调谐二极管激光吸收光谱中的若干关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
调谐二极管激光吸收光谱(Tunable Diode Laser Absorption Spectroscopy, TDLAS)是通过对二极管激光器施加调谐信号实现波长扫描,获得气态物质吸收谱线从而推算其成分和状态信息的检测技术,广泛应用于工业及环境领域的气体检测中。
     本论文以对TDLAS技术检测性能的提高和检测范围的扩展提供技术支撑为研究目的,针对TDLAS技术系统优化和信号处理开展关键技术研究,包括系统参数优化、数据处理流程、波长对应过程以及应用技术中的计算方法。主要的工作内容包括以下四个方面:
     1、系统参数优化:基于TDLAS的调制理论,对调制参数和锁相参数在系统运行中的功能和影响信号的机理进行研究。根据检测需求提取信号特征值,通过实验观察各参数变化对信号特征值的影响,总结影响规律,以此为基础给出系统在浓度和压强检测中各参数优化的依据和方法。对锁相放大器时间常数与调制参数联合影响信号进行实验观察及分析,给出在不同情况下参数选择依据和应注意的问题。
     2、数据处理流程:讨论并验证TDLAS数据处理流程中各步骤的作用,针对不同信号观察处理效果。将温度调谐数据与电流调谐数据进行比较,采用数值计算方法和信号处理手段对不利于后期处理的特征加以改进,使其在形式构成和波长对应过程上与电流调谐方法一致。在特征值提取过程中,采用相邻极值点求差分柱的算法简化提取流程,评价处理结果,论证其在数据处理和读取过程中的优点以及与其他匹配检索技术结合的可能性。在吸收峰临近或重叠的情况下,以线型公式二阶导数叠加的形式拟合曲线,得到各吸收峰的数值信息。
     3、波长对应过程:分析波长对应过程在压强检测中的重要性,结合激光器的静态调谐特性,研究了信号采样点在对应波长过程中的误差来源。在波长计算方式上,根据激光器工作原理,用查找对应二次拟合曲线的方法得到采样点对应的波长值,消除了调谐非线性对线形检测造成的影响。分别研究调制幅度和扫描频率对实际发射波长的影响机理,此为基础对检测信号进行了调制幅度校正和扫描频率校正,消除了不同调制参数下检测信号波长序列之间的差异,保证了信号的线形检测精度。
     4、应用技术中的计算方法:在之前工作的基础上,对TDLAS系统的实际应用进行探索,针对不同需求,应用不同调谐方式和处理流程分别进行单一组分浓度检测、多组分气体检测、压强测量和长光程大气监测等实验。选择适当的分析手段和拟合方法对待测值进行计算,得到一套TDLAS系统实际应用的计算方式和优化过程,对此技术今后的应用发展起到指导作用。
Tunable diode laser absorption spectroscopy is a detection technique for measuring the information and status of species by tuning the laser emission wavelength over the characteristic absorption line according to the tuning signal. It is widely used in gas detection of industrial and environmental areas.
     The research purpose of the thesis was to offer technical support for the performance improvement and the detecting range extension of TDLAS. Researches of critical technologies were carried out aiming at system optimization and signal processing in TDLAS, including optimization of system parameters, data processing flow, procedure of wavelength correspondence and calculation method in system application. The major work completed in the thesis was summarized as following:
     1. The effect mechanism of modulation parameters and lock-in amplifier parameters on detecting signals was researched based on the TDLAS modulation theory. The influence of the parameters to second harmonic signals was observed by analyzing the signal characteristics for various system functions and demands. The basis and method of parameters optimization in concentration and pressure detecting system were summarized by the experiment result. Furthermore, the joint influence of lock-in time constant and modulation parameters to detecting signals was analyzed to make a rule of parameter selection in different conditions.
     2. The function and effect of each procedure in TDLAS signal processing were discussed and verified by observing its output result from different input signals. After comparing the signals between temperature tuning and current tuning, the characteristic of temperature tuning data which did not suit for subsequent processing was improved by numerical calculation method and signal processing technique in order to approximate the form of current tuning data. A method of calculating the columnar difference between adjacent extreme value points of detecting signal was proposed to extract the absorption feature simply. The processing result showed its advantage in signal processing or data storing and loading, it also provided the possibility for combining the columnar difference method with other matching and retrieval technique in practical system. The numerical characteristics of each absorption line were obtained by fitting the detecting data with the sum of line shape second order derivatives from the signals with overlapped absorption lines.
     3. The error sources in the procedure of wavelength correspondence were studied combined with laser static tuning characteristics after analyzing the importance of the wavelength correspondence in pressure detecting. A method of searching the sampling point wavelength from quadratic fitting curves of laser tuning characteristics data was used to eliminate the impact of tuning non-linear property to spectral line shape detection. Modulation index calibration and scanning frequency calibration based on the effect mechanism of modulation parameters to laser emission wavelength were applied to reduce value difference between wavelength sequences of various modulation parameters and improve the line shape detection accuracy.
     4. Based on the above work, a research on TDLAS system application was carried out including single component concentration detection, multi-component gas detection, pressure detection and long path atmospheric monitoring by the experiment using different tuning way and signal processing method for different detection requirements. A set of calculation method and optimization process was summarized by selecting appropriate analytical means and fitting models to calculate the system output values, which provided an instructive basis for further development of such system.
引文
[1]中国分析测试协会,分析测试仪器评议——从BCEIA’2009仪器展看分析技术的进展,北京:中国标准出版社,2010,10~13
    [2]曾繁清,杨业智,现代分析仪器原理,武汉:武汉大学出版社,2000,1~23
    [3]刘志广,张华,李亚明,仪器分析,大连:大连理工大学出版社,2007,1~3
    [4]高俊杰,余萍,刘志江,仪器分析,北京:国防工业出版社,2005,2
    [5]高向阳,新编仪器分析,北京:科学出版社,2004,10
    [6]邓勃,王庚辰,汪正范,分析仪器与仪器分析概论,北京:化学工业出版社,2005,41~51
    [7] Koch J, Zybin A, Niemax K, Narrow and broad diode laser absorption spectrometry-concepts, limitations and applications, Spectrochemica Acta Part B, 2002,57:1547~1561
    [8] Imasaka T, Diode lasers in analytical chemistry, Talanta, 1999,48(2):305~320
    [9] Mantz AW, A review of spectroscopic applications of tunable semiconductor lasers, Spectrochemica Acta Part A, 1995,51(13):2211~2236
    [10] Hinkley ED,High-resolution inferred spectroscopy with a tunable diode laser, Appl.Phys.Lett., 1970,16(9):351~354
    [11] Reid J, Shewchun JS, Garside BK et al, High sensitivity pollution detection employing tunable diode lasers, Appl.Opt., 1978,17(2):300~304
    [12]林朝富,基于TDLAS的快速CO2浓度检测:[硕士学位论文],广州,华南理工大学,2005
    [13]涂兴华,基于TDLAS技术对机动车尾气CO和CO<,2>遥测研究:[硕士学位论文],合肥,中国科学院安徽光学精密机械研究所,2005
    [14] Arndt R, Analytical line shapes for Lorentzian signals broadened by modulation, Journal of Applied Physics, 1965,36(8):2522~2524
    [15] Kluczynski P, Gustafsson J, Lindberg AM, et al, Wavelength modulation absorption spectrometry-an extensive scrutiny of the generation of signals, Spectrochimica Acta Part B, 2001,56:1277~1354
    [16] Axner O, Kluczynski P, Lindberg AM, A general non-complex analytical expression for the Fourier component of a wavelength-modulated Lorentzian lineshape function, Journal of Quantitative Spectroscopy & Radiative Transfer, 2001, 68:299~317
    [17] Dharamsi AN, A theory of modulation spectroscopy with applocation of higher harmonic detection, J. Phys. D: Appl. Phys. 1996,29:504~549
    [18] Dhaaramsi AN, Lu Y, High-resolution spectroscopy using high-order derivative techniques, App. Phys. Lett., 1994, 65(10):2257~2259
    [19] Uehara K, Dependence of harmonic signals on sample-gas parameters in wavelength-modulation spectroscopy for precise absorption measurements, Appl. Phys. B, 1998.67:517~523
    [20] Werle P, Slemr F, Maurer K, et al, Near- and mid-infrared laser-optical sensors for gas analysis, Optical and Lasers in Engneering, 2002,37:101~104
    [21] Bjorklund GC, Frequency-modulation spectroscopy: a new method for measuring weak absorption and dispersions, Opt. Lett., 1980,5:15~17
    [22] Hall JL, Hollberg L, Baer T, et al, Optical heterodyne saturation spectroscopy, App. Phys. Lett., 1981,39:680~682
    [23]高晓明,李晓云,黄伟等,近红外二极管激光气体光学传感器发展现状及其应用,量子电子学报,2005,22(4):585~591
    [24] Bjorklund GC, Levensen MD, Length W, et al, Frequency modulation (FM) spectroscopy-theory of line-shapes and signal-to-noise analysis, Appl. Phys. B,1983,32:145~152
    [25] Length W, Optical heterodyne spectroscopy with frequency and amplitude- modulation semiconductor lasers, Opt. Lett., 1983,8:575~577
    [26]陆同兴,路轶群,激光光谱技术原理及应用,合肥,中国科学技术大学出版社,1999,170~172
    [27] Werle P, A review of recent advances in semiconductor laser based gas monitors, Spectrochimica Acta Part A, 1998,54:197~235
    [28] Pavone FS, Inguscio M, Frequency-modulation and wavelength-modulation spectroscopies–comparison of experimental methods using an AlGaAs Diode-Laser, Appl. Phys. B, 1993,56:118~122
    [29] Supplee JM, Whittaker EA, Lenth W, Theoretical description of frequency modulation and wavelength modulation spectroscopy, Appl. Opt., 1994, 33(27): 6294~6301
    [30] Mantz AW, A review of the applications of tunable diode laser spectroscopy at high sensitivity, Microchem. J., 1994,50(3):351~364
    [31] Lawrenz J, Niemax K, A semiconductor diode laser spectrometer for laser spectrochemistry, Spectrochemica Acta Part B, 1989,44:155~164
    [32] Werle P, Analytical applications of infrared semiconductor lasers in atmospheric trace gas monitoring, J. Phys. IV., 1994,9:9~12
    [33] Werle P, Muckel R, D’Amato F, et al, Near-infrared Trace-gas Sensors Based on Room-temperature Diode Lasers, Appl. Phys. B, 1995,67:307~315
    [34] Cancio P, Corsi C, Pavone F.S, et al, Sensitive detection of ammonia absorption by using a 1.65 um distributed feedback InGaAsP diode laser, Infrared Physics & Technology, 1995,36:987~993
    [35] Sonnenfroh DM, Allen MG, Ultrasensitive visible tunable diode laser detection of NO2, Appl. Opt., 1996,35:4053~4058
    [36] Mihalcea RM, Baer DS, Hanson RK, Tunable diode laser absorption measurements of NO2 near 670 and 395 nm, Appl. Opt., 1996,35:4059~4063
    [37] Gustafsson U, Sandsten J, Svanberg S, Simultaneous detection of methane, oxygen and water vapor utilizing near-infrared diode lasers in conjunction with differnce frequency generation, Appl. Phys. B, 2000, 71:853~857
    [38] Chou SI, Baer DS, Hanson RK, et al,Concentration and temperature measurements in a plasma etch reactor using diode laser absorption spectroscopy, J.Vac.Science and Technology B, 2001,19:477~484
    [39] Ben-Yakar A, Hanson RK, Characterization of expansion tube flows for hyper velocity combustion studies in the flight mach 8-13 engines, J. Prop. and Power, 2002,18:943~952
    [40] Silver J A, Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods, Appl. Opt., 1992,31 :707~717
    [41] Stewart G, Mencaglia A, Philp W, et al, Interferometer signal in fiber optic methane sensors with wavelength modulation of the DFB laser source, Journal of Light Technology, 1998,16:43~53
    [42] Uehara K, Yamamoto K, Kikugawa T, et al, Isotope analysis of environmental substances by a new laser-spectroscopic method utilizing different pathlengths, Sensors and Actuators B, 2001,74:173~178
    [43] Douglas SB, Hanson RK, Diode-laser absorption measurement of CO2 near 2.0μm at elevated temperatures, Appl.Opt., 1998,37(36):8341~8347
    [44] Modugno G, Corsi C, Gabrysch M, et al, Fundamental noise sources in a high-sensitivity two-tone frequency modulation spectrometer and detection of CO2 at 1.6μm and 2.0μm, Appl. Phys. B, 1998,67:289~296
    [45] Terrence RM, Sukesh R, 10kHz detection of CO2 at4.5μm by using tunable diode-laser based difference frequency generation, Opt. Lett., 2005,30(22):3087~3089
    [46] Gabrysch M, Corsi C, Pavone FS, et al, Simultaneous detection of CO and CO2 using a semiconductor DFB laser at 1.578μm, Appl. Phys. B, 1997,65:75~79
    [47] Leleuxl DP, Claps R, Chen W, et al, Application of Kalman filtering to real-time trace gas concentration measurement, Appl. Phys. B, 2002,74:85~93
    [48] Sonnenfroh DM, Allen MG, Observation of CO and CO2 absorption near 1.57μm with an external-cavity diode laser, Appl. Opt., 1997,36(15):3298~3300
    [49]周孟然,刘文清,利用激光吸收光谱法测量煤矿瓦斯气体的研究,应用激光,2004,24(3):162~164
    [50]涂兴华,刘文清,王铁栋等,基于可调谐二极管激光吸收光谱学对二次谐波检测噪声分析研究,量子电子学报,2006,23(4):522~526
    [51]阚瑞峰,刘文清,张玉钧等,可调谐二极管激光吸收光谱法监测大气痕量气体中的浓度标定方法研究,光谱学与光谱分析,2006,26(3):392~395
    [52]王敏,张玉钧,刘文清等,可调谐二极管激光吸收光谱二次谐波检测方法的研究,光学技术,2005,31(2):279~285
    [53]涂兴华,刘文清,张玉钧等,CO和CO2的1.58μm波段可调谐二极管激光吸收光谱的二次谐波检测研究,光谱学与光谱分析,2006,26(7):1190~1194
    [54]黄伟,高晓明,张为俊,高分辨率高灵敏度可调谐近红外二极管激光光谱探测,光学与光电技术,2004,2(3):5~8
    [55] Kim S, Klimecky P, Jeffries JB, et al, In situ measurement of HCl during plasma etching of poly-silicon using a diode laser absorption sensor, Meas. Sci. Technol., 2003,14:1662~1670
    [56] Schirmer B, Venzke H, Melling A, et al, High precision trace humidity measurement with a fibre-coupled diode laser absorption spectrometer at atmospheric pressure, Meas. Sci. Technol., 2000,11:382~391
    [57] Neckel H, Wolfrum J, IR-diode laser measurement of the NH3 band at different temperatures, Appl. Phys. B, 1989,49:85~89
    [58] Arnold A, Becker H, Hemberger R, et al, Laser in situ monitoring of combustion processes, Appl. Opt., 1990,29:4860~4872
    [59] Wiesen P, Kleffmann J, Kurtenbach R, et al, Emission of Nitrous Oxide and Methane from aero engines: monitoring by tunable diode laser spectroscopy, Infrared Physics and Technology, 1996,37:75~81
    [60] Silver JA, Kane DJ, Greenberg PS, Quantitative species measurements in microgravity flames with near-IR diode lasers, Appl. Opt., 1995,34:2787~2794
    [61] Nguyen QV, Dibble RW, Day T, High-resolution oxygen absorption spectrum obtained with an external-cavity continuously tunable diode laser, Opt. Lett., 1994,19(24):2201~2209
    [62]杜振辉,翟雅琼,李金义等,空气中挥发性有机物的光谱学在线监测技术,光谱学与光谱分析,2009,29(12):3199~3203
    [63] Riris H, Carslie CL, Carr LW, et al, Design of an open path near-infrared diode laser sensor: application to oxygen, water, and carbon dioxide vapour detection, Appl. Opt., 1994,33:7059~7066
    [64] Wormhoudt J, Shorter JH, McManus JB, et al, Tunable infrared laser detection of pyrolysis products of explosives in soils, Appl. Opt., 1996,35:3992~3997
    [65]王汝琳,王咏涛,红外检测技术,北京:化学工业出版社,2006,52~53
    [66]杨杰文,基于调谐激光吸收光谱技术的气体检测系统研究及优化:[硕士学位论文],天津,天津大学,2009
    [67] Armstrong BH, Spectrum line profiles: the Voigt function, J. Quant. Spectrosc. Radiat. Transfer, 1967,7:61~88
    [68] Humlicek J, An efficient method for evaluation of the complex probability function: the Voigt function and its derivatives, J. Quant. Spectrosc. Radiat. Transfer, 1979,21:309~313
    [69] Whiting EE, An empirical approximation to the Voigt profiles, J. Quant. Spectrosc. Radiat. Transfer, 1968,8:1379~1384
    [70] He Jian, Zhang Qingguo, The calculation of the resonance escape factor of helium for Lorentzian and Voigt profiles, Phys. Lett. A, 2006,359:256~260
    [71]靳伟等,导波光学传感器:原理与技术,北京:科学出版社,1998:273~274
    [72]王晓梅,张玉钧,刘文清等,可调谐二极管吸收光谱痕量气体浓度算法的研究,光学技术,2006,32(5):717~719
    [73]马维光,尹王保,黄涛等,气体峰值吸收系数随压强变化关系的理论分析,光谱学与光谱分析,2004,24(2):135~137
    [74]齐汝宾,基于调谐激光光谱技术的痕量气体检测技术研究:[硕士学位论文],天津,天津大学,2008
    [75] Weldon V, McInerney D, Phelan R, et al, Characteristics of several NIR tunable diode lasers for spectroscopic based gas sensing: A comparison, Spectrochimica Acta Part A, 2006,63(5):1013~1020
    [76] Seufert J, Fischer M, Legge M, et al, DFB laser diodes in the wavelength range from 760nm to 2.5μm, Spectrochimica Acta Part A, 2004,60(14):3243~3247
    [77] White JU, Long optical path of large aperture, J. Opt. Soc. Am., 1942, 32:285~288
    [78]李宁,严建华,王飞等,利用可调谐激光吸收光谱技术对光路上气体温度分布的测量,光谱学与光谱分析,2008,28(8):1708~1712
    [79] Li H, Rieker GB, Liu X, et al, Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurement in high-pressure gases, Appl. Opt., 2006,45(5):1052~1061
    [80] Upschulte BL, Sonnenfroh DM, Allen MG, Measurements of CO, CO2, OH, and H2O in room-temperature and combustion gases by use of a broadly current-tuned multisection InGaAsP diode laser, Appl. Opt., 1999,38(9): 1506~1512
    [81] Wang J, Sanders ST, Jeffries JB, et al, Oxygen measurements at high pressures with vertical cavity surface-emitting lasers, Appl. Phys. B, 2001,72: 865~872
    [82] Nicolas JC, Baranov AN, Cuminal Y, et al, Tunable diode laser absorption spectroscopy of carbon monoxide around 2.35μm, Appl. Opt., 1998,37(33): 7906~7911
    [83] Salhi A, Barat D, Romanini D, et al, Single-frequency Sb-based distributed-feedback lasers emitting at 2.3μm above room temperature for application in tunable diode laser absorption spectroscopy, Appl. Opt., 2006,45(20): 4957~4965
    [84] Zhao Weixiong, Gao Xiaoming, Deng Lunhua, et al, Absorption spectroscopy of formaldehyde at 1.573μm, Journal of Quantitative Spectroscopy & Radiative Transfer, 2007, 110(2): 331~339
    [85] Aidaraliev M, Zotova NV, Karandashov SA, et al, Midwave (3-4μm) InAsSbP/InGaAsSb infrared diode lasers as a source for gas sensors, Infrared Physics & Technology, 1996, 37:83~86
    [86] Ray A, Bandyopadhyay A, Ray B, et al, Line-shape study of water vapour by tunable diode laser spectrometer in the 822–832 nm wavelength region, Appl. Phys. B, 2004,79(10):915~921
    [87] Weidmann D, Courtois D,High quality infrared (8μm) diode laser source design for high resolution spectroscopy with precise temperature and current control, Infrared Physics&Technology,2000,41:361~371
    [88] Weldon V, O’Goorman J, Phelan P, et al, H2S and CO2 gas sensing using DFB laser diodes emitting at 1.57μm, Sensors and Actuators B, 1995, 29: 101~107
    [89] Lewicki R, Wysocki G, Kosterev AA, et al, Carbon dioxide and ammonia detection using 2μm diode laser based quartz-enhanced photoacoustic spectroscopy , Appl. Phys. B, 2007 ,87:157~162
    [90] Du Zhenhui, Li Jinyi, Qi Rubin,et al, High-resolution absorption spectroscopy of carbon dioxide by NIR diode laser spectroscopy between 6320 and 6335 cm-1, Proceedings of the 14th International Conference of Near Infrared Spectroscopy, 2009:1047~1052
    [91]李金义,半导体激光器的宽谱快速调谐及其在气体检测中的应用:[硕士学位论文],天津,天津大学,2010
    [92] Kluczynski P, Axner O, Theoretical description based on Fourier analysis of wavelength-modulation spectrometry in terms of analytical and background signals, Appl. Opt., 1999,38:5803~5813
    [93] Reid J, Labrie D, Second-harmonic detection with tunable diode lasers- Comparison of experiment and theory, Appl. Phys. B, 1981,26:203~210
    [94] Silver JA, Kane DJ, Diode laser measurements of concentration and temperature in microgravity combustion, Meas. Sci. Technol., 1999,10:845~852
    [95] Shao Jie, Gao Xiaoming, Zhang Weijun, Highly sensitive tunable diode laser absorption spectroscopy of CO2 around 1.57μm, Chinese physics letter, 2005,22(1):57~60
    [96]魏丽,基于光谱吸收的CO2浓度检测系统的理论与实验研究:[硕士学位论文],秦皇岛,燕山大学,2006
    [97]白云峰,二氧化碳浓度检测的二极管激光光谱技术研究:[硕士学位论文],哈尔滨,哈尔滨工业大学,2006
    [98]高楠,杜振辉,唐邈等,可调谐二极管激光吸收光谱技术参数选择及优化,光谱学与光谱分析, 2010,30(12):3174~3178
    [99]远坂俊昭,测量电子电路设计——滤波器篇,北京:科学出版社,2006:202~203
    [100] Fernholz T, Teichert H, Ebert V, Digital, phase-sensitive detection for in situ diode-laser spectroscopy under rapidly changing transmission conditions, Appl. Phys. B, 2002,75:229~236
    [101] Weinhold FG, Fisher H, Hoor P, et al, TRISTAR -a tracer in situ TDLAS for atmospheric research, Appl. Phys. B, 1998,67:411~417
    [102] Liu JTC, Jeffries JB, Hanson RK, Wavelength modulation absorption spectroscopy with 2f detection using multiplexed diode lasers for rapid temperature measurement in gaseous flows, Appl. Phys. B, 2004,78:503~511
    [103] Wysocki G, Kosterev AA, Tittel FK, Influence of molecular relaxation dynamics on quartz-enhanced photoacoustic detection of CO2 atλ=2μm, Appl. Phys. B, 2006,85:301~306
    [104]绍杰,高灵敏度波长调制光谱技术在CO<,2>、CH<,4>分子光谱测量中的研究:[博士学位论文],合肥,中国科学院安徽光学精密机械研究所,2005
    [105]尹建华,廖继旺,刘云芳,基于小波变换的噪声消除算法研究,现代电子技术,2007,15:144~146
    [106]方勇华,孔超,兰天鸽等,应用小波变换实现光谱的噪声去除和基线校正,光学精密工程,2006,14(6):1088~1092
    [107]周凤岐,遆小光,周军,基于平稳多小波变换的红外图像噪声抑制方法,红外与毫米波学报,2005,24(2):151~155
    [108] Savitzky A, Golay MJE, Smoothing and differentiation of data by simplified least squares procedures, Analytical Chemistry, 1964,36(8): 1627~1639
    [109]胡波,在线光谱数据的滤波优化与TDLAS系统集成:[硕士学位论文],天津,天津大学,2010
    [110]高楠,杜振辉,齐汝宾等,调谐二极管激光吸收光谱技术中的线形误差与校正,光电子·激光,2011,22(6): 893~896
    [111] Werle P, Mazzinghi P, D’Amato F, et al, Signal processing and calibration procedures for in situ diode-laser absorption spectroscopy, Spectrochimica Acta Part A, 2004,60: 1685~1705
    [112]阚瑞峰,刘文清,张玉钧等,基于可调谐激光吸收光谱的大气甲烷监测仪,光学学报,2006,26(1):67~70
    [113]黄超,气相色谱-质谱联用仪关键技术的研究:[博士学位论文],天津,天津大学,2011
    [114]刘景旺,杜振辉,李金义等,DFB激光二极管电流-温度调谐特性的解析模型,物理学报,2011,60:070000-1
    [115] Nelson DD, Zahniser MS, McManus JB, et al, A tunable diode laser system for the remote sensing of on-road vehicle emissions, Appl. Phys. B, 1998,67: 433~441
    [116] GAO Nan,DU Zhen-hui, LI Jin-yi, et al, Tunable diode laser absorption spectroscopy for sensing CO and CO2 of vehicle emissions based on temperature tuning, Proceedings 2011 International Conference on Business Management and Electronic Information, 2011:853~856
    [117] Duffin K, McGettrick AJ, Johnstone W, et al, Tunable diode laser spectroscopy with wavelength modulation: A calibration-free approach to the recovery of absolute gas absorption line-shapes, J. Lightw. Technol., 2007,25:3114~3125
    [118] McGettrick AJ, Duffin K, Johnstone W, et al, Tunable diode laser spectroscopy with wavelength modulation: A phasor decomposition method for calibration-free measurement of gas concentration and pressure, J. Lightw. Technol., 2008,26:432~440
    [119] Martin PA, Near-infrared diode laser spectroscopy in chemical process and environmental air monitoring, Chem. Soc. Rev., 2002,31:201~210
    [120]翟雅琼,基于准连续激光调制吸收光谱检测技术的研究:[硕士学位论文],天津,天津大学,2009
    [121]何莹,张玉钧,阚瑞峰等,基于激光吸收光谱开放式大气CO2的在线监测,光谱学与光谱分析,2009,29(1):10~13
    [122] Wang Min, Zhang Yujun, Liu Jianguo, et al, Applications of a tunable diode laser absorption spectrometer in monitoring greenhouse gases, Chinese Optics Letters, 2006,4(6):363~365

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700