光谱吸收型光纤气体传感技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,石油、化工、煤炭、冶金等工业得到迅猛的发展,随着工业生产而产生的各种各样有毒有害气体也迅速增加,造成的气体中毒事故也不断增多,对人民财产安全和生存环境构成很大威胁。因此对可燃气体和有毒有害气体的检测显得尤为重要。
     光纤气体传感器由于具有常规气体传感器无法比拟的体积小、重量轻、灵敏度高、结构灵活、抗电磁干扰等优点,因此近几年来备受关注。本文在综述光纤气体传感器的发展过程和现状的基础上,分析了现有的光纤气体传感技术的原理和方法,指出它们的优点与应用局限性。并基于气体分子吸收光谱理论和比尔-朗伯定律,分析了差分吸收型气体传感器的数学模型和基于窄带光源的谐波检测光纤气体传感器的数学模型,提出了基于扫描光源的差分光谱吸收型气体传感系统,本系统可以实现多种气体的同时检测。
     研究的主要工作如下:
     (1)提出了基于光源扫描的光纤气体传感系统设计方案,设计了一种新的基于差分吸收原理的气体传感系统,能对单一气体进行多波长定标检测,同时可以完成多种气体共存环境下的检测。
     (2)提出采用并联谐振回路来解决扫描光源驱动电路线性失真的方法,通过合理选择与可调谐法波滤波器相匹配的电路参数,实现并联谐振回路,以消除由于可调谐法珀滤波器的电容特性所引起的锯齿波驱动电路的线性失真,保证了扫描光源工作的稳定性。
     (3)提出了光谱意义上的数字平均滤波法,利用法珀标准具ETALON和参考光栅提供的波长参考,实现输出信号的光谱重现,并在此基础上实现气体在N个扫描周期内相同光谱信号的叠加,克服了可调谐法珀滤波器的驱动电压和透射波长的不确定性影响。实验结果表明,气体检测的灵敏度和信噪比得到了明显提高。
     (3提出了一种基于最小二乘的背景噪声消除方法。利用传感气室的输出和输出的拟合曲线相除的方法,实现了传感器输出的归一化,解决了传感器背景噪声漂移的问题,同时解决了浓度对气体吸收谱拟合线的影响,提高了测量精度。
     (4)提出了基于扫描光源的光纤气体传感系统微弱信号检测方法,分析了传感器的噪声产生机理,设计了低噪声、高信噪比的光电微弱信号检测电路。
     (5)对单一气体和两种气体共存情况下的的气体检测进行了实验研究。实验验证了采用基于扫描光源的光纤气体传感系统,在两种及两种以上种类的气体混合环境下,可以完成对不同组分气体浓度的检测。该方法可有效降低工业化气体检测的成本。
In recent years, the petroleum, coal, metallurgy and chemical industry have developed rapidly.Along with the development of industry, many kinds of poisonous gases are produced. At the sametime, there are many cases happened because of poisonous gases. Some kinds of gases are very easyto explode, and they indeed can harm human being’s health and public property. It is very importantto inspect the poisonous and explosive gases.
     Compared with the conventional gas sensors, optical fiber gas sensors have many advantages,such as excellent flexibility, small volume, light weight, high sensitivity and anti-electromagnetisminterference. They have obtained wide attention in recent years.
     Based on principle of absorption spectrum and Beer-Lambert law, this dissertation analyzes themathematical model of gas sensor based on differential absorption and harmonic detection based onnarrow-band optical source. A new type of gas sensor system based on differential absorption theoryis designed.
     Main researches performed in this dissertation include:
     1、A new optical fiber gas sensor system based on a scanning light source is presented, and anovel optical gas sensor system is designed. By using broadband light source——ASE(AmplifiedSpontaneous Emission) and a tunable Fabry-Perot filter (FFP) driven by a saw-tooth wave, a scanninglight source is developed. This scanning light source can sweep over several gas absorption peaks atthe same time, which is necessary to realize a variety of gas detection.
     2、By using parallel resonant circuit, the linear distortion of the scanning light source’s drivingsaw-tooth wave is reduced. As the Fabry-Perot tunable filter is a capacitive device, it can cause thelinear distortion of the saw-tooth wave. By selecting the appropriate inductance and resistancecomponents to match the tunable Fabry-Perot filter, it can generate parallel resonance. In this way, itcan eliminate the linear distortion of the saw-tooth waveform. As a result, it can ensure the stability ofthe scanning light source.
     3、A new kind of digital average filtering method based on spectrum is put forward. By usingETALON and reference grating, it can provide reference wavelength, and realize the spectrumreproducing of the output signal. Therefore, the same N spectral signals can be superposed. Thismethod is able to overcome the uncertainty effects caused by the transmission wavelength of tunableFabry-Perot filter and filter’s driving voltage. Experimental results show that gas detection sensitivityand signal-to-noise ratio is remarkably improved.
     4、Although different detection method can diminish the source jitter and other instability, it cannot eliminate other background noise generated by the system. In this paper, a modified least squaremethod is used to fit the envelope of gas absorption lines. By dividing the gas absorption lines and theenvelope fit line of absorption lines, it can reduce the drift of the background noise curve due to thechange of experimental environment. The modified fitting curve does not carry any information onabsorption peaks of gas, so it can eliminate the changes of fitting curve accounting for concentrationsof gas. As a result, the accuracy of measurement can be improved.
     5、Experiments including one and two gases respectively are performed. The analysis ofexperimental results shows that the outputs of these two experiments are similar and verify thatfiber-optic gas sensor system based on a scanning light source can be applied to dectect two or moretypes of gases.
引文
[1]邓三立.气体检测与计量.郑州:黄河水利出版社,2009:p1-174.
    [2]岑可法.中国能源与环境可持续发展的若干问题.中国废钢铁.2006,2:4-13.
    [3] S.J.Gentry.A Comparison of Metal Oxide Semiconductor and Catalytic GasSensor.Sensors and Actuators,1983(4):581-586.
    [4] T.Maekawa, J.Tamatei,N.Miura et al.Sensing Behavior of Cu-Loaded SnO2Elementfor H2S Detection.Chem.Lett.,1991:575-577.
    [5]吴玉锋,田彦文,韩元山,翟玉春.气体传感器研究进展和发展方向.计算机测量与控制,2003(10):731-734.
    [6] Waldemar wojcik. Ivan Manak.Application of absorption spectroscopy in coptoelectronic analyzer of oxygen and carbon monoxide concentration.[A]. proc.ofSPIE.2003(5124):252-257.
    [7]丰明坤,隋成华.光谱吸收法光纤甲烷传感器性能的研究.光电子技术与信息,2003,16(6):27-30.
    [8] Y. Shimose, T.Okamoto, A. Maruyama et al.Remote Sensing of Methane Gas byDifferential Absorption Measurement Using a Wavelength Tunable DFB LD.IEEE PhotonicsTechnology Letters,1999,3(1):178-181.
    [9] Ulrike Willer, Mohammad Saraji, Alireza Khorsandi,et al. Near-and mid-infraredlaser monitoring of industrial processes, environment and security applications.Opticsand Lasers in Engineering,2006(44):699–710.
    [10] G.Keeffe.Development of an LED Based Phase Flurimetric Oxygen sensor UsingEvanescent Wave Excitation of a Sol-Gel Immobilised Dye.Proceedings2nd EuropeanConference on Optical Chemical Sensors and Biosensors. Florence,Italy,1994:19-21.
    [11] B.D.Maccraith. LED Based Fibre Optic Oxygen Sensor Using Sol-Gel Coating.Electronics Letters,1994,30(11):888-889.
    [12] I. Klimant.Recent.Investigations in Oxygen Sensing. Proceedings1st EuropeanConference on Optical Chemical Sensors and Biosensors. Graz. Austria,1992,(131):12-15.
    [13] R.A.Lieberman, L. L.Blyler,L. G.Cohen. A Distributed Fiber-Optic SensorBased on Cladding Fluorescence. Journal of Lightwave Technology,1990,18(2):212-220.
    [14] Zaatar, Y. Fabrication and Characterization of an Evanescent Wave Fiber OpticSensor for Air Pollution Control,Materials Science and engineering: B Volume:74,Issue:1-3, May1,2000:296-298.
    [15]Jianchun Yang, Longjun Xu, and Weimin Chen. An optical fiber methane gas sensingfilm sensor based on core diameter mismatch. CHINESE OPTICS LETTERS,2010(5):482-484
    [16] H.L.Hoa, Y.L.,W. Jin,et al. Optimizing micro-structured optical fibers forevanescent wave gas sensing. Sensors and Actuators B122(2007)289–294.
    [17] W.Jin, M.S. Demokan, G. Stewart. Performance Limit of Fiber-optic Gas Sensors romCoherent Backscatter. IEE Proc. Optoelectron,1998,145(3):186-189.
    [18] Merine J.L.,Bota S. A.,Casanova R. et al. A Reusable Smart Interface for GasSensor Resistance Measurement. Instrumentation and Measurement, IEEE.2004, Vol.53:1173-1178.
    [19] Alessandra Neri, Marco Parvis, Guido Perrone et al.Low-cost Fiber Optic H2S GasSensor. IEEE SENSORS2008Conference,313-316Piscataway:IEEE,2008.
    [20] Francisco J. Arregui, Richard O. Claus, Kristie L. Cooper,et al. Optical FiberGas Sensor Based on Self-Assembled Gratings. JOURNAL OF LIGHTWAVE TECHNOLOGY,2001(12):1932-1937.
    [21] Atsushi Yarai,Takuji Nakanishi. Optical fiber gas sensor based on thermal lensspectroscopy. REVIEW OF SCIENTIFIC INSTRUMENTS,2004(10):3237-3240.
    [22] M. Degner, N. Damaschke, H. Ewald。Real time exhaust gas sensor with high resolutionfor onboard sensing of harmful components。IEEE SENSORS2008p973-976, Lecce, Italy.出版者:IEEE,出版地:Piscataway, NJ, USA.
    [23] Atsushi YARAI_and Takuji NAKANISHI Thermal Lens Spectroscopy Gas Sensing Basedon Etalon-Stabilized Wavelength Sweep Technique for Fiber Ring Laser.Japanese Journalof Applied Physics,2007(7A):4324–4326.
    [24] Kun Liu, Wencai Jing, Gangding Peng, et al, Wavelength Sweep of Intracavity FiberLaser for Low Concentration Gas DetectionIEEE PHOTONICS TECHNOLOGY LETTERS, VOL.20,NO.18, SEPTEMBER15,2008.
    [25] Hiroyuki Kudoa, Masayuki Sawaib, Yuki Suzukia, Fiber-optic bio-sniffer(biochemical gas sensor) for high-selective monitoring of ethanol vapor using335nmUV-LED. Sensors and Actuators B,2010(147):676–680.
    [26]陈红丽,陈国辉.甲烷光纤传感器的实验研究.光子学报,2000,29(6):541-543.
    [27]刘玉芳,朱遵略,施德恒等.用发光二极管实现的双通道、双色红外CO2分析仪.光学技术,2003,29(5):620-622.
    [28]王玉田,郭增军,王莉田.新型光纤甲烷传感器的研究.光学技术,2001,27(4):342-343.
    [29] H. Inabat. T. Kabaysi, M..Hirama. Optical-fiber Nerwork System for Air-pollutionMonitoring over a Wide Area by optical Absorption Method. ElectronicsLetters,1979,23(9):749-751
    [30] K.Chan.H.Ito.H.Inaba.Remote Sensing System for Near-Infrared DifferentialAbsorption of CH4Gas Using Low-Loss Optical Fiber Link.Applied Optics,1984,23(19):3415-3420.
    [31] J.P.Dakin,C.A.Wade,D.Pinchbeck.A Novel Optical Fiber Methane Sensor.Proc.SPIE,1987,(734):187-190.
    [32] H.Tai.Long Distance Simultaneous Detection of Methane and Acetylene by UsingDiode Lasers Coupled with Optical Fibers.IEEE Photonics Technology Letters,1992,4(7):804-807.
    [33] A.Uehara,H.Tai.Remote Detection of Methane with a1.66μm Diode Laser.AppliedOptics.1992,31(6):809-814.
    [34] T.Nakaya, K.Kobayashi, T.Akagi. Continuous Monitoring of the MethaneConcentration in the Atmosphere by IR Spectrometry with1.66μm Diode Laser.AnalyticalSciences,2000,(6):1211-1214.
    [35] Takaya Iseki.HideoTai,KiyoshiKimura.A portable remote methane sensor using atunable diode laser.Meas.Sci.Tech.2000,(11):594-602.
    [36]A.Uehara,H.Tai.Remote Detection of Methane with a1.66μm Diode Laser.AppliedOptics.1992,31(6):809-814.
    [37]孔凡天,陈幼年,谢经明.基于多传感器信息融合的分布式气体检测系统.计算机测量与控制,2006,14(4):421-425.
    [38]曹茂勇,张逸芳,张士昌.吸收光谱式光纤瓦斯传感器的参数设计.煤炭学报,1997,22(3):280-283.
    [39]叶险峰,汤伟中.CH4气体光纤传感器的研究.半导体光电,2000,(3):218-220.
    [40]林枫,蔡海文,夏志平等,光纤光栅滤波的瓦斯传感系统的研究.中国激光,2005,32(4):549-552.
    [41]曲艺.甲烷与一氧化碳浓度光学检测,[博士学位论文].长春:吉林大学,2006.
    [42]撒继铭.光纤CO气体传感器的理论建模及设计实现.[博士学位论文].武汉:华中科技大学,2007.
    [43] Yan Xiaomei,Zhang Jilong,Wang Zhishe,Research on optical fiber methane gas sensorof spectral absorption type,2010International Conference on Computational Aspects ofSocial Networks p41-44,Machine Intelligence Research.
    [44] M. Degner, N. Damaschke, H. Ewald.Real time exhaust gas sensor with high resolutionfor onboard sensing of harmful components.IEEE,IEEE SENSORS2008,Piscataway, NJ,USA:IEEE,2008:p973-976.
    [45]曲艺.甲烷与一氧化碳浓度光学检测,[博士学位论文].长春:吉林大学,2006.
    [46]叶险峰,汤伟中.CH4气体光纤传感器的研究.半导体光电,2000,(3):218-220.
    [47]王一丁,钟宏杰,金钦汉等.红外CH4检测仪.吉林大学学报(理学版),2001,(4):69-71.
    [48]林枫,蔡海文,夏志平等,光纤光栅滤波的瓦斯传感系统的研究.中国激光,2005,32(4):549-552.
    [49] Sijia Xie, Yuexiang Lu, Sichun Zhang et al. Electro-optical Gas Sensor Based ona Planar Light-Emitting Electrochemical Cell Microarray. small2010(6):1897–1899.
    [50] H.Tai.Long Distance Simultaneous Detection of Methane and Acetylene by UsingDiode Lasers Coupled with Optical Fibers.IEEE Photonics Technology Letters,1992,4(7):804-807.
    [51] A.Uehara,H.Tai.Remote Detection of Methane with a1.66μm Diode Laser.AppliedOptics.1992,31(6):809-814.
    [52] Takaya Iseki,HideoTai,KiyoshiKimura.A portable remote methane sensor using atunable diode laser.Meas.Sci.Tech.2000,(11):594-602.
    [53]王化祥,曹章.基于锁相放大器的低通滤波环节优化设计.仪器仪表学报,2005,26(7):684-688.
    [54]林凌,王小林,李刚等.一种新型锁相放大器检测电路.天津大学学报,2005,(1):65-69.
    [55]徐克尊.高等原子分子物理学.北京:科学出版社,2000:162-225.
    [56] G.赫兹堡.分子光谱与分子结构第二卷多原分子的红外光谱与喇曼光谱(王鼎昌译).北京:科学出版社,1986:269-270.
    [57]王艳菊.基于光谱吸收的光纤有害气体测量技术的研究,[博士学位论文].秦皇岛:燕山大学,2007.
    [58]张景超,管立君,肖长江,等,基于谐波检测原理的双光路CH4检测研究.光电子·激光,2007,18(12):1442–1444.
    [59]江毅.高级光纤传感技术.北京:科学出版社,2009;36-42.
    [60] Zaatar,Y. Fabrication and characterization of an evanes-cent wave fiber opticsensor for air pollution control.Materials Science and engineering,2000(74)::296–298.
    [61] J M Supp lee, E. A. Whittaker,W Lenth. Theoretical description of frequencymodulation and wave-length modulation spectroscopy. Appl. Opt.,1994(33):6294–6302.
    [62] Dong Chen, Wen qing Liu, Yu jun Zhang,et al. Fiber-distributed multi-channelopen-path H2S sensor based on tunable diode laser absorptionspectroscopy.Chin.Opt. Lett.,2007(2):121–124.
    [63] M B Frish, M C Laderer, R T Wainner, et al. The next generation of TDLASanalyzers. Proc. SPIE,2007,6765(6):1–10.
    [64] H Riris,C Carlisle,L Carr,et al. Design of an open path near-infrared diodelaser sensor: application to oxygen water and carbon dioxide vapordetection. Appl. Opt.,1994(33):7059–7066.
    [65] Phelan R,Weldon V, LynchM,et al. Simultaneous multi-gas detection with cascadedstrongly gain coup led DFB laser by dual wavelength operation.Elec. Lett.,2002,38(1):31-32.
    [66] D T Cassidy,J Reid. Harmonic detection with tunable diode lasers-two-tonemodulation. Appl. Phys,1982(B29):279–285.
    [67] Jianian CAO, Keke ZHANG, Rui YANG and Zhuo WANG.Modulation Coefficient Analysisin Optical Fiber Methane Gas Sensor Based on Wavelength ModulationSpectroscopy.Proceedings of the8th World Congress on Intelligent Control andAutomation, Jinan, China:2010,7.
    [68] Gillian W, George S, Kathryn A, et al. Optical fibre instrumentation forenvironmental monitoring applications.Journal of Op tics A: Pure and Applied Optics,2003(5):140-145.
    [69]吴兵兵,吕垚,戴基智等.光纤气体传感检测技术研究.激光与红外,2009,3(97):707-711.]Yu Hongbo,Liao Yanbiao,Lai Shurong, et al. Optical fiber gas sensor network withintracavity spectroscopy. Chinese Laser,2003,30(2):154-158.
    [70] San guo Li, Yan Zhang, Thomas Koscica, et al. Near infrared fiber opticsgas sensor for remote sensing of CH4gas in coal mines. Proc. SPIE,2006,6299(0Q):1–8.
    [71] H Inabat, T Kobayasi, M Hirama.Optical-fiber Network System for Air-pollutionMonitoring over a Wide Area by Optical Absorption Method [J]. Elec. Lett.,1979,23(9):749–751.
    [72] K Chan,H Ito,H Inaba. Remote sensing system for near-infrared differentialabsorption of CH4gas using low-loss optical fiber link.Appl. Opt.,1984(23):3415-3420.
    [73] JING Wen-cai,ZHOU Zhi-yan, SONG Xiao,et al. A new detection technique of gasconcentration with optical spectrum absorption at near-IR wavelength. OPTOELECTRONICSLETTERS,2009(1):54-56.
    [74]赵勇.光纤传感原理与应用技术.北京:清华大学出版社,2007:37-42.
    [75]赵兵,张志利,仲启媛等.基于FP和MZ法的光纤光栅传感解调技术研究.光电子.激光,2009(10):1314-1316.
    [76] A.Uehara,H.Tai.Remote Detection of Methane with a1.66μm Diode Laser.AppliedOptics.1992,31(6):809-814.
    [77] Jianian CAO, Keke ZHANG, Rui YANG and Zhuo WANG.Modulation Coefficient Analysisin Optical Fiber Methane Gas Sensor Based on Wavelength ModulationSpectroscopy.Proceedings of the8th World Congress on Intelligent Control andAutomation, Jinan, China:2010,7.
    [78] Atsushi YARAI,Takuji, NAKANISHI,Gas Sensing Technique Based on Fiber LaserBuilt-in Thermal Lens Spectroscopy Sensor.Japanese Journal of Applied Physics,2006(45):2824–2826.
    [79] H.Tai.Long Distance Simultaneous Detection of Methane and Acetylene by UsingDiode Lasers Coupled with Optical Fibers.IEEE Photonics Technology Letters,1992,4(7):804-807.
    [80] T.Nakaya, K.Kobayashi, T.Akagi. Continuous Monitoring of the MethaneConcentration in the Atmosphere by IR Spectrometry with1.66μm Diode Laser.AnalyticalSciences,2000,(6):1211-1214.
    [81]李勇,可调谐激光瓦斯浓度检测系统的设计与实现,[硕士学位论文].武汉:武汉理工大学,2008.
    [82] K. Liu, J. Li, L.Wang,et al Trace gas sensor based on quartz tuning forkenhanced laser photoacoustic spectroscopy.Appl Phys B (2009)94:527–533
    [83] Jiasheng Ni, Jun Chang, and Tongyu Liu,等Fiber methane gas sensor and itsapplication in methane outburst prediction in coal mine. JOURNAL OF ELECTRONIC SCIENCEAND TECHNOLOGY OF CHINA,20086(4):1-4
    [84]王军.光纤气体传感器光源波长稳定控制技术研究,[硕士学位论文].武汉:华中科技大学,2007.
    [85]陈勇.新型可调谐超窄线宽光纤激光光源及波长稳定滤波器研究[硕士学位论文].厦门:厦门大学,2003.
    [86]周炳琨.激光原理[M].北京:国防工业出版社,2000:146-147,202,221.
    [87]赵磊,王洪海,余鑫等.CH4和CO一体化光纤传感检测技术的研究.武汉理工大学学报,2009(9):4-6.
    [88]刘瑾,杨海马,张菁等.基于谐波检测技术的多点光纤乙炔气体传感器.仪表技术与传感器,2008(6):4-6.
    [89]王晓娜,王琦,陈乐华等.基于扫描光纤激光器的光纤传感解调仪研究.光子学报2009(1):82-85.
    [90]王立新,刘柱,徐丹基于可调F-P腔的光纤气体传感器研究.传感器与微系统,2007(6):63-64.
    [91]王玉田,郭增军,王莉田.用LED作光源的Fabry-Perot光纤甲烷气体传感器的研究.计量学报,2002(10):307-310.
    [92]刘谨,杨海马.光谱吸收型光纤多气体传感系统.仪器仪表与传感器,2006(2):29-32.
    [93]单胜军,基于法布里-珀罗腔的光纤气体传感器的研究,[硕士学位论文].武汉:武汉理工大学,2009.
    [94] K.A.Yen,C.S.Chou. The Investigation of a Tunable Fabry-Perot Chopper forLight,Bulletin of College of Engineering,N.T.U,2001(83):15-20.
    [95] Kersey A D. Multiplexed Fiber Bragg Gratings Strain-sensor System with a FiberFabry-Perot wave length Filter.Optics Letters,1993(16):1370.
    [96]周金龙.新型光纤光栅技术及其在光通信与光纤传感方面的研究,[博士学位论文].厦门:厦门大学,2008.
    [97]廖延彪.光纤光学.北京:清华大学出版社,2000:121-122
    [98]高晋占.微弱信号处理.北京:清华大学出版社,2004:41-49
    [99]刘文清.崔志成.空气质量监测的高灵敏差分吸收光谱学技术.光学技术,2005(3):288-291.
    [100]饶云江.光纤技术.北京:科学出版社,2006:201-202.
    [101]谢嘉奎.电子线路.北京:高等教育出版社,2003:343-345.
    [102]高晋占.微弱信号处理.北京:清华大学出版社,2004:41-49
    [103]史用刚,粟斌,田高友.化学计量学方法及MATLAB实现.北京:中国石化出版社,2010:156
    [104]李宁,基于可调谐激光吸收光谱技术的气体在线检测及二维分布重建研究,[博士学位论文].杭州:浙江大学,2008.
    [105]陈昌明.数值分析.厦门:厦门大学出版社,1998:72.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700