基于光纤传感技术的油浸式电力变压器状态多参量在线检测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近些年来,随着国内电力需求和电网规模的扩大,电力变压器等级和容量不断提高,变压器故障率和修复时间也随之不断增大。长期研究表明,变压器内部热状态以及绝缘油中气体组分和浓度很大程度地反映了变压器的热电故障程度和使用寿命,研究和发展变压器内部温度和绝缘油气体状态在线检测技术具有重要的理论和现实意义。变压器内部环境具有电压高、电磁干扰强、空间狭小、腐蚀性强等特点,变压器状态稳定、准确和快速检测及故障精确预测已经成为亟待解决和突破的关键技术难题。光纤半导体传感技术和半导体激光器技术的不断发展为解决该难题提供了可行的途径,但目前变压器内部状态检测中仍存在测量参数单一、抗干扰能力差、灵敏度有限、响应慢、多气体测量交叉影响等问题,尚不能满足变压器内部状态实时准确监测和故障精确预测的需要。
     针对以上问题,利用光纤半导体传感技术、气体光谱测量技术和变压器故障分析技术相结合,在研究半导体温度传感理论、气体直接吸收光谱理论和光声光谱理论基础上,建立了基于CCD衍射波长解调技术的光纤半导体温度和基于超窄线宽激光特性的光纤气体传感模型,通过设计高耦合率、小体积GaAs探头和高灵敏度检测气室,搭建了适用于变压器内部主要部件温度和绝缘油中气体检测的新型传感系统,可实现变压器内部多参数(温度和绝缘油中气体)的高精度、高灵敏度、快速在线测量,有效提高电力变压器状态在线检测和故障预测的技术水平。本文主要研究内容如下:
     (1)从油浸式变压器内部结构出发,研究变压器内部发热(损耗)、散热原理及温升特性,分析变压器主要过热故障原因及其温度特性,列出了主要部件的温升限值;详解变压器正常运行和电热性故障时油中气体的产生原理及气体在油中溶解和扩散过程,得出了变压器内主要部件故障类型与油中气体组分和含量的关系,为油浸式电力变压器运行状态在线检测的实现奠定了一定的理论基础。
     (2)针对以往变压器内部温度在线测量中响应速度慢、抗干扰能力差、匹配性不好等问题,在详细分析半导体材料光学性质(光学常数和本征吸收)基础上,深入研究半导体材料温度传感原理,揭示了GaAs晶体吸收光波长随温度变化的关系,建立了GaAs晶体温度-波长传感模型,通过设计新型反射式GaAs传感探头和基于CCD衍射技术的波长解调系统,搭建了新型光纤半导体温度传感系统。新型GaAs探头具有体积小、耦合率高、电绝缘性好、抗腐蚀能力强,匹配性好等特点;基于CCD衍射技术的新型波长解调系统有效克服了半导体温度传感光强解调易受光源抖动和光路扰动影响的缺点。通过不同温度下GaAs反射光谱测量实验,验证了GaAs温度-波长传感特性,温度传感实验表明:0℃~235℃测量精度为±0.5℃,分辨率为0.1℃,响应时间小于6s;长时间实验温度最大波动为±0.3℃;强磁场环境下15℃~175℃测量精度仍为±0.5℃。此系统测量范围广、精确度高、响应时间快、稳定性好、抗电磁干扰能力强,非常适合用于油浸式电力变压器内部热状态在线检测,可实现变压器内主要部件温度的实时在线测量和及时预警。
     (3)针对变压器油中气体在线检测存在测量参数单一、抗干扰能力差、多气体测量交叉影响等问题,深入分析气体分子选择吸收理论、气体吸收谱线线型和线宽理论、气体吸收谱线强度分布理论,以气体吸收光谱理论和Beer-Lambert定律为基础建立了开放式差分检测、单光源多气体检测和多参数直接检测传感模型,搭建了适用于变压器油中气体检测的新型传感系统并进行了实验分析。
     首先,通过设计低噪声反射式结构长光程气室,利用超窄线宽外腔式半导体激光器特性(输出激光精确锁定气体吸收和非吸收峰且线宽远小于单条气体吸收谱线宽)、改进的差分检测模型以及光学时分、空分复用技术相结合,精确测量并分析不同压强下1572.66nm附近CO2吸收谱线,实现了CO2气体的多点高精度快速测量,其结构简单,易于实现,可消除变压器油中其它气体成分和灰尘颗粒的干扰,非常适合开放式环境的变压器气体检测,测量精度(相对误差<3%)和响应时间(<8s)均达到波长调制型系统检测效果;其次,基于光谱调制和谐波探测技术,利用单一高频三角信号调制激光光谱,通过设计具有横向空间小、长光程特点的串联结构气室,结合超窄线宽激光和光源波长高精度调节特性,实现了单光源多组分气体(CO、CO2、CH4)高精度多点测量,CO、CO2、CH4多组分气体浓度测量最大相对误差小于2%,动态响应时间均小于10s,长时间实验最大相对波动均小于1%,可有效解决变压器油中多气体测量交叉影响的问题;最后,基于超窄线宽激光特性和激光器波长扫描技术,通过对不同温度下CO气体在6354.179cm-1和6383.09cm-1附近吸收谱线对的精确测量和分析,利用谱线对积分面积比与温度关系(直接测温法)并结合浓度差分检测模型实现了CO气体多参数(温度和浓度)同时在线检测,其结构简单,便于操作,温度测量最大相对误差小于4%,长时间实验最大相对波动小于3.5%;浓度测量最大相对误差小于5%,最小检测限为0.05%。甲烷、一氧化碳、二氧化碳等气体是变压器故障气体主要组成部分,其开放式、单光源多组分、直接式多参数高精度多点快速在线检测的实现可有效提高电力变压器油中溶解气体在线分析和故障预测水平。
     (4)针对变压器油中微量气体检测存在测量精度有限、多气体测量交叉影响等问题,以光声效应原理和腔内增强吸收光谱理论为基础,利用超窄线宽半导体激光器特性建立了光声光谱式单光源多组分气体高灵敏度谐波检测模型和腔内激光衰荡时间与气体高灵敏度检测模型,搭建了适用于变压器油中微量气体检测的新型传感系统并进行了实验分析。
     研究光声池工作方式和结构特性,分析光声系统噪声的来源及特点,建立光声池设计优化基础理论,设计了新型结构一阶纵向多光程共振光声池,实现池内光声信号低噪声、高灵敏度检测;剖析谐振腔内激光传输特性及激光频率与谐振腔模式匹配方式,依据激光腔内耦合理论设计了由两块高反射率平凹透镜组成的低损耗调谐式光学衰荡腔,实现了激光频率和腔长的共同调谐。基于光谱调制技术和谐波检测技术,利用高频正弦信号调制激光光谱,并结合超窄线宽激光和光源波长高精度调节特性,设计了光声光谱式单光源多组分微量气体高精度实时在线检测系统,有效消除吸收池内背景噪声和光源抖动的影响,实验验证了系统调制幅度与二次谐波信号形状(峰值大小与半峰全宽比值)的关系,并确定了系统检测最佳调制幅度;C2H2、CO、CO2多组分气体浓度测量最大相对误差小于2%,最大相对波动小于1.5%,极限检测灵敏度可达10-6数量级,可有效解决变压器油中多组分微量气体测量灵敏度有限和交叉影响的问题。通过扫描衰荡腔长使入射激光频率与谐振腔模式相匹配并利用激光失谐技术快速切断腔内入射激光,精确测量衰荡时间值并根据衰荡时间—气体检测模型设计了腔增强吸收光谱式气体高灵敏度和高精度检测系统,利用新型衰荡腔超长光程吸收特点,精确测定并分析6518.824cm-1附近C2H2弱吸收谱线以及C2H2气体浓度与衰荡时间的关系;C2H2气体浓度测量最大相对误差小于2.5%,动态响应时间均小于10s,极限检测灵敏度为2x10-6,可有效解决变压器油中微量气体检测误差较大的问题。光声光谱式单光源多组分和腔增强吸收式高灵敏度气体检测系统实现了10-6数量级单一或多组分气体高精度快速在线测量,十分适合用于变压器油中微量气体高灵敏度在线检测,及时预报早期内部故障形成和发展情况。
In recent years, the level and capacity of power transformer improve continuously, with the increase in domestic demand for electricity and the grid size. However, at the same time transformer failure rate and repair time are also increasing. Long-term researches show that concentration and composition of oil-gas and internal temperature are related to the degree of faults and life of transformer. For this reason, the study of novel on-line inspection technology of internal temperature and gas in transformer has great significance both in theory and practical. However, the internal environment of transformer has features of high voltage, powerful electromagnetic influence, small space and strong Corrosion. It has become a key technology problem to be solved that detecting transformer condition and forecasting transformer faults at high accuracy and timely. The development of technologies of fiber and semiconductor sensing and semiconductor laser provide of feasible approach to solve this problem. Unfortunately, for now, the detecting technology of transformer internal condition still has disadvantages of single parameter, low anti-interference capacity, sensibility and accuracy, slow response and multi-gas interference, which can not well satisfied with the needs of real-time monitoring transformer and forecasting transformer at high accuracy currently.
     In response to above problems, combining fiber semiconductor sensing technology with gas spectrum measurement technology and transformer fault analysis technology, optic-fiber semiconductor temperature and optic-fiber gas sensing models are established based on researches of theoies of semiconductor temperature sensing, gas absorption spectrum and photoacoustic spectroscopy. Meanwhile, a novel GaAs probe with high coupling coefficient and a novel gas cells with high sensitivity are designed. Further temperature and gas inspection systems in transformer are also presented, which can be used in the measurement of multi-parameter at high accuracy, good sensibility and quick response in real time. As a result, the research effectively improves the level of transformer condition detection and fault prediction.
     The main research contents are as follows:
     (1) Based on the structure of oil-Immerse transformer, the characteristics of temperature increase and principle of fever and cooling are discussed. The reason of transformer overheating fault and its characteristics are also analyzed. Meanwhile, the limit of transformer temperature rise is provided. Furthermore, a detailed explanation of the principle of transformer gas at normal or non-normal work state and the dissolve and diffusion process about gas in transformer oil are introduced. Then the relationship between the types of transformer internal failures and concentration and composition of oil-gas is disclosed. Finally this part research lays possibility and a theory foundation for study of on-line inspection technology for oil-immersed transformer condition.
     (2) For the problem that the technology of on-line detection of transformer temperature has some disadvantages of slow response and poor anti-interference capability and matching, the relationship between temperature and the absorption wavelength of GaAs is revealed because of in-depth analysis of GaAs optical properties and research of temperature sensing principle of semiconductor. On the basis of above this relation, the GaAs temperature sensing model is established and the temperature sensing system is constructed in which a novel reflective sensing probe and wavelength demodulating system based on CCD and diffraction technology are also designed. The novel GaAs probe has advantages of small volume, high coupling coefficient, perfect insulation, strong resistance to corrosion and good matching and the novel wavelength demodulating system can eliminate the influence of intensity fluctuation of the light source and the disturbances of optical path. Reflectance spectra at different temperatures have verified the sensing characteristics of GaAs semiconductor in further. Finally the experimental results indicate that the system has accuracy of±0.5℃, resolution of0.1℃and response time of less than6s with the range of0-235℃, the maximum temperature fluctuations is±0.3℃and the accuracy of temperature measurement is also±0.5℃at strong magnetic field environment. In short, the system has advantages of wide measure range, high accuracy, strong anti-interference ability, good stability and quick response, which is very suitable for on-line monitoring of transformer internal temperature and pre-warning for transformer in time.
     (3) In view of the problems of single parameter and gas component, low anti-interference capacity and mutual interference of multi-component gas in transformer oil-gas inspection, the detection models of open-difference, multi-component gas with single laser and multi-parameters are established based on studies on the theories of gas absorption spectrum and Beer-Lambert Law. Simultaneously, the new gas detection systems according to the three models are developed and also verified by experiments.
     Firstly, CO2absorption spectra around1572.66nm at different temperatures are measured and the multi-point inspection of CO2at high accuracy are also achieved by means of combining the ECDL characteristic with SDM and TDM technologies, difference detection model and a low noise and long optical-path gas cell. The structure of the difference detection system is simple so this system can be accomplished easily. In addition, the system can eliminate the interference of other gas and dust and is so suitable for transformer oil-gas detection in open environment. Especially experimental results of the difference detection system is so similar to wavelength modulation system's. Secondly, a series gas cell with small size is designed and the high precision measurement of multi-component gas with single laser is carried out as well based on characteristic of Ultra-Narrow-Linewidth laser, high precision adjustment of laser wavelength, taking the sawtooth signal to modulate the spectrum of laser and harmonic detection technology. Furthermore the experiments indicate that the measurement relative error is less than2%, the system dynamic response time is less than10s and the relative concentration fluctuation is less than1%.Therfore, the system can eliminate the mutual interference of multi-componet gas in transformer oil-gas detection. Lastly, by measuring and analyzing the infrared absorption spectra of CO around6354.179cm-1and6383.09cm-1at different temperatures, a kind of detection system is designed based on the characteristics of Ultra-Narrow-Linewidth laser, the spectrum scanning technology and difference detection model which is simple and easy for handing. The results of experiments reveal that the temperature measurement relative error is less than4%, the relative temperature fluctuation is less than3.5%, the concentration measurement relative error is less than5%and the minimum detectable carbon monoxide is0.05%. Consequently, CH4, CO and CO2are the major components of fault gas of power transformer which are measured simultaneously at multi-parameter and high accuracy. It can improve the level of on-line monitoring of oil-gas and forecasting faults of power transformer.
     (4) For the problem that detection technology for transformer trace oil-gas has disadvantages of low accuracy and mutual interference of multi-component gas, the high sensitivity measurement models of multi-component gas with photoacoustic spectroscopy and ring-down time are built based on depth analysis of fundamentals of photoacoustic effect and theory of cavity enhanced absorption. Simultaneously, the new trace gas detection systems according to the two models are developed and also verified by experiments.
     According to operation-modes, structural characteristics of resonant photoacoustic cell and the source of photoacoustic system noise, an optimal design theory of resonant photoacoustic cell is built. Therewith, a novel first-longitudinal resonant photoacoustic cell with multi-optical path is designed which can effectively reduce the noise disturbance and improve sensitivity. Meanwhile, according to the theory of laser coupling and the characteristics of laser transmission and laser frequency overlaps with one of cavity modes in cavity, a low noise tunable optical cavity which is consisted of two mirrors with high reflectivity also is used as the absorption cell which can simultaneously tune operation between laser frequency and cavity length. As a result, by taking the sine signal to modulate the wavelength of laser and combining second harmonic signal detection technique with laser wavelength scanning technique and characteristics of Ultra-Narrow-Linewidth laser, the detection system of multi-component trace gas with single laser is achieved which is able to effectively eliminate the background noise and the influence of intensity fluctuation and the relationship between modulation depth and measured peak amplitude also is obtained. Multi-component gas detection experiments indicate that the measurement relative error is less than2%, maximum relative fluctuation is less than1.5%and the sensibility can reach the order of magnitude of10-6. So the system can eliminate the mutual interference of multi-component gas and improve sensitivity in trace oil-gas detection. Meanwhile, the input laser is switched off by using laser detuning technique then detection system of trace acetylene wih high sensibility and accuracy is constructed based on ring-down time measured at different concentrations. Therefore, the absorption spectra of CH4around6518.824cm-1and the relationship between concentration and ring-down time are measured and also analysed. Cavity enhanced absorption gas experiments indicate that the concentration measurement relative error is less than2.5%, the dynamic response time is less than10s, and the lowest detection limit is2×10-6. So the system can improve accuracy in trace oil-gas detection. In conclusion, the multi-component detection system with single laser and photoacoustic spectroscopy technology and cavity enhanced gas detection system can measure single or multi gas at magnitude of10-6. It is suitable for on-line detecting for trace oil-gas and forecasting the early internal faults of transformer in time.
引文
[1]梁文潮.我国区域电力市场研究[D].武汉:武汉理工大学,2004.
    [2]陈中涛.“十一五”期间我国能源市场供需前景研究[J].中国能源,2006,28(5):16-23.
    [3]蒋莉萍,张运洲.电网发展有关问题探讨[J].中国能源,2008,30(12):31-34.
    [4]金文龙,陈建华,李光范.全国110kV及以上等级电力变压器短路损坏事故统计分析[J].电网技术,1999,23(6):70-77.
    [5]付锡年,朱英浩,陆延秀,等.城市供电变压器发展趋势[J].电器工业,2004,5(5):34-38.
    [6]孙林,王梦云,翟向向,等.我国电力变压器发展现状及趋势[J].电力设备,2003,4(4):78-81.
    [7]陈维荣.电力系统设备状态监测的概念及现状[J].电网技术,2000,24(11):12-17.
    [8]H. T. Grimmelius, P. P. Meiler, H.L.M.M. Maas, et al.. Three state-of-the-art methods for condition monitoring[J]. IEEE Transactions on Industrial Electronics,1999,46(2):407-416.
    [9]陈化钢.电力设备预防性试验方法及诊断技术[M].北京:中国科学技术出版社,2002.
    [10]吴立增.变压器状态评估方法的研究[D].保定:华北电力大学,2005.
    [11]王梦云.2004年度110kV及以上变压器事故统计分析[J].电力设备,2005,6(11):31-37.
    [12]王梦云.110kV及以上变压器事故与缺陷统计分析[J].供用电,2007,24(1):1-5.
    [13]张植保.变压器原理及应用[M].北京:化学工业出版社,2007.
    [14]王世阁,钟洪壁.电力变压器故障分析与技术改进[M].北京:中国电力出版社,2004.
    [15]M. Duval. A review of faults detectable by gas-in-oil analysis in transformers[J]. IEEE
    Electrical Insulation Magazine,2002,18(3):8-10.
    [16]王晓莺,王建民,杨俊海,等.变压器故障与监测[M].北京:机械工业出版社,2004.
    [17]孙才新,陈伟根,李俭,等.电气设备油中溶解气体在线监测与故障诊断技术[M].北京:科学出版社,2003.
    [18]C.E.Lin, J.M. Ling, C.L. Huang. An expert system for transformer fault diagnosis using dissolved gas Analysis[J]. IEEE Trans. on Power Delivery,1993,8(1):231-238.
    [19]毛一之,王秀春,韩鹏.应用绕组测温装置测量变压器绕组温度的必要性和可行性分析[J].变压器,2004,41(9):13-17.
    [20]李景禄.变压器的过热性故障及其检测[J].变压器,1995,32(6):37-39.
    [21]钱政,孙焦德,袁克道,等.电力变压器绕组热点状态的在线监测技术[J].高电压技术,2003,29(9):26-28.
    [22]董其国.电力变压器故障与诊断[M].北京:中国电力出版社,2001.
    [23]马文烈.永昌电厂以油色谱分析为基础的变压器绝缘故障监测技术[D].重庆:重庆大学,2001.
    [24]雷晓梅,陈长乐.光纤温度传感器输出特性研究[J].光子学报,2007,36(2):324-327.
    [25]J. Jie, J. Qiang, L. Yi, et al.. Study on external-cavity semiconductor laser[J].Chinese Optics Letters,2003,1(3):147-148.
    [26]G. Casa, D. A.Parretta, A. Castrillo, et al.. Highly accurate determinations of CO2 line strengths using intensity-stabilized diode laser absorption spectrometry[J]. J. Chem. Phys.,2007, 127(8):1-10.
    [27]丁晖,梁建奇,崔俊红,等.窄带吸收光谱扫描技术在气体定量检测中的应用[J].光谱学与光谱分析,2010,30(3):667-671.
    [28]T. J. De Lyon, J. A. Roth, D. H. Chow. Substrate temperature measurement by absorption-edge spectroscopy during molecular beam empty of narrow-band gap[J]. Vacuum Science Technology (B),1997,15(2):329-336.
    [29]郭增军.基于光谱吸收光纤甲烷气体传感系统的理论与应用技术研究[D].秦皇岛:燕山大学,2002.
    [30]M. Gharavi, S.G.Buckley. Diode laser absorption spectroscopy measurement of line strengths and pressure broadening coefficients of the methane 2v3 band at elevated temperatures[J]. Journal of Molecular Spectroscopy,2005,229(1):78-88.
    [31]刘勇辉.变压器过热性故障的判断.变压器,2000,37(3):41-44.
    [32]G. Swift, T. S. Molinski, R. Bray, R. Menzies. A fundamental approach to transformer thermal modeling-part II:Field verification[J]. IEEE Transactions on Power Delivery,2001,16(2): 176-180.
    [33]D. Susa, M. Lehtonen, H. Nordman. Dynamic thermal modeling of distribution transformers[J]. IEEE Transactions on Power Delivery,2005,20(3):1919-1929.
    [34]Z. Radakovic, K. Feser. A new method for the calculation of the hot-spot temperature in power transformers with ONAN cooling[J]. IEEE Transactions on Power Delivery,2003,18(4): 1284-1292.
    [35]海瑛,钱苏翔,严拱标.油浸式大型变压器热点温度的动态模型[J].机电工程,2007,24(1):1-6.
    [36]电力工业部.中华人民共和国电力行业标准GB/T 15164-1994《油浸式电力变压器负载导则》[S],1994.
    [37]雷铭.电力设备诊断手册[M].北京:中国电力出版社,2001.
    [38]IEEE Guide for Loading Mineral-Oil-Immersed Power Transformers[S], IEEE Std C57.91, 1995.
    [39]陈淑谨,王世阁,刘富家.变压器绕组热点在线监测装置的研制与应用[J].变压器,2000,31(8):41-45.
    [40]周剑明.电磁场有限元综合模拟方法及大型变压器漏磁场的研究[D].武汉:武汉理工大学,1990.
    [41]M. K. Pradhan, T. S. Ramu. Prediction of hottest spot temperature (HST) in power and station transformers[J]. IEEE Transactions on Power Delivery,2004,18(4):1275-1283.
    [42]康雅华.电力变压器涡流损耗和温升的计算与分析[D].硕士学位论文,沈阳工业大学,2007.
    [43]G. Swift, T. S. Molinski, W. Lehn. A fundamental approach to transformer thermal modeling-part I:Theory and equivalent circuit[J]. IEEE Transactions on Power Delivery,2001, 16(2):171-175.
    [44]W. H. Tang, Q. H. Wu, Z. J. Richardson. Equivalent heat circuit based power transformer thermal model[J]. IEEE Proceedings-Electric Power Applications,2002,149(2):87-92.
    [45]W. H. Tang, Q. H. Wu, Z. J. Richardson. A simplified transformer thermal model based on thermal-electric analogy[J]. IEEE Transactions on Power Delivery,2004,19(3):1112-1119.
    [46]D. Susa, M. Lehtonen, H. Nordman. Dynamic thermal modelling of power transformers[J]. IEEE Transactions On Power Delivery,2005,20(1):197-204.
    [47]D. Susa, M. Lehtonen, H. Nordman. Dynamic thermal modeling of distribution transformers[J].IEEE Transactions on Power Delivery,2005,20(3):1919-1929.
    [48]D. Susa, M. Lehtonen. Dynamic thermal modelling of power transformers:Further development-Part ⅠⅡ[J]. IEEE Transactions on Power Delivery,2006,21(4):1961-1979.
    [49]江淘莎,李剑,陈伟根,等.油浸式变压器绕组热点温度计算的热路模型[J].高电压技术,2009,35(7):1635-1640.
    [50]潘翀.电力变压器绝缘故障诊断技术及热状态参量预测模型研究[D].重庆:重庆大学,2009.
    [51]W. J. McNutt, J. C. McIver, G. E. Leibinger. Direct measurement of transformer winding hot spot temperature [J]. IEEE Transaction on Power Apparatus and Systems,1984,103(6): 1155-1162.
    [52]尹海晶.基于红外测温技术的电力变压器过热故障在线监测系统的设计与开发[D].南京:南京理工大学,2010.
    [53]V. Kumar, D. Chandra. Fiber optic methane sensor for mines. Optiica Applicata.1997,27(4): 279-290.
    [54]W. Lampe, L. Pettersson, C. Ovren, et al.. Hot-spot measurements in power transformers[C]. Paris:International Conference on Large High Voltage Electric Systems,1984.
    [55]文林江.基于光纤荧光的电力设备温度检测系统的研究[D].沈阳:沈阳理工大学,2005.
    [56]梁微.油浸式变压器绕组温度在线测量的研究[D].沈阳:沈阳工业大学,2007.
    [57]靳伟,阮双琛等.光纤传感技术新进展[M].北京:科学出版社,2005.
    [58]M.Kim, J.Lee, J.Koo, et.. A study on internal temperature monitoring system for power transformer using pptical fiber Bragg grating sensors[C]. Electrical Insulating Materials, 2008,163-166.
    [59]H.J.Park, M.Song. Linear FBG Temperature Sensor Interrogation with Fabry-Perot ITU Multi-wavelength Reference[J]. Sensors,2008,8,6769-6776.
    [60]赵涛.基于光纤光栅温度传感的变压器内部温度监测原理及方法研究[D].重庆:重庆大学,2008.
    [6]]李进.基于FPGA的分布式光纤光栅变压器绕组温度在线监测的研究[D].秦皇岛:燕山大学,2010.
    [62]Y.Zhao, M.Rong, Y.B. Liao. Fiber-optic temperature sensor used for oil well based on semiconductor optical absorption[J]. IEEE Sensors Journal,2003,3(4):400-403.
    [63]Tingyun Wang, Chengmu Luo. Fiber-optic semiconductor absorption temperature sensor for electrical power system applications[C]. IMTC,2004,2375-2379.
    [64]A. Apelsmeiera, R. Gleixnera. Intensity referencing in an extrinsic optical fiber temperature sensor[J]. Procedia Engineering,2010,5:1095-1098.
    [65]常丹华,王延云.谱带吸收式光纤温度传感器[J].光子学报,2001,30(7):885-888.
    [66]王廷云,罗承沐,申烛.半导体吸收式光纤温度传感器[J].清华大学学报,2001,41(3):59-61.
    [67]李志刚,王宝光.基于光谱法测量变压器绕组温度的研究[J].仪器仪表学报,2003,24(4):1-2.
    [68]赵勇,荣民,王烨,等.基于半导体吸收原理的光纤温度传感器研究[J].光电子·激光,2003,14(2):140-142.
    [69]M.A. Soto, G. Bolognini, F. D. Pasquale. Analysis of optical pulse coding in spontaneous Brillouin-based distributed temperature sensors[J]. Optics Express,2008,16(23):19097-19111.
    [70]P. D. Dragic. Novel dual-Brillouin-frequency optical fiber for distributed temperature sensing[C]. Proc. of SPIE,7197(10):1-10.
    [71]卢文华,张海龙,关庆华,等.电力变压器绕组内部温度和应力的监测系统及其监测方法[P].中国专利:CN201010275013.1,2011-01-19.
    [72]于立朋,吕安强BOTDA技术在变压器绕组温度监测中的应用[J].电力系统通讯,201 1,32(225):47-51.
    [73]安晨光.变压器油中溶解气体在线监测关键技术研究[D].湖南:中南大学,2008.
    [74]刘虎威.气相色谱方法及应用[M].北京:化学工业出版社,2007.
    [75]周申范,宋敬埔,王乃岩.色谱理论与应用[M].北京:北京理工大学出版社,1994.
    [76]赵文彬.油浸式电力变压器绝缘状态的在线监测系统[D].西安:西安交通大学,2003.
    [77]M. Duval, Q.V. Ireq. A review of faults detectable by gas-in-oil analysis in transformers[J]. Electrical Insulation Magazine,2002,18(3):8-17.
    [78]孙毓润.大型变压器油色谱在线监测装置[M].东北电力科学研究院,1994.
    [79]崔雪梅,张小平.大型电力变压器油色谱在线监测系统及其应用[J].攀枝花学院学报,2002,19(5):63-66.
    [80]http://www.serveron.com/products/TG-tga-main.asp.
    [81]http://www.jinlukeji.com/Products/ShowArticle.asp?ArticleID=45
    [82]B. Sparling, J. Aubin, A. Glodjo. Field Experience with multi gas on-line monitoring of
    power transformers[C]. Transmission and Distribution Conference,1999,2:895-900.
    [83]马大强.电力系统机电暂态过程[M].北京:水利电力出版社,1988.
    [84]贾瑞君.变压器油中溶解氢气在线监测仪的研制[J].电网技术.1998,22(1):4-7.
    [85]M. Duval. New techniques for dissolved gas-in-oil analysis[J]. IEEE Electrical Insulation Magazine.2003,19(2):6-15.
    [86]贾瑞君.关于变压器油中溶解气体在线监测的综述[J].电网技术.1998,22(5):49-55.
    [87]陈伟根.以油中多种气体为特征量的变压器绝缘在线监测及故障诊断技术研究[D].重庆:重庆大学,2003.
    [88]B. Sparling, J. Aubin, A. Glodjo. Field experience with multi gas on-line monitoring of power transformers[C]. IEEE Transmission and Distribution Conference,1999,2:895-900.
    [89]杨延方.变压器在线监测与故障诊断新技术的研究[D].武汉:华中科技大学,2008.
    [90]孙才新,陈伟根.电气设备油中溶解气体在线监测与故障诊断技术[M].北京:科学出版社,2003.
    [91]K. Chan, H. Ito, H. Inaba. An optical-fiber-based gas sensor for remote absorption measurement of low-level CH4gas in the near-infrared region[J]. Journal of Light wave Technology,1984, LT-2 (3):234-237.
    [92]J. P. Dakin, C. A. Wade, D. Pinchbeck, et al.. A novel optical fiber methane sensor[J]. J.OPT.Sensors,1987,2:254-260.
    [93]王玉田,刘瑾,杨海马,等.光纤光栅调制式光纤甲烷气体传感器的研究[J].传感技术学报,2003,16(3):324-327.
    [94]丰明坤,隋成华.波长光谱法光纤甲烷传感器性能的研究[J].传感器技术,2003,24(12):16-18.
    [95]王艳菊,王玉田,王忠东.光纤甲烷气体检测系统的研究[J].压声与声光,2007,29(2):149-152.
    [96]管立君.基于近红外吸收原理的甲烷浓度检测研究[D].秦皇岛:燕山大学,2008.
    [97]张操,罗荣辉,刘小玲,等.用LED作光源的光纤乙炔气体传感器的研究[J].电子与封装,2011,11(3):36-40.
    [98]G. Stewart, A. Mencaglia, W. Philp, et al.. Interferometric signals in fiber optic methane sensors with wavelength modulation of the DFB laser source[J]. Journal of Light wave Technology,1998,16(1):43-53.
    [99]T. Iseki, H. Tai, K. Kimura. A portable remote methane sensor using a tunable diode laser[J]. Measurement Science and Technology,2000,11(6):594-602.
    [100]S.G.Li. Optical fiber gas sensor for remote detection of methane gas in coal mines[D]. Hoboken:Stevens Institute of Technology,2006.
    [101]王书涛,车仁生,王玉田,等.光纤甲烷气体传感器的研究[J].仪器仪表学报,2006,27(10):1276-1278.
    [102]撒继铭.光纤CO气体传感器的理论建模及设计实现[D].武汉:华中科技大学,2007.
    [103]R.Engelbrecht, J.Euring, F.Kuntz, et al.. A fiber-optic diode laser spectrometer for sensitive simultaneous measurement of CO2 and CO gas concentrations[C]. Int. Fair and Conf. Sensor, 2001,1-6.
    [104]H. L. Ho, J. Ju, W. Jin. Fiber optic gas detection system for health monitoring of oil-filled transformer[C]. Proc. of SPIE,2009,7503(0T):1-4.
    [105]陈东,刘文清,张玉钧.可调谐半导体激光光谱火灾气体探测系统[J].中国激光,2006,33(11):1553-1556.
    [106]赵建华,赵崇文,魏周君,等.基于近红外光谱技术的多组分毒性气体检测研究[J].光学学报,2010,30(2):567-572.
    [107]H. Teichert, T. Fernholz, V. Ebert. Simultaneous in situ measurement of CO, H2O, and gas temperatures in a full-sized coal-fired power plant by near-infrared diode lasers[J]. Applied Optics,2003,42(12):2043-2051.
    [108]A. Farooq, J.B.Jeffries, R.K.Hanson. CO2 concentration and temperature sensor for combustion gases using diode-laser absorption near 2.7 um[J]. Applied Physics B,2008, B90: 619-628.
    [109]王健,黄伟,顾海涛.可调谐二极管激光吸收光谱法测量气体温度[J].光学学报,2007,27(9):1639-1642.
    [110]赵燕杰常军,王昌,等.光纤甲烷温度双参数检测系统的研究[J].中国激光,2010,37(12):3070-3074.
    [111]A.S. C. Cheung, T.Ma, H.B. Chen. High-resolution cavity enhanced absorption spectroscopy using an optical cavity with ultra-high reflectivity mirrors[J]. Chemical Physics Letters,2002,353 (3-4):275-280.
    [112]J.Sato, K.Yamauchi, K. Nemoto. Novel NO2 detection based on cavity ring-down spectroscopy using a power build-up cavity[C]. The 18th Annual Meeting of the IEEE,2005, 884-885.
    [113]裴世鑫,高晓明,崔芬萍,等.CO2的腔增强吸收与高灵敏吸收光谱研究[J].光谱学与 光谱分析,2005,25(12):1908-1911.
    [114]裴世鑫,崔芬萍,詹煌,等.基于半导体激光的腔增强吸收光谱技术研究[J].光学学报,2009,29(3):831-837.
    [115]V. A. Kapitanov, V. Zeninari, B. Parvitte, et al..Optimisation of photoacoustic resonant cells with commercial microphones for diode laser gas detection[J].Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2002,58(11):2397-2404.
    [116]M. Webber, M. B. Pushkarsky, C. K. N. Patel. Ultra-sensitive gas detection using diode lasers and resonant photoacoustic spectroscopy[C]. SPIE's International Symposium on Optical Science and Technology,2002,4817:1-12.
    [117]J. Besson, S. Schilt, L. Thevenaz. Multi-gas sensing based on photoacoustic spectroscopy using tunable laser diodes[J]. Spectrochimica Acta Part A,2004,60(14):3449-3456.
    [118]V. Hanyecz, A. Mohacsi, A. Pogany, et al. Multi-component photoacoustic gas analyzer for industrial applications[J]. Vibrational Spectroscopy,2010,52(1):63-68.
    [119]王书涛,车仁生,王玉田,等.基于光声光谱法的光纤气体传感器研究[J].中国激光,2004,31(8):979-982.
    [120]张望.光声光谱微量气体检测技术及其应用研究[D].大连:大连理工大学,2010.
    [121]刘冰洁.一阶纵向光声池及多组分气体光声光谱检测特性研究[D].重庆:重庆大学,2011.
    [122]钱旭耀.变压器油及相关故障诊断处理技术[M].北京:中国电力出版社,2006.
    [123]陈宗穆.变压器原理与应用[M].长沙:湖南大学出版社,1987.
    [124]江淘莎.基于底层油温的油浸式变压器热点估计方法研究[D].重庆:重庆大学,2009.
    [125]李孟励.基于BP神经网络的变压器绕组热点温度预测方法研究[D].重庆:重庆大学,2010.
    [126]GB1094.2-1996,中华人民共和国国家标准《电力变压器选用导则》[S].
    [127]操敦奎.变压器油色谱分析与故障诊断[M].北京:中国电力出版社,2010.
    [128]M. Wang, A. J. Vandermaar, K. D. Srivastava. Review of condition assessment of power transformers in service[J]. IEEE Electrical Insulation Magazine,2002,18(6):12-25.
    [129]孙才新,陈伟根,李俭,等.电气设备油中气体在线监测与故障诊断技术[M].北京:科学出版社,2003.
    [130]G.C. Zhang, X.Y. Tong, S.Y. Zou,et al.. A novel insulation on-line monitoring and fault diagnosis system used for traction substation[C]. Conference Record of the 2002 IEEE International Symposium on Electrical Insulation (ISEI),2002:199-202.
    [131]李强,王艳松,刘学民.光纤温度传感器在电力系统中的应用现状综述[J].电力系统保护与控制,2010,38(1):135-140.
    [132]C. T. Law, K. Bhattarai, D. C. Yu. Fiber-optics-based fault detection in power systems[J]. IEEE Transactions on Power Delivery,2008,23(3):1271-1279.
    [133]肖韶荣.半导体光强反射式光纤温度传感器[J].光学精密工程,1996,4(1):63-66.
    [134]M. F. Sultan, M. J. O'Rourke. Temperature sensing by band gap optics absorption in semiconductors[C]. Pro. of SPIE,1996,2839:191-202.
    [135]孙炫,黎敏,周聪,等.半导体吸收型光纤温度传感器线性度分析[J].光学学报,2008,38(12):335-338.
    [136]M. F. Sultan, M. J. O'Rourke. Temperature sensing by hand gap optical absorption in semiconductors[J]. Proc. of SPIE,1996,2839:191-202.
    [137]刘文明.半导体物理学[M].吉林:吉林大学出版社,1982.
    [138]J. I. Pankove. Optical processes in semiconductors[M]. Englewood Cifts:Prentice-Hall, 1971.
    [139]张邵华.单晶硅吸收型光纤温度传感器的探索[D].杭州:浙江大学,2003.
    [140]刘恩科,朱秉升,罗晋生,等.半导体物理学[M].北京:电子工业出版社,2003,321-329.
    [141]R. Muller, P. Obreja, E. Manea, et al.. An investigation of silicon thin membranes for MOMS[C]. Semiconductor Conference,1998,2:345-348.
    [142]T. S. Moss. Semiconductor Opto-electronics[M]. London:Butter-worths,1973.
    [143]K. B. Hilgers, I. Kaufman. A fiber optic differential temperature probe[C]. Proc. of SPIE, 1987,838:223-230.
    [144]D. A. Christensen. A fiber-optic temperature sensor using wavelength-dependent detection [C]. Proc. of SPIE,1987,838:252-256.
    [145]M. M. Salour, G. Schoner, M. Kull, et al.. Semiconductor-platelet fiber-optic temperature sensor[J]. Electronics Letters,1985,21(4):135-136.
    [146]陈辉.半导体吸收式光纤温度传感系统研究[D].保定:华北电力大学,2010.
    [147]廖延彪.光纤光学[M].北京:清华大学出版社,2000.
    [148]Y. Zhao, Y.B. Liao. Discrimination methods and demodulation techniques for fiber Bragg grating sensors [J]. Optics and lasers in Engineering,2004,41(1):1-18.
    [149]A. D. Kersey, T. A. Berkoff, W. W. Morey. High-resoulution fiber-grating based strain sensor with interferometric wavelength-shift detection[J]. Electronics Letters,1992,28(3):236-238.
    [150]G. A. Simpson, K. Zhou, L. Zhang, et al.. Optical sensor interrogation with a blazed fiber bragg grating and a charge-coupled device linear array[J]. Applied Optics,2004,43(1):33-40.
    [151]李国玉.成像光谱法光纤光栅传感解调技术的研究[D].天津:南开大学,2007.
    [152]邓晓宗,王长松,巩宪锋.基于DSP的光纤光栅波长解调仪的研制[J].半导体光电,2008,29(5):778-781.
    [153]M. Duval. A review of faults detectable by gas-in-oil analysis in transformers[J]. IEEE Electrical Insulation Magazine,2002,18(3):8-17.
    [154]M. E. Webber, S. Kim, S. T. Sanders, D. S. Baer, et al.. In situ combustion measurement of CO2 by use of a distributed-feedback diode-laser sensor near 2.0 μm[J]. Applied Optics,2001, 40(6):821-828.
    [155]吴希军,王玉田,刘学才,等.棱镜气室在光纤甲烷检测系统中的应用研究[J].光学学报,2010,30(5):1261-1267.
    [156]阚瑞峰,刘文清,张玉钧,等.基于可调谐激光吸收光谱的大气甲烷监测仪[J].光学学报,2006,26(1):67-70.
    [157]E. Ciurczak, J. Drennen. Near-Infrared Spectroscopy in Pharmaceutical Medical Application[M]. New York:Marcel-Dekker,2002.
    [158]徐克尊.高等原子物理学[M].北京:科学出版社,2000.
    [159]G·赫兹堡.分子光谱与分子结构[M].北京:科学出版社,1983.
    [160]D. A. Burns, E. W. Ciurczak. Handbook of Near-Infrared Analysis[M]. New York:Marcel-Dekker,2001.
    [161]吴瑾.近代傅里叶变换红外光谱技术及应用[M].北京:科学技术文献出版社,1994.
    [162]J. D. Kirsch, J. K. Drennen. Near-Infrared Spectroscopy:Applications in the Analysis of Tablets and Solid Pharmaceutical Dosage Forms[J]. Applied Spectroscopy Reviews,1995,30(3): 139-174
    [163]W.戴姆特瑞德.激光光谱学的基础和技术[M].北京:高等教育出版社,1988.
    [164]B.H. Armstrong. Spectrum line profiles:the Voigt function[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,1967,7(1):61-88.
    [165]R. J. Wells. Rapid approximation to the Voigt/Faddeeva function and its derivatives[J].Journal of Quantitative Spectroscopy and Radiative Transfer.1999,62(1):29-48.
    [166]E. E. Whiting. An empirical approximation to the Voigt profiles[J]. Journal of Quantitative Spectroscopy and Radiative Transfer.1968,8(6):1379-1384.
    [167]A. Farooq, J.B. Jeffries, R.K. Hanson. CO2 concentration and temperature sensor for combustion gases using diode-laser absorption near 2.7μm[J]. Applied Physics B:Lasers and Optics,2008,90(3-4):619-628.
    [168]A. Farooq, J. B Jeffries and R. K. Hanson. In situ combustion measurements of H2O and temperature near 2.5 μm using tunable diode laser absorption[J]. Measurement Science and Technology,2008,19(7):1-11.
    [169]L.S. Rothman, C.P. Rinsland, A. Goldman, et al.. The HITRAN molecular spectroscopic database and HAWKS(HITRAN Atmospheric Workstation):1996 edition[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,1998,60(5):665-710.
    [170]http://www.hitran.com/
    [171]M. E. Webber. Diode laser measurements of NH3 and CO2 for combustion and bioreactor applications[D]. Stanford:Stanford University,2001.
    [172]R. M. Mihalcea, D. S. Baer, R. K. Hanson. Diode laser sensor for measurements of CO, CO2 and CH4 in combustion flows[J]. Applied Optics,1997,36(33):8745-8752.
    [173]J. Jin, Q. Jiao, Y. Li, et al.. Study on external-cavity semiconductor laser[J]. Chinese Optics Letters,2003,1(3):147-148.
    [174]张宇.甲烷中红外检测系统结构设计及实验研究[D].吉林:吉林大学,2006.
    [175]X. Liu, J.B. Jeffries, R.K. Hanson, et al.. Development of a tunable diode laser sensor for measurements of gas turbine exhaust temperature[J]. Applied Physics B,2006,82(3):469-478.
    [176]H.J. Li, A. Farooq, J. B. Jeffries, et al.. Diode laser measurements of temperature-dependent collisional-narrowing and broadening parameters of Ar-perturbed H2O transitions at 1391.7 and
    1397.8 nm[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,109(1):132-143.
    [177]J.T.C. Liu, J.B.Jeffries, R. K. Hanson. Wavelength modulation absorption spectroscopy with 2 f detection using multiplexed diode lasers for rapid temperature measurements in gaseous flows[J]. Applied Physics B:Lasers and Optics,2004,78(3-4):503-511.
    [178]X. Zhou, J. B. Jeffries, R. K. Hanson. Development of a fast temperature sensor for combustion gases using a single tunable diode laser[J]. Applied Physics B:Lasers and Optics, 81(5):711-722.
    [179]赵勇.光纤传感原理与应用技术[M].北京:清华大学出版社,2007.
    [180]江文杰,曾学文,施建华.光电技术[M].北京:科学出版社,2009.
    [181]S. Crunairel, J. Tarmoull, C. Fittschenl, et al.. Use of cw-CRDS for studying the atmospheric oxidation of acetic acid in a simulation chamber[J]. Applied Physics B:Lasers and Optics,2006,85(2-3):467-476.
    [182]D. Romanini, A. A. Kachanov, N. Sadeghi, et al.. CW cavity ring down spectroscopy[J]. Chemical Physics Letters,1997,264(3-4):316-322.
    [183]Z. Bozoki, A. Szabo, A. Mohacsi, et al.. A fully opened photoacoustic resonator based system for fast response gas concentration measurements[J]. Sensors and Actuators B:Chemical, 2010,147(1):206-212.
    [184]V. Hanyecz, A. Mohacsi, A. Pogany, et al.. Multi-component photoacoustic gas analyzer for industrial applications[J]. Vibrational Spectroscopy,2010,52(1):63-68.
    [185]王通.光声光热技术及其应用[M].北京:科学出版社,1999.
    [186]罗森威格.光声学和光声谱学[M].北京:科学出版社,1986.
    [187]P. Hess. Resonant photoacoustic spectroscopy:Topics in Current Chemistry[M]. Berlin: Springer-Verlag,1983.
    [188]A. Rosencwaig. Photoacoustics and photoacoustic spectroscopy[M]. New York, NY:Wiley, Wiley and sons,1980.
    [189]殷庆瑞.光声光热技术及应用[M].北京:科学出版社,1991.
    [190]M. E. Webber, M. Pushkarshy, C. K. N. Patel. Fiber-amplifier-enhanced photoacoustic spectroscopy with near-infrared tunable diode lasers[J]. Applied Optics,2003,42(12):2119-2126.
    [191]Y. Peng, W. Zhang, L. Li, et al.. Tunable fiber laser and fiber amplifier based photoacoustic spectrometer for trace gas detection[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2009,74(4):924-927.
    [192]R. Gerlach, N. M. Amer. Brewster window and windowless resonant spectrophones for intracavity operation[J]. Applied Physics A:Materials Science&Processing,1980,23(3):319-326.
    [193]张望.光声光谱微量气体检测技术及其应用研究[D].大连:大连理工大学,2010.
    [194]D. Z. Anderson, J. C. Frisch, C.S. Masser. Mirror reflectometer based on optical cavity decay time[J]. Applied Optics,1984,23(8):1238-1245.
    [195]王会波.光纤环路循环衰荡法气体浓度测量的研究[D].秦皇岛:燕山大学,2010.
    [196]R. Engeln, G. Berden, R. Peeters, G. Meijer. Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy [J]. Review of Scientific Instruments,1998,69(11): 3763-3769.
    [197]裴世鑫,高晓明,崔芬萍,等.基于DFB型半导体激光器的腔增强吸收光谱研究[J].化学物理学报,2005,18(5):660-664.
    [198]董磊.基于腔增强吸收光谱的污染气体检测研究[D].太原:太原理工大学,2007.
    [199]J. M. Rey, D. Marinov, D. E. Vogler, M. W. Sigrist. Investigation and optimization of a multipass resonant photoacoustic cell at high absorption levels[J]. Applied Physics B:Lasers and Optics,2005,80(2):261-266.
    [200]S. Bernegger, M. W. Sigrist. Longitudinal resonant spectrophone for CO-laser photoacoustic spectroscopy [J]. Applied Physics B:Lasers and Optics.1987,44(2):125-132.
    [201]F. Liu, S. Horowitz, T. Nishida, et al.. A multiple degree of freedom electromechanical Helmholtz resonator[J]. Journal of the Acoustical Society of America,2007,122(1):291-301.
    [202]彭军(泽).测量电子电路设计[M].北京:科学出版社,2007.
    [203]黄会贤.变压器油中微弱乙炔气体的光声光谱检测特性研究[D].重庆:重庆大学,2009.
    [204]谭中奇,龙兴武,黄云.高灵敏度调谐式连续波腔衰荡光谱技术[J].光学学报,2009,29(3):747-751.
    [205]G. Berden, R. Peeters, G. Meijer. Cavity ring-down spectroscopy:Experimental schemes and applications[J]. International Reviews in Physical Chemistry,2000,19(4):565-607.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700