intermediate and high energies. Nucl. Phys. B (Proc. Supp.)[J],2008,175-176:54-57.
    [68]Dabrowska A, Szarska M, Trzupek A, et al. Multifragmentation of Lead Nuclei at 158 A GeV. Acta Phys. Pol. B [J],2001,32(10):3099-3115.
    [69]Dabrowska A, Wosiek B, and Waddington C J. Energy Dependence of the Fragmentation of the Au Projectile in Au-Emulsion Interactions. Acta Phys. Pol. B [J], 2000,31(3):725-748.
    [70]Liu F H, Yuan Y, Zhang Y D, and Li H L. Multiplicity Distribution of Projectile Fragments in Au-Em Collisions at 10.7A GeV. Acta Phys. Pol. B [J],2008,39(8): 1969-1976.
    [71]Aggarwal M M et al. (WA98 Collaboration), Event-by-event fluctuations in particle multiplicities and transverse energy produced in 158A GeV Pb+Pb collisions. Phys. Rev.C,2002,65:054912.
    [72]AppelshAauser H et al. (NA49 Collaboration). Event-by-event fluctuations of average transverse momentum in central Pb+Pb collisions at 158 GeV per nucleon. Phys. Lett.B,1999,459:679-686.
    [73]Adcox K et al. (PHENIX Collaboration). Event-by-event fluctuations in mean pr and mean eT in (?)=130 GeV Au+Au collisions. Phys. Rev. C [J],2002,66:024901.
    [74]Viesti G, Fornal B, Fabris D, et al. Decay of deformed 59Cu nuclei. Phys Rev [J], 1988, C38:2640.
    [75]Huizenga J R, Behkami A N, Govil I M, et al. Influence of rotation-induced nuclear deformation on a-particle evaporation spectra. Phys Rev [J],1989, C40:668-680.
    [76]Dey A, Bhattacharya C, Bhattacharya S, et al. Characterization of fragment emission in 20Ne(7-10 MeV/nucleon)+12C reactions. Phys Rev [J],2007, C76:034608.
    [77]Dey A, Bhattacharya S, Bhattacharya C, et al. Evidence of large nuclear deformation of 32S* formed in the 20Ne+12C reaction. Phys Rev [J],2006, C74:044605.
    [78]Bhattacharya C, Dey A, Kundu S, et al. Survival of orbiting in 20Ne (7-10 MeV/nucleon)+12C reactions. Phys Rev [J],2005, C72:021601 (R).
    [79]Gomez del Campo J, Shapira D, Korolija M, et al. Light particle-evaporation residue coincidences for the 79Br+27Al system at 11.8 MeV/nucleon. Phys Rev [J],1996, C53: 222-236.
    [80]Shapira D, Gomez del Campo J, Korolija M, et al. Collisions induced by 11 MeV/nucleon 58Ni+24Mg. Phys Rev [J],1997, C55:2448-2457.
    [81]Bhattacharya C, Rousseau M, Beck C, et al. Role of deformation in the decay of 56Ni and 40Ca di-nuclei. Nucl Phys A [J],1999,654:841c-844c.
    [82]Gomez del Campo J, Shapira D, McConnell J, et al. Preequilibrium emission observed in the correlation between light particles and evaporation residues for the 84Kr+27Al system. Phys Rev [J],1999, C60:021601.
    [83]Bandopadhyay D, Bhattacharya C, Krishan K, et al. Exclusive light particle measurements for the system 19F+12C at 96 MeV. Phys Rev [J],2001, C64:064613.
    [84]Dey A, Bhattacharya S, Bhattacharya C, et al. Light-charged-particle emission from hot 32S* formed in 20Ne+12C reaction. Eur Phys Jour A [J],2009,41(1):39-51.
    [85]Westfall G D, Wilson L W, Lindstrom P J, et al. Phys Rev [J],1979, C19:1309.
    [86]Tsao C H, Silberberg R, Barghouty A F, et al. Phys Rev [J],1993, C47:1257.
    [87]Soltz R A, Newby R J, Klay J L, et al. Phys Rev [J],2009, C79:034607.
    [88]Benlliure J, Fernandez-Ordonsez M, Audouin L, et al. Production of medium-mass neutron-rich nuclei in reactions induced by 136Xe projectiles at 1 A GeV on a beryllium target. Phys. Rev. C [J],2008,78:054605.
    [89]Liu F H. Unified description of multiplicity distributions of final-state particles produced in collisions at thigh energies. Nucl. Phys. A [J],2008,810:159-172.
    [90]Liu F H, Li J S. Isotopic production cross section of fragments in 56Fe+p and 136Xe(124Xe)+Pb reactions over an energy range from 300A to 1500A MeV. Phys. Rev. C[J],2008,78:044602 [1-13].
    [91]Liu F H, Lu Q W, Li B C, et al. A description of the multiplicity distributions of nuclear fragments in hA and AA collisions at intermediate and high energies. Chin. J. Phys.[J],2011,49:601-620.
    [92]刘福虎.原子核乳胶中的高能碰撞过程[D].中国原子能科学研究院博士论文,1993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700