生物分级多孔结构二氧化锡的制备及气敏性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着工业化的迅猛发展和人口的急剧增长,有毒有害和易燃易爆气体的肆意排放不仅给人类赖以生存的生态环境带来了严重的污染,同时也给人类的工业生产和日常生活安全带来了极大的威胁。面对这些威胁,气体敏感材料(气敏材料)的开发俨然已成为人类可持续发展战略实施所必须解决的重大问题之一。现阶段研究表明分级结构特别是分级多孔结构是构建高灵敏度和快速响应的金属氧化物气敏材料的理想结构,是解决气体检测和监控的有力手段之一。然而受限于现阶段的合成工艺和技术,分级结构的构筑依然存在一系列瓶颈问题,如难以合成、结构简单、种类单一和难以修饰改性等。历经亿万年的进化,自然界在构筑精细分级结构方面为我们提供了蓝图。其一,自然界创造了一系列令人叹为观止的多形态、多尺度和多维数的精细分级结构,为人类开发分级结构材料提供了巨大的结构模板宝库;其二,自然界构筑精细分级结构的方法是一种高效、简易、廉价、绿色且形貌可控的合成方法,为分级结构材料的合成提供了新的开发方向;其三,自然精细分级构造往往与生物体在光、电、磁、声、热、力等方面功能特性相关,这种结构-功能耦合的“优良设计”对先进功能材料的设计和合成具有借鉴作用;其四,自然精细分级结构通常是由生物分子组装而成,为目标材料的湿法合成和组分改性提供便利,简化了合成流程。
     鉴于此,本论文从结构性生物模板、自组装生物模板和功能性生物模板的角度出发,充分利用生物分子的表面活性,探索了开放式、疏松薄壁型以及同时具备以上两特点的分级多孔结构的合成方法及其在金属氧化物气敏材料的应用,分析分级结构及其组分优化对气敏材料性能的影响,为分级结构气敏材料的研究和开发提供思路和模型。本研究的主要内容如下:
     一、启迪于蝶翅开放式的分级多孔结构,将其引入到SnO2材料,开发高灵敏度和快速响应的气敏材料,为气敏材料的结构开发提供参考。
     以蝶翅为模板,开发了单步溶液自沉积过程与热处理相结合的方法,成功制备开放式分级多孔结构和空心结构特点的SnO2材料,空心壁厚在30~110nm间可调。在相对较低的工作温度(170C)下,蝶翅形貌SnO2对50ppm酒精的气敏响应值是参比样的6倍多,响应-回复时间为参比样的一半以下。优异的气敏性能主要归结于其特异的结构,表面开放式结构便于气体的进入,而内部分级多孔结构及空心薄壁构造则便于气体在材料内部的传输,并能提供大量的反应表面积。对材料结构与性能的关系研究表明,空心壁厚的增加提高了气体分子在分级结构骨架中的扩散难度,使得气敏响应值下降,最佳工作温度上升。这一变化规律也为我们进一步提高材料气敏性能的结构开发指明了方向,即在构建分级结构的同时构筑便于气体传输的疏松薄壁骨架。
     二、基于疏松薄壁骨架的需求,启迪于生物膜薄的厚度和强的自组装能力,探索直接利用类生物膜的自组装体系来合成具备疏松薄壁骨架特点的三维分级多孔结构的方法,为分级结构气敏材料的合成提供了途径。
     以花粉外被作为生物自组装体系,原位诱导SnO2前驱离子自组装成膜,膜相互交织构筑成三维分级多孔结构。自组装过程类似于生物膜的构造形式,超疏水油脂自组装构成骨架膜的内侧,而亲水性的蛋白质基团则携带前驱离子自组装成骨架膜的外侧。所得到的疏松薄壁骨架的三维分级多孔SnO2材料的骨架膜厚度仅为十几到几十纳米,由8.0nm左右的小颗粒疏松堆积而成。骨架疏松多孔性可通过烧结温度来调节,在700C达到最优化,并随温度进一步升高而衰退。随骨架疏松多孔性的衰退,材料的气敏响应值下降,响应时间增加,最佳工作温度上升。气敏性能的改变主要归结于疏松多孔性对分级骨架上气体传输效率的调控作用,对分级结构气敏材料的设计具有一定的借鉴作用。
     三、为综合开放式和疏松薄壁型分级多孔结构的优势特征,从功能性生物模板的角度出发,提出了模拟花粉构造来合成同时具备三维开放性和疏松薄壁骨架特点的分级多孔气敏材料的构想,为开发高灵敏度的可控气敏材料提供参考。
     以花粉作为生物模板,利用花粉表面活性生物分子(蛋白质等)对前驱离子较强的吸附能力,开发了两步浸渍过程与热处理相结合的方法来实现功能化分级多孔结构的复制。生物分子的介孔模板作用以及对晶粒长大和颗粒团聚的抑制作用保证了疏松薄壁骨架的构筑,并可通过处理液中乙醇水的体积比来调控。花粉分级构造能极大地提高SnO2材料的气敏响应值和响应速率,且提升效果随气体种类、浓度和工作温度不同而不同。对还原性气体,花粉形貌SnO2气体的响应值提升倍数为1.5~3.4倍,对氧化性气体如NO2和Cl2的提升倍数达到4~6.5倍以上。还原性气体和氧化性气体的不同增强效果表明SnO2材料的表面吸附氧的数目不足,这为我们进一步改善分级构造气敏材料响应值随气体浓度的变化速率n,这主要归结与材料比表面积、表面粗糙度、颗粒堆积和晶粒尺寸的协同作用。
     四、基于单一金属氧化物气敏性能的不足以及应用上的限制,从组分优化角度对花粉形貌SnO2进行改性,为分级结构气敏材料的组分优化研究提供了依据,为开发高灵敏度且快速响应的气敏材料奠定了基础。
     通过增加PdCl2前驱液的浸渍步骤,实现了PdO对花粉形貌SnO2的可控表面修饰(Pd/Sn原子摩尔比在0~3.82%之间)。PdO对花粉形貌SnO2的气敏性能有较强的调控作用:i)降低最佳工作温度,降低程度由气体种类、PdO含量和材料微结构共同决定;ii)提高气敏响应值,对H2的提升效果最佳,提升量随PdO的含量增加而增加;iii)减少响应-回复时间,在低的工作温度下减小的效果更显著,且受PdO含量的影响较小。PdO对气敏性能的调控作用是通过对材料微结构和表面特性的协同改变来实现。Pd/Sn<2.89%时,PdO以小颗粒形式存在,抑制了SnO2晶粒生长和颗粒团聚,PdO溢流效应和逆溢流效应的作用区域不能交叠,因而氧吸附能力和O/Sn原子摩尔比基本不变,气敏响应值增强效果居中;Pd/Sn≥2.89%时,PdO颗粒团聚,对SnO2晶粒生长和颗粒团聚的抑制作用减弱,溢流效应和逆溢流效应的作用区域部分或全部交叠,氧吸附能力增强,O/Sn原子摩尔比剧增,气敏响应值增强效果最佳。
     本研究为分级结构气敏材料的开发提供了开发方向,为高效气敏材料的结构设计和组分优化提供了思路,对当前多层次多维数乃至结构功能一体化材料研究具有重要的意义。
With the rapid industrialization and the great increase of population, indiscriminateemission of toxic and harmful gases and flammable and explosive gases not only causesserious air pollution to the ecological environment, but also pose a great threat to theindustries and our everyday lives. In this case, the exploration of gas sensing materialsbecomes one of the urgent problems that must be solved for the implementation of thestrategy of sustainable development. Current researches show that hierarchical structures,especially the hierarchical porous structures, are excellent structural candidates to endowmetal oxides based gas sensing materials with high sensitivity and response rate, whichmeans that hierarchical structures are one of the powerful solutions for the gas detectionand monitoring. However, due to the insufficiency of current synthetic processes andtechnologies, the building of hierarchical structures is always confined by somebottlenecks, such as hard to be synthesized, simplifying of structures, limited types, hardto be modified, and so on, which greatly speed down the exploration of gas sensingmaterials with high sensitivity and response rate. Fortunately, nature provides usblue-prints for the design of elaborate hierarchical structures after thousands of millionsof years’ evolution. Firstly, nature creates astonishing varieties of amazing hierarchicalstructures with multi-morphology in multi-scales and multi-dimensions. This provides usa giant treasure of structural templates. Secondly, the synthetic processes of these naturalstructures are effective, facile, low-cost, green and morphology-tunable, and thus couldbreak a new way towards the artificial synthesis of hierarchical materials. Thirdly, naturalelaborate hierarchical structures are always correlated to specific optical, electrical,magnetic, sonic, thermal, mechanical and other functionalities. Thesestructures-coupling-functionalities provide us new models for the design of advancedfunctional materials. Fourthly, natural structures are composed of lots of biomolecules,which offer abundant and well-dispersed active sites for wet-chemical synthesis andchemical modifications of final products.
     In view of these points upwards, we explored the fabrication procedures and gas sensing application of open hierarchical porous tin oxides (SnO2), hierarchical porousSnO2with loose and thin scaffolds, and open hierarchical porous SnO2with loose andthin scaffolds in the perspectives of structural bio-templates, self-assembly bio-templatesand functional bio-templates, respectively. Then we analyzed the influences ofhierarchical structures and compositions optimization on as-fabricated metal oxides,which could provide us new insights and models for the exploration of gas sensingmaterials. The main contents and results are as follows:
     1. Inspired by the open hierarchical porous structures of butterfly wings, weexplored their application in gas sensing SnO2materials, which could provide us newmodels for the structural design of gas sensing materials.
     Templated from butterfly wings, we successfully developed a one-step solutiondeposition process combined with thermal treatments to fabricate open hierarchicalporous and hollow SnO2materials. By changing the concentration of precursory solutionand deposition time, the wall thickness could be tuned from30to110nm withoutchanging the crystal size, the distribution of pore size and the surface area of thematerials. Butterfly-wings-morphic SnO2could work at a relative low workingtemperature (170C), and showed the6times high gas response of the blank sample andless than the half response/recovery times of the blank sample to50ppm ethanol. Thesuperior sensing performances were ascribed to the specific structures. The openstructures provided convenient entrance for gas molecules, and the hierarchical structuresfacilitated the gas transport in the inner. The research on structure-performancerelationship showed that the increase of wall thickness prevented the gas diffusion on thehierarchical scaffolds and thus induced the degradation of gas sensing performances,which included the decrease of gas response and the increase of optimal workingtemperature. This change phenomenon directs a new way towards the structuralexploration for high performance gas sensing materials, which is to build hierarchicalstructures with loose and thin-walled scaffolds facilitating gas transport.
     2. For the requirement of loose and thin-walled scaffolds, we explored the directutilization of biological membrane-like self-assembly system to fabricate threedimensional (3D) hierarchical porous structures possessing loose and thin-walledscaffolds, inspired by the thin thickness and strong self-assembly ability of biologicalmembranes. This can break a new way towards the synthesis of hierarchical gas sensingstructures.
     Pollen coats were utilized as biological self-assembly systems, in which SnO2 precursory ions were guided to self-assemble to3D hierarchical porous structuresconstructed by interconnected membranes. The self-assembly process was similar to theformation process of biological membranes: hydrophobic lipids self-assembled to theinner of the membranes, and hydrophilic proteins adsorbing SnO2precursory ionsself-assembled to the external of the membranes. The membranes thickness of the finalproducts was only tens of nanometers, loosely packed up by nanoparticles of about8.0nm. The loosening and porosity of the scaffolds could be tuned by the calcinationtemperature. They were optimal at the calcination temperature of about700C, anddegraded seriously when the temperature elevated. With the degradation of scaffolds’loosening and porosity, the gas responses decreased while the response time and theworking temperatures increased. The performances variations should be ascribed to themodulation role of the loosening and porosity on the gas diffusion efficiency on thescaffolds. This work provides us some new insights on the design of hierarchical gassensing materials.
     3. To combine the advantages of open hierarchical porous structures and loose andporous scaffolds, we proposed to mimic the structures of pollen grains to fabricate3Dopen hierarchical porous structures possessing loose and porous scaffolds in theperspective of functional biological templates. Such structures could act as models forhigh and controllable gas sensor.
     To make full use of the strong absorbing ability of surface biomolecules (proteins, etc)to precursory ions, we developed a two-step soakage process followed by thermaltreatment to replicate the functional hierarchical porous structures templated from pollengrains. Biomolecules acted as mesotemplates and prevented the crystal growth andparticles accumulation, making sure of the building of loose and porous scaffolds andallowing them to be tuned by the volume ration of ethanol and water in the treatingsolution. With the hierarchical structures of pollen grains, the gas response and responserate of SnO2materials were improved. The improvements varied with the gas species,concentrations and working temperatures. To reducing gases, the gas responses ofpollen-grain-morphic SnO2was about1.5~3.4times high of that of the blank samples,while to oxidizing gases of NO2and Cl2the gas responses was about4~6.5times high.The different influences suggested that the oxygen species absorbed on SnO2partilces isinsufficient. This gives us the indication on the further improvement of hierarchical gassensing materials. In addition, the loosening and porosity of the scaffolds could tune thegas response and the variation rate (n) of gas response to gas concentration. This should be due to the cooperative effects of surface area, surface coarseness, particles packageand crystal size.
     4. Aroused by the performance insufficiency and application confinement of puregas sensing metal oxide, we optimized the pollen-grains-morphic SnO2in terms ofcompositions. This work built up a good basis for the compositional optimization ofhierarchical gas sensing materials and the exploration of high sensitive and fast responsegas sensing materials.
     On the basis of the synthesis of pollen-grains-morphic SnO2, we added the soakageprocess in PdCl2solution to realize the controllable surface modification ofpollen-grains-morphic SnO2(Pd/Sn atoms molar ratios range in0~3.82%). Thewell-dispersed PdO largely influenced the gas sensing performances: i) Decreased theoptimal working temperature. The decreases were dependent on gas species, PdOcontents and the microstructures; ii) Improved the gas response. The improvement to H2was the best and increased with the increase of PdO contents; iii) Decreased theresponse-recovery times. The decrease was larger at lower working temperature, and wasnot affected by PdO contents. The influence of PdO on gas sensing performance wasrealized by the different cooperative interactions between microstructures and surfaceperformances. When the Pd/Sn <2.89%, PdO existed as tiny particles and prevented thecrystal growth and particles accumulation. The spillover and back-spillover effect zonesof PdO could not overlap. The absorbing ability of oxygen species and O/Sn atoms molarratio changed a little, and thus the gas response enhancement was in the middle-level;When the Pd/Sn≥2.89%, PdO particles accumulated and the roles on crystal growth andSnO2particles accumulation decreased. The spillover and back-spillover effect zones ofPdO could overlap entirely or in some extent. The absorbing ability of oxygen speciesand O/Sn atoms molar ratio increased sharply, and thus the gas response enhancementwas the best.
     The research provides new direction for the synthesis of hierarchical gas sensingmaterials and brings in new insights for the structural design and compositionaloptimization of good gas sensing materials. It is greatly meaningful for the exploration offunctional materials in multi-scale and multi-dimension and structure-enhancedmaterials.
引文
[1]. Metz, B. O., Davidson, R., Bosch, P. R., Dave, R., Meyer, L. A. Contribution of working group III tothe fourth assessment report of the intergovernmental panel on climate change2007[R], CambridgeUniversity Press,2007.
    [2]. Agency, U. S. E. P.1970-2011Average annual emissions, all criteria pollutants in MS Excel [R].2010.
    [3]. Kohl, D. Function and applications of gas sensors [J]. J. Phys. D: Appl. Phys.,2001,34, R125-R149.
    [4]. Tschulena, G., Lahrmann, A. Sensors in household applications in sensors application[M]. In J. Hesse,J. G., W. G pel, Ed. Wiley-VCH: Weinheim,2003.
    [5]. Noboru, Y. Toward innovations of gas sensor technology[J]. Sensors Actuators B: Chem.,2005,108(1–2):2-14.
    [6]. Iberg, P.., Togawa, T., Spelman, F. A. Sensors in medicine and health care in sensorsapplication[M]. In J. Hesse, J., Gardner, W. G pel, Ed. Wiley-VCH: Weinheim,2004.
    [7]. Gubpta, B. L. GB-200N industrial sensor technologies and markets[R]. Nowalk, US: BusinessCommunication Company, Inc.,2004.
    [8]. Eranna, G., Joshi, B. C., Runthala, D. P., etc. Oxide materials for development of integrated gassensors—a comprehensive review[J]. Crit. Rev. Solid State Mater. Sci.,2004,29(3-4):111-188.
    [9]. Ihokura, K., Watson, J. Stannic oxide gas sensors, principles and applications[M]. In CRC: Boca Raton,1994.
    [10]. Barsan, N., Weimar, U. Conduction model of metal oxide gas sensors[J]. J. Electroceram.,2001,7(3):143-167.
    [11]. Barsan, N., Weimar, U. Understanding the fundamental principles of metal oxide based gas sensors;the example of CO sensing with SnO2sensors in the presence of humidity[J]. J. Phys.: Condens. Matter,2003,15(20): R813-R839.
    [12]. Ahlers, S., Müller, G., Doll, T. A rate equation approach to the gas sensitivity of thin film metal oxidematerials[J]. Sensors Actuators B: Chem.,2005,107(2):587-599.
    [13]. Park, C. O., Akbar, S. A. Ceramics for chemical sensing[J]. J. Mater. Sci.,2003,38(23):4611-4637.
    [14]. Madou, M. J., Morrison, S. R. Chemical sensing with solid state devices[M]. In Academic Press: SanDiego,1989.
    [15]. Gurlo, A., Riedel, R. In situ and operando spectroscopy for assessing mechanisms of gas sensing[J].Angew. Chem. Int. Ed.,2007,46(21):3826-3848.
    [16]. Morrison, S. R. The chemical physics of surfaces[M]. In Plenum: New York,1977.
    [17]. Rantala, T. S., Lantto, V., Rantala, T. T. Rate equation simulation of the height of Schottky barriers atthe surface of oxidic semiconductors[J]. Sensors Actuators B: Chem.,1993,13(1–3):234-237.
    [18]. Pulkkinen, U., Rantala, T. T., Rantala, T. S., etc. Kinetic Monte Carlo simulation of oxygen exchangeof SnO2surface[J]. J. Mol. Catal. A: Chem.,2001,166(1):15-21.
    [19]. Barsan, N., Schweizer-Berberich, M., G pel, W. Fundamental and practical aspects in the design ofnanoscaled SnO2gas sensors: a status report[J]. Fresenius J. Anal. Chem.,1999,365(4):287-304.
    [20]. Gurlo, A. Interplay between O2and SnO2: Oxygen ionosorption and spectroscopic evidence foradsorbed oxygen[J]. ChemPhysChem,2006,7(10):2041-2052.
    [21]. Gleiter, H. Nanostructured materials: basic concepts and microstructure[J]. Acta Mater.,2000,48(1):1-29.
    [22]. Korotcenkov, G. Gas response control through structural and chemical modification of metal oxidefilms: state of the art and approaches[J]. Sensors Actuators B: Chem.,2005,107(1):209-232.
    [23]. Korotchenkov, G. S., Dmitriev, S. V., Brynzari, V. I. Processes development for low cost and lowpower consuming SnO2thin film gas sensors (TFGS)[J]. Sensors Actuators B: Chem.,1999,54(3):202-209.
    [24]. Korotcenkov, G., Brinzari, V., Schwank, J., etc. Peculiarities of SnO2thin film deposition by spraypyrolysis for gas sensor application[J]. Sensors Actuators B: Chem.,2001,77(1–2):244-252.
    [25]. Korotcenkov, G., Boris, I., Brinzari, V., etc. Gas-sensing characteristics of one-electrode gas sensorsbased on doped In2O3ceramics[J]. Sensors Actuators B: Chem.,2004,103(1–2):13-22.
    [26]. Kong, X., Li, Y. High sensitivity of CuO modified SnO2nanoribbons to H2S at room temperature[J].Sensors Actuators B: Chem.,2005,105(2):449-453.
    [27]. Patil, L. A., Patil, D. R. Heterocontact type CuO-modified SnO2sensor for the detection of a ppmlevel H2S gas at room temperature[J]. Sensors Actuators B: Chem.,2006,120(1):316-323.
    [28]. Kim, K.-W., Cho, P.-S., Kim, S.-J., etc. The selective detection of C2H5OH using SnO2–ZnO thinfilm gas sensors prepared by combinatorial solution deposition[J]. Sensors Actuators B: Chem.,2007,123(1):318-324.
    [29]. Baek, K.-K., Tuller, H. L. Atmosphere sensitive CuO-ZnO junctions[J]. Solid State Ionics,1995,75(0):179-186.
    [30]. Wu, N., Zhao, M., Zheng, J.-G., etc. Porous CuO–ZnO nanocomposite for sensing electrode ofhigh-temperature CO solid-state electrochemical sensor[J]. Nanotechnology,2005,16(12):2878-2881.
    [31]. Hidalgo, P., Castro, R. H. R., Coelho, A. C. V., etc. Surface Segregation and Consequent SO2SensorResponse in SnO2NiO[J]. Chem. Mater.,2005,17(16):4149-4153.
    [32]. Chakraborty, S., Sen, A., Maiti, H. S. Selective detection of methane and butane by temperaturemodulation in iron doped tin oxide sensors[J]. Sensors Actuators B: Chem.,2006,115(2):610-613.
    [33]. Tang, H., Yan, M., Zhang, H., etc. A selective NH3gas sensor based on Fe2O3–ZnO nanocompositesat room temperature[J]. Sensors Actuators B: Chem.,2006,114(2):910-915.
    [34]. Kugishima, M., Shimanoe, K., Yamazoe, N. C2H4O sensing properties for thick film sensor usingLa2O3-modified SnO2[J]. Sensors Actuators B: Chem.,2006,118(1–2):171-176.
    [35]. Moon, W. J., Yu, J. H., Choi, G. M. The CO and H2gas selectivity of CuO-doped SnO2–ZnOcomposite gas sensor[J]. Sensors Actuators B: Chem.,2002,87(3):464-470.
    [36]. Bai, H., Shi, G. Gas Sensors Based on Conducting Polymers[J]. Sensors,2007,7(3):267-307.
    [37]. Geng, L., Zhao, Y., Huang, X., etc. Characterization and gas sensitivity study of polyaniline/SnO2hybrid material prepared by hydrothermal route[J]. Sensors Actuators B: Chem.,2007,120(2):568-572.
    [38]. Zhang, J., Wang, S., Xu, M., etc. Polypyrrole-coated SnO2hollow spheres and their application forammonia sensor[J]. J. Phys. Chem. C,2009,113(5):1662-1665.
    [39]. Deshpande, N. G., Gudage, Y. G., Sharma, R., etc. Studies on tin oxide-intercalated polyanilinenanocomposite for ammonia gas sensing applications[J]. Sensors Actuators B: Chem.,2009,138(1):76-84.
    [40]. Modi, A., Koratkar, N., Lass, E., etc. Miniaturized gas ionization sensors using carbon nanotubes[J].Nature,2003,424(6945):171-174.
    [41]. Kauffman, D. R., Star, A. Carbon nanotube gas and vapor sensors[J]. Angew. Chem. Int. Ed.,2008,47(35):6550-6570.
    [42]. Chen, Y. J., Zhu, C. L., Wang, T. H. The enhanced ethanol sensing properties of multi-walled carbonnanotubes/SnO2core/shell nanostructures[J]. Nanotechnology,2006,17(12):3012-3017.
    [43]. Yang, A., Tao, X. M., Wang, R. X., etc. Room temperature gas sensing properties ofSnO2/multiwall-carbon-nanotube composite nanofibers[J]. Appl. Phys. Lett.,2007,91(13):133110.
    [44]. Korotcenkov, G., Brinzari, V., Boris, Y., etc. Influence of surface Pd doping on gas sensingcharacteristics of SnO2thin films deposited by spray pirolysis[J]. Thin Solid Films,2003,436(1):119-126.
    [45]. Korotcenkov, G., Macsanov, V., Brinzari, V., etc. Influence of Cu-, Fe-, Co-, and Mn-oxidenanoclusters on sensing behavior of SnO2films[J]. Thin Solid Films,2004,467(1–2):209-214.
    [46]. Kolmakov, A., Klenov, D. O., Lilach, Y., etc. Enhanced gas sensing by individual SnO2nanowiresand nanobelts functionalized with Pd catalyst particles[J]. Nano Lett.,2005,5(4):667-673.
    [47]. Xu, C., Tamaki, J., Miura, N., etc. Relationship between gas sensitivity and microstructure of porousSnO2[J]. J. Electrochem. Soc. Jpn.,1990,581143-1148.
    [48]. Xu, C., Tamaki, J., Miura, N., etc. Grain size effects on gas sensitivity of porous SnO2-basedelements[J]. Sensors Actuators B: Chem.,1991,3(2):147-155.
    [49]. Rothschild, A., Komem, Y. The effect of grain size on the sensitivity of nanocrystalline metal-oxidegas sensors[J]. J. Appl. Phys.,2004,95(11):6374-6380.
    [50]. Lu, F., Liu, Y., Dong, M., etc. Nanosized tin oxide as the novel material with simultaneous detectiontowards CO, H2and CH4[J]. Sensors Actuators B: Chem.,2000,66(1–3):225-227.
    [51]. Ansari, Z. A., Ansari, S. G., Ko, T., etc. Effect of MoO3doping and grain size on SnO2-enhancementof sensitivity and selectivity for CO and H2gas sensing[J]. Sensors Actuators B: Chem.,2002,87(1):105-114.
    [52]. Tamaki, J., Zhang, Z., Fujimori, K., etc. Grain-size effects in tungsten oxide-based sensor for nitrogenoxides[J]. J. Electrochem. Soc.,1994,141(8):2207-2210.
    [53]. Gurlo, A., Barsan, N., Ivanovskaya, M., etc. In2O3and MoO3–In2O3thin film semiconductor sensors:interaction with NO2and O3[J]. Sensors Actuators B: Chem.,1998,47(1–3):92-99.
    [54]. Li, G. J., Kawi, S. High-surface-area SnO2: a novel semiconductor-oxide gas sensor[J]. Mater. Lett.,1998,34(1–2):99-102.
    [55]. Li, G. J., Kawi, S. Synthesis, characterization and sensing application of novel semiconductoroxides[J]. Talanta,1998,45(4):759-766.
    [56]. Li, G. J., Zhang, X. H., Kawi, S. Relationships between sensitivity, catalytic activity, and surfaceareas of SnO2gas sensors[J]. Sensors Actuators B: Chem.,1999,60(1):64-70.
    [57]. Min, B.-K., Choi, S.-D. SnO2thin film gas sensor fabricated by ion beam deposition[J]. SensorsActuators B: Chem.,2004,98(2–3):239-246.
    [58]. Shoyama, M., Hashimoto, N. Effect of poly ethylene glycol addition on the microstructure and sensorcharacteristics of SnO2thin films prepared by sol–gel method[J]. Sensors Actuators B: Chem.,2003,93(1–3):585-589.
    [59]. Andrei Kolmakov, M. M. Chemical sensing and catalysis by one-dimensional metal-oxidenanostructures[J]. Annu. Rev. Mater. Res.,2004,34,151-180.
    [60]. Lu, J. G., Chang, P., Fan, Z. Quasi-one-dimensional metal oxide materials—Synthesis, properties andapplications[J]. Mater. Sci. Eng., R,2006,52(1–3):49-91.
    [61]. Huang, J., Wan, Q. Gas sensors based on semiconducting metal oxide one-dimensionalnanostructures[J]. Sensors,2009,9(12):9903-9924.
    [62]. Huang, X.-J., Choi, Y.-K. Chemical sensors based on nanostructured materials[J]. Sensors ActuatorsB: Chem.,2007,122(2):659-671.
    [63]. Comini, E., Baratto, C., Faglia, G., etc. Quasi-one dimensional metal oxide semiconductors:Preparation, characterization and application as chemical sensors[J]. Prog. Mater Sci.,2009,54(1):1-67.
    [64]. Matsunaga, N., Sakai, G., Shimanoe, K., etc. Diffusion equation-based study of thin filmsemiconductor gas sensor-response transient[J]. Sensors Actuators B: Chem.,2002,83(1–3):216-221.
    [65]. Matsunaga, N., Sakai, G., Shimanoe, K., etc. Formulation of gas diffusion dynamics for thin filmsemiconductor gas sensor based on simple reaction–diffusion equation[J]. Sensors Actuators B: Chem.,2003,96(1–2):226-233.
    [66]. Sakai, G., Matsunaga, N., Shimanoe, K., etc. Theory of gas-diffusion controlled sensitivity for thinfilm semiconductor gas sensor[J]. Sensors Actuators B: Chem.,2001,80(2):125-131.
    [67]. Feng, C. D., Shimizu, Y., Egashira, M. Effect of gas diffusion process on sensing properties of SnO2thin film sensors in a SiO2/SnO2layer-built structure fabricated by sol-gel process[J]. J. Electrochem. Soc.,1994,141(1):220-225.
    [68]. Shimizu, Y., Maekawa, T., Nakamura, Y., etc. Effects of gas diffusivity and reactivity on sensingproperties of thick film SnO2-based sensors[J]. Sensors Actuators B: Chem.,1998,46(3):163-168.
    [69]. Vuong, D. D., Sakai, G., Shimanoe, K., etc. Preparation of grain size-controlled tin oxide sols byhydrothermal treatment for thin film sensor application[J]. Sensors Actuators B: Chem.,2004,103(1–2):386-391.
    [70]. Vuong, D. D., Sakai, G., Shimanoe, K., etc. Hydrogen sulfide gas sensing properties of thin filmsderived from SnO2sols different in grain size[J]. Sensors Actuators B: Chem.,2005,105(2):437-442.
    [71]. Shimizu, Y., Hyodo, T., Egashira, M. Mesoporous semiconducting oxides for gas sensorapplication[J]. J. Eur. Ceram. Soc.,2004,24(6):1389-1398.
    [72]. Shimizu, Y., Jono, A., Hyodo, T., etc. Preparation of large mesoporous SnO2powder for gas sensorapplication[J]. Sensors Actuators B: Chem.,2005,108(1–2):56-61.
    [73]. Wagner, T., Kohl, C.-D., Fr ba, M., etc. Gas sensing properties of ordered mesoporous SnO2[J].Sensors,2006,6(4):318-323.
    [74]. Hyodo, T., Abe, S., Shimizu, Y., etc. Gas-sensing properties of ordered mesoporous SnO2and effectsof coatings thereof[J]. Sensors Actuators B: Chem.,2003,93(1–3):590-600.
    [75]. Waitz, T., Wagner, T., Sauerwald, T., etc. Ordered mesoporous In2O3: Synthesis by structurereplication and application as a methane gas sensor[J]. Adv. Funct. Mater.,2009,19(4):653-661.
    [76]. Wagner, T., Waitz, T., Roggenbuck, J., etc. Ordered mesoporous ZnO for gas sensing[J]. Thin SolidFilms,2007,515(23):8360-8363.
    [77]. Hyodo, T., Sasahara, K., Shimizu, Y., etc. Preparation of macroporous SnO2films using PMMAmicrospheres and their sensing properties to NOx and H2[J]. Sensors Actuators B: Chem.,2005,106(2):580-590.
    [78]. Ge, J.-P., Wang, J., Zhang, H.-X., etc. High ethanol sensitive SnO2microspheres[J]. SensorsActuators B: Chem.,2006,113(2):937-943.
    [79]. Lee, G.-G., Kang, S.-J. L. Formation of large pores and their effect on electrical properties of SnO2gas sensors[J]. Sensors Actuators B: Chem.,2005,107(1):392-396.
    [80]. Lee, J.-H. Gas sensors using hierarchical and hollow oxide nanostructures: Overview[J]. SensorsActuators B: Chem.,2009,140(1):319-336.
    [81]. Martinez, C. J., Hockey, B., Montgomery, C. B., etc. Porous tin oxide nanostructured microspheresfor sensor applications[J]. Langmuir,2005,21(17):7937-7944.
    [82]. Zhao, Q., Gao, Y., Bai, X., etc. Facile synthesis of SnO2hollow nanospheres and applications in gassensors and electrocatalysts[J]. Eur. J. Inorg. Chem.,2006,(8):1643-1648.
    [83]. Wang, H., Liang, J., Fan, H., etc. Synthesis and gas sensitivities of SnO2nanorods and hollowmicrospheres[J]. J. Solid State Chem.,2008,181(1):122-129.
    [84]. Zhang, J., Wang, S., Wang, Y., etc. NO2sensing performance of SnO2hollow-sphere sensor[J].Sensors Actuators B: Chem.,2009,135(2):610-617.
    [85]. Kim, I. D., Rothschild, A., Yang, D. J., etc. Macroporous TiO2thin film gas sensors obtained usingcolloidal templates[J]. Sensors Actuators B: Chem.,2008,130(1):9-13.
    [86]. Choi, K. I., Kim, H. R., Lee, J. H. Enhanced CO sensing characteristics of hierarchical and hollowIn2O3microspheres[J]. Sensors Actuators B: Chem.,2009,138(2):497-503.
    [87]. Zhang, H., Zhu, Q., Zhang, Y., etc. One-pot synthesis and hierarchical assembly of hollow Cu2Omicrospheres with nanocrystals-composed porous multishell and their gas-sensing properties[J]. Adv.Funct. Mater.,2007,17(15):2766-2771.
    [88]. Wu, Z., Zhang, M., Yu, K., etc. Self-assembled double-shelled ferrihydrite hollow spheres with atunable aperture[J]. Chem. Eur. J.,2008,14(17):5346-5352.
    [89]. Qin, L., Xu, J., Dong, X., etc. The template-free synthesis of square-shaped SnO2nanowires: thetemperature effect and acetone gas sensors[J]. Nanotechnology,2008,19(18):185705.
    [90]. Zhang, N., Yu, K., Li, Q., etc. Room-temperature high-sensitivity H2S gas sensor based on dendriticZnO nanostructures with macroscale in appearance[J]. J. Appl. Phys.,2008,103(10):104305.
    [91]. Ponzoni, A., Comini, E., Sberveglieri, G., etc. Ultrasensitive and highly selective gas sensors usingthree-dimensional tungsten oxide nanowire networks[J]. Appl. Phys. Lett.,2006,88(20):203101.
    [92]. Gou, X., Wang, G., Kong, X., etc. Flutelike porous hematite nanorods and branched nanostructures:synthesis, characterisation and application for gas-sensing[J]. Chem. Eur. J.,2008,14(19):5996-6002.
    [93]. Kim, H. R., Choi, K. I., Lee, J. H., etc. Highly sensitive and ultra-fast responding gas sensors usingself-assembled hierarchical SnO2spheres[J]. Sensors Actuators B: Chem.,2009,136(1):138-143.
    [94]. Fan, T.-X., Chow, S.-K., Zhang, D. Biomorphic mineralization: From biology to materials[J]. Prog.Mater Sci.,2009,54(5):542-659.
    [95].Sotiropoulou, S., Sierra-Sastre, Y., Mark, S. S., etc. Biotemplated nanostructured materials [J]. Chem.Mater.,2008,20(3):821-834.
    [96]. Braun, E., Eichen, Y., Sivan, U., etc. DNA-templated assembly and electrode attachment of aconducting silver wire[J]. Nature,1998,391(6669):775-778.
    [97]. Keren, K., Krueger, M., Gilad, R., etc. Sequence-specific molecular lithography on single DNAmolecules[J]. Science,2002,297(5578):72-75.
    [98]. Nakao, H., Shiigi, H., Yamamoto, Y., etc. Highly ordered assemblies of Au nanoparticles organizedon DNA[J]. Nano Lett.,2003,3(10):1391-1394.
    [99]. Deng, Z., Mao, C. DNA-templated fabrication of1D parallel and2D crossed metallic nanowirearrays[J]. Nano Lett.,2003,3(11):1545-1548.
    [100]. Mertig, M., Colombi Ciacchi, L., Seidel, R., etc. DNA as a selective metallization template[J]. NanoLett.,2002,2(8):841-844.
    [101]. Gu, Q., Cheng, C., Suryanarayanan, S., etc. DNA-templated fabrication of nickel nanoclusterchains[J]. Physica E,2006,33(1):92-98.
    [102]. Dittmer, W. U., Simmel, F. C. Chains of semiconductor nanoparticles templated on DNA[J]. Appl.Phys. Lett.,2004,85(4):633-635.
    [103]. Levina, L., Sukhovatkin, V., Musikhin, S., etc. Efficient infrared-emitting PbS quantum dots grownon DNA and stable in aqueous solution and blood plasma[J]. Adv. Mater.,2005,17(15):1854-1857.
    [104]. Yamashita, I. Fabrication of a two-dimensional array of nano-particles using ferritin molecule[J].Thin Solid Films,2001,393(1–2):12-18.
    [105]. Meldrum, F. C., Wade, V. J., Nimmo, D. L., etc. Synthesis of inorganic nanophase materials insupramolecular protein cages[J]. Nature,1991,349(6311):684-687.
    [106]. Galvez, N., Sanchez, P., Dominguez-Vera, J. M., etc. Apoferritin-encapsulated Ni and Cosuperparamagnetic nanoparticles[J]. J. Mater. Chem.,2006,16(26):2757-2761.
    [107]. Shin, Y., Dohnalkova, A., Lin, Y. Preparation of homogeneous gold Silver alloy nanoparticlesusing the apoferritin cavity as a nanoreactor[J]. J. Phys. Chem. C,2010,114(13):5985-5989.
    [108]. Liu, G., Wu, H., Wang, J., etc. Apoferritin-templated synthesis of metal phosphate nanoparticlelabels for electrochemical immunoassay[J]. Small,2006,2(10):1139-1143.
    [109]. Liu, G., Wu, H., Dohnalkova, A., etc. Apoferritin-templated synthesis of encoded metallicphosphate nanoparticle tags[J]. Anal. Chem.,2007,79(15):5614-5619.
    [110]. Gálvez, N., Valero, E., Ceolin, M., etc. A bioinspired approach to the synthesis of bimetallic CoNinanoparticles[J]. Inorg. Chem.,2010,49(4):1705-1711.
    [111]. Mao, C., Solis, D. J., Reiss, B. D., etc. Virus-based toolkit for the directed synthesis of magnetic andsemiconducting nanowires[J]. Science,2004,303(5655):213-217.
    [112]. Douglas, T., Young, M. Viruses: Making friends with old foes[J]. Science,2006,312(5775):873-875.
    [113]. Lee, S.-K., Yun, D. S., Belcher, A. M. Cobalt ion mediated self-assembly of genetically engineeredbacteriophage for biomimetic Co Pt hybrid material[J]. Biomacromolecules,2005,7(1):14-17.
    [114]. Bromley, K. M., Patil, A. J., Perriman, A. W., etc. Preparation of high quality nanowires by tobaccomosaic virus templating of gold nanoparticles[J]. J. Mater. Chem.,2008,18(40):4796-4801.
    [115]. Rong, J. H., Oberbeck, F., Wang, X. N., etc. Tobacco mosaic virus templated synthesis of onedimensional inorganic-polymer hybrid fibres[J]. J. Mater. Chem.,2009,19(18):2841-2845.
    [116]. Atanasova, P., Rothenstein, D., Schneider, J. J., etc. Virus-templated synthesis of ZnOnanostructures and formation of field-effect transistors[J]. Adv. Mater.,2011,23(42):4918-4922.
    [117]. Douglas, T., Strable, E., Willits, D., etc. Protein engineering of a viral cage for constrainednanomaterials synthesis[J]. Adv. Mater.,2002,14(6):415-418.
    [118]. Liu, C. M., Chung, S. H., Jin, Q. L., etc. Magnetic viruses via nano-capsid templates[J]. J. Magn.Magn. Mater.,2006,302(1):47-51.
    [119]. Yang, D.-P., Chen, S., Huang, P., etc. Bacteria-template synthesized silver microspheres withhollow and porous structures as excellent SERS substrate[J]. Green Chem.,2010,12(11):2038-2042.
    [120]. de la Escosura, A., Verwegen, M., Sikkema, F. D., etc. Viral capsids as templates for the productionof monodisperse Prussian blue nanoparticles[J]. Chem. Commun.,2008,(13):1542-1544.
    [121]. Zhou, H., Fan, T., Zhang, D. Hydrothermal synthesis of ZnO hollow spheres using spherobacteriumas biotemplates[J]. Microporous Mesoporous Mater.,2007,100(1–3):322-327.
    [122]. Zhou, H., Fan, T., Zhang, D., etc. Novel Bacteria-templated sonochemical route for the in situone-step synthesis of ZnS hollow nanostructures[J]. Chem. Mater.,2007,19(9):2144-2146.
    [123]. Davis, S. A., Burkett, S. L., Mendelson, N. H., etc. Bacterial templating of ordered macrostructuresin silica and silica-surfactant mesophases[J]. Nature,1997,385(6615):420-423.
    [124]. Zhang, D., Qi, L. Synthesis of mesoporous titania networks consisting of anatase nanowires bytemplating of bacterial cellulose membranes[J]. Chem. Commun.,2005,(21):2735-2737.
    [125]. Bao, Z., Weatherspoon, M. R., Shian, S., etc. Chemical reduction of three-dimensional silicamicro-assemblies into microporous silicon replicas[J]. Nature,2007,446(7132):172-175.
    [126]. Zhou, H., Fan, T., Li, X., etc. Bio-inspired bottom-up assembly of diatom-templated ordered porousmetal chalcogenide meso/nanostructures[J]. Eur. J. Inorg. Chem.,2009,(2):211-215.
    [127]. Weatherspoon, M. R., Dickerson, M. B., Wang, G., etc. Thin, conformal, and continuous SnO2coatings on three-dimensional biosilica templates through hydroxy-group amplification and layer-by-layeralkoxide deposition[J]. Angew. Chem. Int. Ed.,2007,46(30):5724-5727.
    [128]. Liu, D., Yuan, P., Tan, D., etc. Effects of inherent/enhanced solid acidity and morphology ofdiatomite templates on the synthesis and porosity of hierarchically porous carbon[J]. Langmuir,2010,26(24):18624-18627.
    [129]. Jeffryes, C., Campbell, J., Li, H., etc. The potential of diatom nanobiotechnology for applications insolar cells, batteries, and electroluminescent devices[J]. Ener. Environ. Sci.,2011,4(10):3930-3941.
    [130]. Meldrum, F. C., Seshadri, R. Porous gold structures through templating by echinoid skeletalplates[J]. Chem. Commun.,2000,(1):29-30.
    [131]. Seshadri, R., Meldrum, F. C. Bioskeletons as templates for ordered, macroporous structures[J]. Adv.Mater.,2000,12(15):1149-1151.
    [132]. Park, R. J., Meldrum, F. C. Shape-constraint as a route to calcite single crystals with complexmorphologies[J]. J. Mater. Chem.,2004,14(14):2291-2296.
    [133]. Park, R. J., Meldrum, F. C. Synthesis of single crystals of calcite with complex morphologies[J].Adv. Mater.,2002,14(16):1167-1169.
    [134]. Yue, W., Kulak, A. N., Meldrum, F. C. Growth of single crystals in structured templates[J]. J. Mater.Chem.,2006,16(4):408-416.
    [135]. Zampieri, A., Mabande, G. T. P., Selvam, T., etc. Biotemplating of Luffa cylindrica sponges toself-supporting hierarchical zeolite macrostructures for bio-inspired structured catalytic reactors[J]. Mater.Sci. Eng., C,2006,26(1):130-135.
    [136]. Valtchev, V., Smaihi, M., Faust, A.-C., etc. Biomineral-silica-induced zeolitization of EquisetumArvense[J]. Angew. Chem. Int. Ed.,2003,42(24):2782-2785.
    [137]. Valtchev, V. P., Smaihi, M., Faust, A.-C., etc. Equisetum arvense templating of zeolite betamacrostructures with hierarchical porosity[J]. Chem. Mater.,2004,16(7):1350-1355.
    [138]. Bhattacharya, A., Heinrich, J. Cellular SiC ceramic from stems of corn—processing andmicrostructure[J]. J. Mater. Sci.,2006,41(8):2443-2448.
    [139]. Yang, D., Qi, L., Ma, J. Eggshell membrane templating of hierarchically ordered macroporousnetworks composed of TiO2tubes[J]. Adv. Mater.,2002,14(21):1543-1546.
    [140]. Yang, D., Qi, L., Ma, J. Hierarchically ordered networks comprising crystalline ZrO2tubes throughsol-gel mineralization of eggshell membranes[J]. J. Mater. Chem.,2003,13(5):1119-1123.
    [141]. Dong, Q., Su, H. L., Zhang, D., etc. Fabrication and gas sensitivity of SnO2hierarchical films withinterwoven tubular conformation by a biotemplate-directed sol-gel technique[J]. Nanotechnology,2006,17(15):3968-3972.
    [142]. Dong, Q., Su, H., Xu, J., etc. Synthesis of biomorphic ZnO interwoven microfibers using eggshellmembrane as the biotemplate[J]. Mater. Lett.,2007,61(13):2714-2717.
    [143]. Su, H., Dong, Q., Han, J., etc. Biogenic synthesis and photocatalysis of Pd PdO nanoclustersreinforced hierarchical TiO2films with interwoven and tubular conformations[J]. Biomacromolecules,2008,9(2):499-504.
    [144]. Sanchez, C., Arribart, H., Giraud Guille, M. M. Biomimetism and bioinspiration as tools for thedesign of innovative materials and systems[J]. Nat Mater,2005,4(4):277-288.
    [145]. Ma, N., Sargent, E. H., Kelley, S. O. Biotemplated nanostructures: directed assembly of electronicand optical materials using nanoscale complementarity[J]. J. Mater. Chem.,2008,18(9):954-964.
    [146]. Aldaye, F. A., Sleiman, H. F. Sequential self-assembly of a DNA hexagon as a template for theorganization of gold nanoparticles[J]. Angew. Chem. Int. Ed.,2006,45(14):2204-2209.
    [147]. Liu, D., Park, S. H., Reif, J. H., etc. DNA nanotubes self-assembled from triple-crossover tiles astemplates for conductive nanowires[J]. Proc. Natl. Acad. Sci. U. S. A.,2004,101(3):717-722.
    [148]. Aldaye, F. A., Palmer, A. L., Sleiman, H. F. Assembling materials with DNA as the guide[J].Science,2008,321(5897):1795-1799.
    [149]. Pum, D., Sára, M., Schuster, B., etc. Bacterial surface layer proteins: a simple but versatilebiological self-assembly system in nature nanotechnology: science and computation[M]. In Chen,J.,Jonoska, N.,Rozenberg, G., Eds. Springer Berlin Heidelberg:2006;277-290.
    [150]. Lee, H., Purdon, A. M., Chu, V., etc. Controlled assembly of magnetic nanoparticles frommagnetotactic bacteria using microelectromagnets arrays[J]. Nano Lett.,2004,4(5):995-998.
    [151]. Chia, S., Urano, J., Tamanoi, F., etc. Patterned hexagonal arrays of living cells in sol gel silicafilms[J]. J. Am. Chem. Soc.,2000,122(27):6488-6489.
    [152]. Flynn, C. E., Lee, S.-W., Peelle, B. R., etc. Viruses as vehicles for growth, organization andassembly of materials[J]. Acta Mater.,2003,51(19):5867-5880.
    [153]. Huang, Y., Chiang, C.-Y., Lee, S. K., etc. Programmable assembly of nanoarchitectures usinggenetically engineered viruses[J]. Nano Lett.,2005,5(7):1429-1434.
    [154]. Whaley, S. R., English, D. S., Hu, E. L., etc. Selection of peptides with semiconductor bindingspecificity for directed nanocrystal assembly[J]. Nature,2000,405(6787):665-668.
    [155]. Lee, S.-W., Mao, C., Flynn, C. E., etc. Ordering of quantum dots using genetically engineeredviruses[J]. Science,2002,296(5569):892-895.
    [156]. Liu, K., Jiang, L. Multifunctional integration: from biological to bio-inspired materials[J]. ACSNano,2011,5(9):6786-6790.
    [157]. Liu, K., Yao, X., Jiang, L. Recent developments in bio-inspired special wettability[J]. Chem. Soc.Rev.,2010,39(8):3240-3255.
    [158]. Singh, M., Yee, B.-M. Reactive processing of environmentally conscious, biomorphic ceramicsfrom natural wood precursors[J]. J. Eur. Ceram. Soc.,2004,24(2):209-217.
    [159]. Calderon, N. R., Martinez-Escandell, M., Narciso, J., etc. The role of carbon biotemplate density inmechanical properties of biomorphic SiC[J]. J. Eur. Ceram. Soc.,2009,29(3):465-472.
    [160]. Presas, M., Pastor, J. Y., Llorca, J., etc. Mechanical behavior of biomorphic Si/SiC porouscomposites[J]. Scripta Mater.,2005,53(10):1175-1180.
    [161]. Zollfrank, C., Travitzky, N., Sieber, H., etc. Biomorphous SiSiC/Al-Si ceramic compositesmanufactured by squeeze casting: microstructure and mechanical properties[J]. Adv. Eng. Mater.,2005,7(8):743-746.
    [162]. Chakrabarti, O., Weisensel, L., Sieber, H. Reactive melt infiltration processing of biomorphicSi–Mo–C ceramics from wood[J]. J. Am. Ceram. Soc.,2005,88(7):1792-1798.
    [163]. Sun, B., Fan, T., Zhang, D., etc. The synthesis and microstructure of morph-genetic TiC/Cceramics[J]. Carbon,2004,42(1):177-182.
    [164]. Deshpande, A. S., Burgert, I., Paris, O. Hierarchically structured ceramics by high-precisionnanoparticle casting of wood[J]. Small,2006,2(8-9):994-998.
    [165]. Liu, Z., Fan, T., Zhang, D., etc. Hierarchically porous ZnO with high sensitivity and selectivity toH2S derived from biotemplates[J]. Sensors Actuators B: Chem.,2009,136(2):499-509.
    [166]. Tampieri, A., Sprio, S., Ruffini, A., etc. From wood to bone: multi-step process to convert woodhierarchical structures into biomimetic hydroxyapatite scaffolds for bone tissue engineering[J]. J. Mater.Chem.,2009,19(28):4973-4980.
    [167]. Li, X., Fan, T., Zhou, H., etc. Enhanced light-harvesting and photocatalytic properties inmorph-TiO2from green-leaf biotemplates[J]. Adv. Funct. Mater.,2009,19(1):45-56.
    [168]. Zhou, H., Fan, T., Li, X., etc. Biomimetic photocatalyst system derived from the natural prototype inleaves for efficient visible-light-driven catalysis[J]. J. Mater. Chem.,2009,19(18):2695-2703.
    [169]. Zhou, H., Fan, T., Zhang, D. An Insight into artificial leaves for sustainable energy inspired bynatural photosynthesis[J]. ChemCatChem,2011,3(3):513-528.
    [170]. Huang,WangWang, Wang, Z. L. Controlled replication of butterfly wings for achieving tunablephotonic properties[J]. Nano Lett.,2006,6(10):2325-2331.
    [171]. Zhang, W., Zhang, D., Fan, T., etc. Novel photoanode structure templated from butterfly wingscales[J]. Chem. Mater.,2008,21(1):33-40.
    [172]. Ortiz, C., Boyce, M. C. Bioinspired structural materials[J]. Science,2008,319(5866):1053-1054.
    [173]. Munch, E., Launey, M. E., Alsem, D. H., etc. Tough, Bio-inspired hybrid materials[J]. Science,2008,2008,322(5907):1516-1520.
    [174]. Koch, K., Bhushan, B., Jung, Y. C., etc. Fabrication of artificial Lotus leaves and significance ofhierarchical structure for superhydrophobicity and low adhesion[J]. Soft Matter,2009,5(7):1386-1393.
    [175]. Su, Y., Ji, B., Zhang, K., etc. Nano to micro structural hierarchy is crucial for stablesuperhydrophobic and water-repellent surfaces[J]. Langmuir,2010,26(7):4984-4989.
    [176]. Gao, X., Jiang, L. Water-repellent legs of water striders[J]. Nature,2004,432(7013):36.
    [177]. Liu, M., Wang, S., Wei, Z., etc. Bioinspired design of a superoleophobic and low adhesivewater/solid interface[J]. Adv. Mater.,2009,21(6):665-669.
    [178]. Greiner, C., Arzt, E., del Campo, A. Hierarchical gecko-like adhesives[J]. Adv. Mater.,2009,21(4):479-482.
    [179]. Boesel, L. F., Greiner, C., Arzt, E., etc. Gecko-inspired surfaces: a path to strong and reversible dryadhesives[J]. Adv. Mater.,2010,22(19):2125-2137.
    [180]. Dong, Q., Su, H., Zhang, D. In situ depositing silver nanoclusters on silk fibroin fibers supports by anovel biotemplate redox technique at room temperature[J]. J. Phys. Chem. B,2005,109(37):17429-17434.
    [181]. Slawson, R. M., Van Dyke, M. I., Lee, H., etc. Germanium and silver resistance, accumulation, andtoxicity in microorganisms[J]. Plasmid,1992,27(1):72-79.
    [182]. Ahmad, A., Senapati, S., Khan, M. I., etc. Intracellular synthesis of gold nanoparticles by a novelalkalotolerant actinomycete, Rhodococcus species[J]. Nanotechnology,2003,14(7):824-828.
    [183]. Joerger, R., Klaus, T., Granqvist, C. G. Biologically produced silver–carbon composite materials foroptically functional thin-film coatings[J]. Adv. Mater.,2000,12(6):407-409.
    [184]. Li, L., Wu, Q. S., Ding, Y. P. Living bio-membrane bi-template route for simultaneous synthesis oflead selenide nanorods and nanotubes[J]. Nanotechnology,2004,15(12):1877-1881.
    [185]. Tong, H., Zhu, Y.-J., Yang, L.-X., etc. Lead chalcogenide nanotubes synthesized bybiomolecule-assisted self-assembly of nanocrystals at room temperature[J]. Angew. Chem.,2006,118(46):7903-7906.
    [1]. Michielsen, K., Stavenga, D. G. Gyroid cuticular structures in butterfly wing scales: biologicalphotonic crystals[J]. J. R. Soc. Interface,2008,5(18):85-94.
    [2]. Parker, A. R., Townley, H. E. Biomimetics of photonic nanostructures[J]. Nat. Nanotechnol.,2007,2(6):347-353.
    [3]. Vukusic, P., Hooper, I. Directionally controlled fluorescence emission in butterflies[J]. Science,2005,310(5751):1151.
    [4]. Biró, L. P., Kertész, K., Vértesy, Z., etc. Living photonic crystals: Butterfly scales—Nanostructureand optical properties[J]. Mater. Sci. Eng., C,2007,27(5–8):941-946.
    [5]. Ingram, A. L., Parker, A. R. A review of the diversity and evolution of photonic structures in butterflies,incorporating the work of John Huxley (The Natural History Museum, London from1961to1990)[J].Philosoph. Trans R. Soc., B,2008,363(1502):2465-2480.
    [6]. Kertész, K., Bálint, Z., Vértesy, Z., etc. Gleaming and dull surface textures from photonic-crystal-typenanostructures in the butterfly Cyanophrys remus[J]. Phys. Rev. E: Stat. Phys., Plasmas, Fluids,2006,74(2):021922.
    [7]. Zhang, H., Zhu, Q., Zhang, Y., etc. One-pot synthesis and hierarchical assembly of hollow Cu2Omicrospheres with nanocrystals-composed porous multishell and their gas-sensing properties[J]. Adv.Funct. Mater.,2007,17(15):2766-2771.
    [8]. Liu, Z., Fan, T., Zhang, D., etc. Hierarchically porous ZnO with high sensitivity and selectivity to H2Sderived from biotemplates[J]. Sensors Actuators B: Chem.,2009,136(2):499-509.
    [9]. Martinez, C. J., Hockey, B., Montgomery, C. B., etc. Porous tin oxide nanostructured microspheres forsensor applications[J]. Langmuir,2005,21(17):7937-7944.
    [10]. Bao, Z., Weatherspoon, M. R., Shian, S., etc. Chemical reduction of three-dimensional silicamicro-assemblies into microporous silicon replicas[J]. Nature,2007,446(7132):172-175.
    [11]. Lee, J.-H. Gas sensors using hierarchical and hollow oxide nanostructures: Overview[J]. SensorsActuators B: Chem.,2009,140(1):319-336.
    [12]. Potyrailo, R. A., Ghiradella, H., Vertiatchikh, A., etc. Morpho butterfly wing scales demonstratehighly selective vapour response[J]. Nat. Photonnics,2007,1(2):123-128.
    [13]. Fan, T.-X., Chow, S.-K., Zhang, D. Biomorphic mineralization: From biology to materials[J]. Prog.Mater Sci.,2009,54(5):542-659.
    [14]. Paris, O., Burgert, I., Fratzl, P. Biomimetics and biotemplating of natural materials[J]. MRS Bull.,2010,35(3):219-225.
    [15]. Sotiropoulou, S., Sierra-Sastre, Y., Mark, S. S., etc. Biotemplated nanostructured materials [J]. Chem.Mater.,2008,20(3):821-834.
    [16]. Cook, G., Timms, P. L., G ltner-Spickermann, C. Exact replication of biological structures bychemical vapor deposition of silica[J]. Angew. Chem. Int. Ed.,2003,42(5):557-559.
    [17]. Li, B., Zhou, J., Zong, R., etc. Ordered ceramic microstructures from butterfly bio-template[J]. J. Am.Ceram. Soc.,2006,89(7):2298-2300.
    [18]. Silver, J., Withnall, R., Ireland, T. G., etc. Novel nano-structured phosphor materials cast from naturalMorpho butterfly scales[J]. J. Mod. Opt.,2005,52(7):999-1007.
    [19]. Silver, J., Withnall, R., Ireland, T. G., etc. Light-emitting nanocasts formed from bio-templates:FESEM and cathodoluminescent imaging studies of butterfly scale replicas[J]. Nanotechnology,2008,19(9):095302.
    [20]. Huang,WangWang, Wang, Z. L. Controlled replication of butterfly wings for achieving tunablephotonic properties[J]. Nano Lett.,2006,6(10):2325-2331.
    [21]. Ding, Y., Xu, S., Zhang, Y., etc. Modifying the anti-wetting property of butterfly wings and waterstrider legs by atomic layer deposition coating: surface materials versus geometry[J]. Nanotechnology,2008,19(35):355708.
    [22]. Zhang, W., Zhang, D., Fan, T., etc. Biomimetic zinc oxide replica with structural color using butterfly(Ideopsis similis) wings as templates[J]. Bioinspiration Biomimetics,2006,1(3):89-95.
    [23]. Zhang, W., Zhang, D., Fan, T., etc. Novel photoanode structure templated from butterfly wingscales[J]. Chem. Mater.,2009,21(1):33-40.
    [24]. Zhu, S., Zhang, D., Li, Z., etc. Precision replication of hierarchical biological structures by metaloxides using a sonochemical method[J]. Langmuir,2008,24(12):6292-6299.
    [25]. Weatherspoon, M. R., Cai, Y., Crne, M., etc.3D rutile titania-based structures with Morpho butterflywing scale morphologies[J]. Angew. Chem. Int. Ed.,2008,47(41):7921-7923.
    [26]. Ding, Y., Xu, S., Zhang, Y., etc. Modifying the anti-wetting property of butterfly wings and waterstrider legs by atomic layer deposition coating: surface materials versus geometry[J]. Nanotechnology,2008,19(35).
    [27]. Sato, O., Kubo, S., Gu, Z.-Z. Structural color films with Lotus Effects, superhydrophilicity, andtunable stop-bands[J]. Acc. Chem. Res.,2008,42(1):1-10.
    [28]. Han, J., Su, H., Song, F., etc. Controllable reflection properties of nanocomposite photonic crystalsconstructed by semiconductor nanocrystallites and natural periodic bio-matrices[J]. Nanoscale,2010,2(10):2203-2208.
    [29]. Kinoshita, S., Yoshioka, S., Kawagoe, K. Mechanisms of structural colour in the Morpho butterfly:cooperation of regularity and irregularity in an iridescent scale[J]. Proc. R. Soc. Lond. B. Biol. Sci.,2002,269(1499):1417-1421.
    [30]. Kinoshita, S., Yoshioka, S. Structural Colors in Nature: The role of regularity and irregularity in thestructure[J]. ChemPhysChem,2005,6(8):1442-1459.
    [31]. Barrett, E. P., Joyner, L. G., Halenda, P. P. The determination of pore volume and area distributions inporous substances. I. computations from nitrogen isotherms[J]. J. Am. Chem. Soc.,1951,73(1):373-380.
    [32]. Dong, Q., Su, H. L., Zhang, D., etc. Fabrication and gas sensitivity of SnO2hierarchical films withinterwoven tubular conformation by a biotemplate-directed sol-gel technique[J]. Nanotechnology,2006,17(15):3968-3972.
    [33]. Ge, J.-P., Wang, J., Zhang, H.-X., etc. High ethanol sensitive SnO2microspheres[J]. Sensors ActuatorsB: Chem.,2006,113(2):937-943.
    [34]. Xi, G., He, Y., Zhang, Q., etc. Synthesis of crystalline microporous SnO2via a surfactant-assistedmicrowave heating method: a general and rapid method for the synthesis of metal oxide nanostructures[J].J. Phys. Chem. C,2008,112(31):11645-11649.
    [35]. Chen, Y. J., Zhu, C. L., Wang, T. H. The enhanced ethanol sensing properties of multi-walled carbonnanotubes/SnO2core/shell nanostructures[J]. Nanotechnology,2006,17(12):3012-3017.
    [36]. Wan, Q., Huang, J., Xie, Z., etc. Branched SnO2nanowires on metallic nanowire backbones forethanol sensors application[J]. Appl. Phys. Lett.,2008,92(10):102101.
    [37]. Van Hieu, N., Kim, H.-R., Ju, B.-K., etc. Enhanced performance of SnO2nanowires ethanol sensor byfunctionalizing with La2O3[J]. Sensors Actuators B: Chem.,2008,133(1):228-234.
    [38]. Chen, Y. J., Nie, L., Xue, X. Y., etc. Linear ethanol sensing of SnO2nanorods with extremely highsensitivity[J]. Appl. Phys. Lett.,2006,88(8):083105.
    [39]. Zhang, Y., He, X., Li, J., etc. Fabrication and ethanol-sensing properties of micro gas sensor based onelectrospun SnO2nanofibers[J]. Sensors Actuators B: Chem.,2008,132(1):67-73.
    [40]. Comini, E., Faglia, G., Sberveglieri, G., etc. Stable and highly sensitive gas sensors based onsemiconducting oxide nanobelts[J]. Appl. Phys. Lett.,2002,81(10):1869-1871.
    [41]. Sakai, G., Matsunaga, N., Shimanoe, K., etc. Theory of gas-diffusion controlled sensitivity for thinfilm semiconductor gas sensor[J]. Sensors Actuators B: Chem.,2001,80(2):125-131.
    [1]. Sanchez, C., Arribart, H., Giraud Guille, M. M. Biomimetism and bioinspiration as tools for thedesign of innovative materials and systems[J]. Nat. Mater.,2005,4(4):277-288.
    [2]. Ma, N., Sargent, E. H., Kelley, S. O. Biotemplated nanostructures: directed assembly of electronic andoptical materials using nanoscale complementarity[J]. J. Mater. Chem.,2008,18(9):954-964.
    [3]. Pouget, E., Dujardin, E., Cavalier, A., etc. Hierarchical architectures by synergy between dynamicaltemplate self-assembly and biomineralization[J]. Nat. Mater.,2007,6(6):434-439.
    [4]. Li, Y., Huang, Y. Morphology-controlled synthesis of platinum nanocrystals with specific peptides[J].Adv. Mater.,2010,22(17):1921-1925.
    [5]. Dickerson, M. B., Sandhage, K. H., Naik, R. R. Protein-and peptide-directed syntheses of inorganicmaterials[J]. Chem. Rev.,2008,108(11):4935-4978.
    [6]. Li, H., Carter, J. D., LaBean, T. H. Nanofabrication by DNA self-assembly[J]. Mater. Today,2009,12(5):24-32.
    [7]. Samano, E. C., Pilo-Pais, M., Goldberg, S., etc. Self-assembling DNA templates for programmedartificial biomineralization[J]. Soft Matter.,2011,7(7):3240-3245.
    [8]. Rouge, J. L., Ackerson, C. J., Feldheim, D. L., etc. Cooperativity between two selected RNA Pdasesin the synthesis of Pd nanoparticles[J]. J. Mater. Chem.,2010,20(38):8394-8398.
    [9]. Davis, J. T., Spada, G. P. Supramolecular architectures generated by self-assembly of guanosinederivatives[J]. Chem. Soc. Rev.,2007,36(2):296-313.
    [10]. Cole, K. E., Valentine, A. M. Spermidine and spermine catalyze the formation of nanostructuredtitanium oxide[J]. Biomacromolecules,2007,8(5):1641-1647.
    [11]. Bai, J., Qin, Y., Jiang, C., etc. Polymer-controlled synthesis of silver nanobelts and hierarchicalnanocolumns[J]. Chem. Mater.,2007,19(14):3367-3369.
    [12]. Mann, S. Self-assembly and transformation of hybrid nano-objects and nanostructures underequilibrium and non-equilibrium conditions[J]. Nat. Mater.,2009,8(10):781-792.
    [13]. Singer, S. J., Nicolson, G. L. The fluid mosaic model of the structure of cell membranes[J]. Science,1972,175(4023):720-731.
    [14]. Pacini, E., Hesse, M. Pollenkitt-its composition, forms and functions[J]. Flora-Morph. Distrib. Funct.Eco. Plants,2005,200(5):399-415.
    [15]. Murphy, D. J. The extracellular pollen coat in members of the Brassicaceae: composition,biosynthesis, and functions in pollination[J]. Protoplasma,2006,228(1):31-39.
    [16]. Zuberi, M. I., Dickinson, H. G. Pollen-stigma interaction in Brassica. III. Hydration of the pollengrains[J]. J. Cell Sci.,1985,76(1):321-336.
    [17]. Elleman, C. J., Dickinson, H. G. Pollen-stigma interactions in Brassica. IV. Structural reorganizationin the pollen grains during hydration[J]. J. Cell Sci.,1986,80(1):141-157.
    [18]. Elleman, C. J., Dickinson, H. G. The role of the exine coating in pollen-stigma interactions in Brassicaoleracea L[J]. New Phytol.,1990,114(3):511-518.
    [19]. Blume, A. Properties of lipid vesicles: FT-IR spectroscopy and fluorescence probe studies[J]. Curr.Opin. Colloid Interface Sci.,1996,1(1):64-77.
    [20]. Yeagle, P. Lipid regulation of cell membrane structure and function[J]. The FASEB J.,1989,3(7):1833-1842.
    [21]. Killian, J. A. Hydrophobic mismatch between proteins and lipids in membranes[J]. Biochim. Biophys.Acta, Rev. Biomembr.,1998,1376(3):401-416.
    [22]. van Meer, G., Voelker, D. R., Feigenson, G. W. Membrane lipids: where they are and how theybehave[J]. Nat. Rev. Mol. Cell Biol.,2008,9(2):112-124.
    [23]. Wang, Y. D., Ma, C. L., Sun, X. D., etc. Preparation and characterization of SnO2nanoparticles with asurfactant-mediated method[J]. Nanotechnology,2002,13(5):565-569.
    [24]. Barrett, E. P., Joyner, L. G., Halenda, P. P. The determination of pore volume and area distributions inporous substances. I. Computations from nitrogen isotherms[J]. J. Am. Chem. Soc.,1951,73(1):373-380.
    [25]. Sakai, G., Matsunaga, N., Shimanoe, K., etc. Theory of gas-diffusion controlled sensitivity for thinfilm semiconductor gas sensor[J]. Sensors Actuators B: Chem.,2001,80(2):125-131.
    [1]. Munch, E., Launey, M. E., Alsem, D. H., etc. Tough, Bio-inspired hybrid materials[J]. Science,2008,322(5907):1516-1520.
    [2]. Ortiz, C., Boyce, M. C. Bioinspired structural materials[J]. Science,2008,319(5866):1053-1054.
    [3]. Liu, K., Yao, X., Jiang, L. Recent developments in bio-inspired special wettability[J]. Chem. Soc.Rev.,2010,39(8):3240-3255.
    [4]. Huang,WangWang, Wang, Z. L. Controlled replication of butterfly wings for achieving tunablephotonic properties[J]. Nano Lett.,2006,6(10):2325-2331.
    [5]. Zhang, W., Zhang, D., Fan, T., etc. Novel Photoanode structure templated from butterfly wingscales[J]. Chem. Mater.,2008,21(1):33-40.
    [6]. Piffanelli, P., Ross, J. H. E., Murphy, D. J. Biogenesis and function of the lipidic structures of pollengrains[J]. Sex. Plant Reprod.,1998,11(2):65-80.
    [7]. Edlund, A. F., Swanson, R., Preuss, D. Pollen and stigma structure and function: the role of diversityin pollination[J]. The Plant Cell Online,2004,16(suppl1): S84-S97.
    [8]. Murphy, D. J. The extracellular pollen coat in members of the Brassicaceae: composition,biosynthesis, and functions in pollination[J]. Protoplasma,2006,228(1):31-39.
    [9]. Hall, S. R., Swinerd, V. M., Newby, F. N., etc. Fabrication of porous titania (brookite) microparticleswith complex morphology by sol gel replication of pollen grains[J]. Chem. Mater.,2006,18(3):598-600.
    [10]. Caruso, R. A. Micrometer-to-nanometer replication of hierarchical structures by using a surfacesol–gel process[J]. Angew. Chem. Int. Ed.,2004,43(21):2746-2748.
    [11]. Zhang, W., Zhang, D., Fan, T. X., etc. Fabrication of ZnO microtubes with adjustable nanopores onthe walls by the templating of butterfly wing scales[J]. Nanotechnology,2006,17(3):840-844.
    [12]. Su, H., Dong, Q., Han, J., etc. Biogenic synthesis and photocatalysis of Pd PdO nanoclustersreinforced hierarchical TiO2films with interwoven and tubular conformations[J]. Biomacromolecules,2008,9(2):499-504.
    [13]. Caruso, R. Nanocasting and nanocoating colloid chemistry I[M]. In Antonietti, M., Ed. SpringerBerlin/Heidelberg:2003; Vol.226,91-118.
    [14]. Blume, A. Properties of lipid vesicles: FT-IR spectroscopy and fluorescence probe studies[J]. Curr.Opin. Colloid Interface Sci.,1996,1(1):64-77.
    [15]. Wang, Y. D., Ma, C. L., Sun, X. D., etc. Preparation and characterization of SnO2nanoparticles with asurfactant-mediated method[J]. Nanotechnology,2002,13(5):565-569.
    [16]. D’Arienzo, M., Armelao, L., Cacciamani, A., etc. One-step preparation of SnO2and Pt-doped SnO2asinverse opal thin films for gas sensing[J]. Chem. Mater.,2010,22(13):4083-4089.
    [17]. Hall, S. R., Bolger, H., Mann, S. Morphosynthesis of complex inorganic forms using pollen graintemplates[J]. Chem. Commun.,2003,(22):2784-2785.
    [18].李平,曾昌凤,张利雄, etc.以油菜花粉为模板水热法制备TiO2中空微球[J].无机材料学报,2008,23(1):49-54.
    [19].曹丰,李东旭,管自生.生物模板法制备具有特殊表面形貌的二氧化硅中空微球[J].无机材料学报,2009,24(3):501-506.
    [20]. Guan, Z. S., Zhang, Y., Lu, C. H., etc. Morphology-controlled synthesis of SiO2hierarchicalstructures using pollen grains as templates[J]. Chin. J. Chem. Mar,2008,26(3):467-470.
    [21]. Cao, F., Li, D. X. Biotemplate synthesis of monodispersed iron phosphate hollow microspheres[J].Bioinspiration Biomimetics,2010,5(1).
    [22]. Barrett, E. P., Joyner, L. G., Halenda, P. P. The determination of pore volume and area distributions inporous substances. I. Computations from nitrogen isotherms[J]. J. Am. Chem. Soc.,1951,73(1):373-380.
    [23]. Danumah, C., Vaudreuil, S., Bonneviot, L., etc. Synthesis of macrostructured MCM-48molecularsieves[J]. Microporous Mesoporous Mater.,2001,44–45(0):241-247.
    [24]. Sakai, G., Matsunaga, N., Shimanoe, K., etc. Theory of gas-diffusion controlled sensitivity for thinfilm semiconductor gas sensor[J]. Sensors and Actuators B: Chem.,2001,80(2):125-131.
    [25]. Leo, G., Rella, R., Siciliano, P., etc. Sprayed SnO2thin films for NO2sensors[J]. Sensors Actuators B:Chem.,1999,58(1–3):370-374.
    [26]. Chiorino, A., Ghiotti, G., Prinetto, F., etc. Preparation and characterization of SnO2and WOx–SnO2nanosized powders and thick films for gas sensing[J]. Sensors Actuators B: Chem.,2001,78(1–3):89-97.
    [27]. Kim, B.-G., Lim, D.-G., Park, J.-H., etc. In-situ bridging of SnO2nanowires between the electrodesand their NO2gas sensing characteristics[J]. Appl. Surf. Sci.,2011,257(10):4715-4718.
    [28]. Hoa, N. D., Van Quy, N., Kim, D. Nanowire structured SnOx–SWNT composites: High performancesensor for NOx detection[J]. Sensors Actuators B: Chem.,2009,142(1):253-259.
    [29]. Hyodo, T., Abe, S., Shimizu, Y., etc. Gas-sensing properties of ordered mesoporous SnO2and effectsof coatings thereof[J]. Sensors Actuators B: Chem.,2003,93(1–3):590-600.
    [1]. Neri, G., Bonavita, A., Micali, G., etc. Effect of the chemical composition on the sensing properties ofIn2O3–SnO2nanoparticles synthesized by a non-aqueous method[J]. Sensors Actuators B: Chem.,2008,130(1):222-230.
    [2]. Gong, J., Sun, J., Chen, Q. Micromachined sol–gel carbon nanotube/SnO2nanocomposite hydrogensensor[J]. Sensors Actuators B: Chem.,2008,130(2):829-835.
    [3]. Zhang, J., Wang, S., Xu, M., etc. Polypyrrole-coated SnO2hollow spheres and their application forammonia sensor[J]. J. Phys. Chem. C,2009,113(5):1662-1665.
    [4]. Korotcenkov, G. Gas response control through structural and chemical modification of metal oxidefilms: state of the art and approaches[J]. Sensors Actuators B: Chem.,2005,107(1):209-232.
    [5]. Lee, Y. C., Huang, H., Tan, O. K., etc. Semiconductor gas sensor based on Pd-doped SnO2nanorodthin films[J]. Sensors Actuators B: Chem.,2008,132(1):239-242.
    [6]. Kolmakov, A., Klenov, D. O., Lilach, Y., etc. Enhanced gas sensing by individual SnO2nanowires andnanobelts functionalized with Pd catalyst particles[J]. Nano Lett.,2005,5(4):667-673.
    [7]. Shao, S. F., Qiu, X. M., He, D. F., etc. Low temperature crystallization of transparent, highly orderednanoporous SnO2thin films: application to room-temperature hydrogen sensing[J]. Nanoscale,2011,3(10):4283-4289.
    [8]. Bahrami, B., Khodadadi, A., Kazemeini, M., etc. Enhanced CO sensitivity and selectivity of goldnanoparticles-doped SnO2sensor in presence of propane and methane[J]. Sensors Actuators B: Chem.,2008,133(1):352-356.
    [9]. Wang, J. X., Zou, B., Ruan, S. P., etc. Synthesis, characterization, and gas-sensing property for HCHOof Ag-doped In2O3nanocrystalline powders[J]. Mater. Chem. Phys.,2009,117(2-3):489-493.
    [10]. Rani, S., Roy, S. C., Bhatnagar, M. C. Effect of Fe doping on the gas sensing properties ofnano-crystalline SnO2thin films[J]. Sensors Actuators B: Chem.,2007,122(1):204-210.
    [11]. Canevali, C., Mari, C. M., Mattoni, M., etc. Interaction of NO with nanosized Ru-, Pd-, and Pt-dopedSnO2: electron paramagnetic resonance, m ssbauer, and electrical investigation[J]. J. Phys. Chem. B,2005,109(15):7195-7202.
    [12]. Chen, X., Guo, Z., Xu, W.-H., etc. Templating synthesis of SnO2nanotubes loaded with Ag2Onanoparticles and their enhanced gas sensing properties[J]. Adv. Funct. Mater.,2011,21(11):2049-2056.
    [13]. Sun, P., Yu, Y., Xu, J., etc. One-step synthesis and gas sensing characteristics of hierarchical SnO2nanorods modified by Pd loading[J]. Sensors Actuators B: Chem.,2011,160(1):244-250.
    [14]. Tsang, S. C., Bulpitt, C. D. A., Mitchell, P. C. H., etc. Some new insights into the sensing mechanismof palladium promoted tin (IV) oxide sensor[J]. J. Phys. Chem. B,2001,105(24):5737-5742.
    [15]. Safonova, O., Bezverkhy, I., Fabrichnyi, P., etc. Mechanism of sensing CO in nitrogen bynanocrystalline SnO2and SnO2(Pd) studied by Mossbauer spectroscopy and conductance measurements[J].J. Mater. Chem.,2002,12(4):1174-1178.
    [16]. Li, W., Shen, C., Wu, G., etc. New model for a Pd-doped SnO2-based CO gas sensor and catalyststudied by online in-situ X-ray photoelectron spectroscopy[J]. J. Phys. Chem. C,2011,115(43):21258-21263.
    [17]. Vaishampayan, M. V., Deshmukh, R. G., Mulla, I. S. Influence of Pd doping on morphology and LPGresponse of SnO2[J]. Sensors Actuators B: Chem.,2008,131(2):665-672.
    [18]. Shen, Y., Yamazaki, T., Liu, Z., etc. Microstructure and H2gas sensing properties of undoped andPd-doped SnO2nanowires[J]. Sensors Actuators B: Chem.,2009,135(2):524-529.
    [19]. Zhang, H., Li, Z., Liu, L., etc. Enhancement of hydrogen monitoring properties based on Pd–SnO2composite nanofibers[J]. Sensors Actuators B: Chem.,2010,147(1):111-115.
    [20]. Yang, D.-J., Kamienchick, I., Youn, D. Y., etc. Ultrasensitive and highly selective gas sensors basedon electrospun SnO2nanofibers modified by Pd loading[J]. Adv. Funct. Mater.,2010,20(24):4258-4264.
    [21]. Rella, R., Serra, A., Siciliano, P., etc. CO sensing properties of SnO2thin films prepared by the sol-gelprocess[J]. Thin Solid Films,1997,304(1–2):339-343.
    [22]. Barrett, E. P., Joyner, L. G., Halenda, P. P. The determination of pore volume and area distributions inporous substances. I. Computations from nitrogen isotherms[J]. J. Am. Chem. Soc.,1951,73(1):373-380.
    [23]. Danumah, C., Vaudreuil, S., Bonneviot, L., etc. Synthesis of macrostructured MCM-48molecularsieves[J]. Microporous Mesoporous Mater.,2001,44–45(0):241-247.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700