准连续激光波长调制光谱的理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环境问题是当今全世界面临的最重要的问题之一。为了控制并改善大气环境,需要研究能够满足不同需求、高灵敏的气体检测技术。可调谐二极管激光吸收光谱技术(TDLAS)结合波长调制方法(WMS)是高灵敏的痕量气体检测技术。目前,TDLAS的光源主要是室温、连续、单模工作的激光器,为了将结构简单、价格低廉的准连续和多模激光器应用于高灵敏的痕量气体检测,本文开展了准连续激光波长调制谱的理论、方法及实验研究,主要内容包括以下三个部分:
     1、构建了准连续激光波长调制光谱分析(QCW WMS)的理论体系,得到了准连续调制波长变化的理论表达式,结合傅立叶分析,给出了准连续调制谱谐波信号与气体吸收强度的关系。通过计算机仿真,研究了准连续调制谱各次谐波信号的特征,比较分析了不同谐波次数以及不同调制幅度下的谐波信号特点,为准连续激光波长调制谱的实际应用提供理论指导。
     2、实验研究了利用准连续激光波长调制谱对CO_2的检测技术。使用近红外DFB激光器,工作在准连续模式下,实验研究了准连续激光波长调制谱的二次谐波信号特征,同时比较分析了其与传统连续激光波长调制谱二次谐波信号的异同,得到了二者具有相当检测灵敏度的结论。本文还对准连续二极管激光器在多重调制时谐波信号中的倍频、和频以及差频成分进行了研究分析,得到了几组比传统调谐二极管激光吸收光谱技术中的二次谐波信号的幅度更大的和频、差频成分,有望在准连续波长调制谱技术中提高检测的灵敏度。
     3、实验研究了准连续多模激光波长调制谱对CH_4的检测技术。首先通过计算机仿真,研究了多模二极管激光吸收光谱的机理。其次,利用傅立叶变换光谱仪测量了输出波长在2.2μm波段的准连续工作多模二极管激光器LD220的发射谱,并分析了其电流和温度调谐特性。最后,结合所研究准连续波长调制谱技术的研究结果,对CH_4进行了准连续多模激光波长调制谱二次谐波检测,得到了50ppm的检测灵敏度。
     准连续激光波长调制谱技术使用准连续二极管激光器或者准连续多模二极管激光器,具有成本低、覆盖波长范围宽等优势,可利用单个激光器同时检测多种气体或气体的多条吸收线,从而可促进激光吸收光谱技术的普及应用。
The environmental pollution is one of the most severe problems in the world. Inorder to control and improve the atmospheric environment, it is needed to develop gasdetection technologies that with highly sensitive and adaptable for different needs.Tunable diode laser absorption spectroscopy (TDLAS) combined with wavelengthmodulation method is a sensitive trace gas detection technology. Currently, the lightscources of TDLAS are mainly room temperature, continuous wave and single modelasers. In order to use the quasi-continuous wave and multi-mode lasers, which havesimple structures and low costs, in the high sensitive trace gas detection, this thesis ismainly research on the theory, method and experimants of quasi-continuous wavewavelength modulation spectroscopy (QCW WMS). And the main work includesthree parts as following:
     1. This thesis built the theoretical system of quasi-continuous wave wavelengthmodulation spectroscopy (QCW WMS). The QCW modulated wavelength expressionwas acquired. Also, the relationships of QCW WMS harmonic signals and gasabsorption intensities were obtained based on Fourier analysis. Various harmonicsignals of QCW WMS were studied through computer simulations, and then thesignal characteristics with different harmonic orders and different modulationamplitudes were compared and analyzed. These results can provide the theoreticalguidance for the applications of QCW WMS.
     2. The detection of CO_2with QCW WMS was studied experimentally. In theexperiments, a near-infrared (NIR) DFB diode laser working at QCW mode wasemployed as the QCW light source. The characteristics of the QCW second harmonicprofile was analyzed and compared with traditional continuous wave WMS, the resultshows that, QCW WMS can obtain the same detection sensitivity with continuousWMS. This thesis also studied the multiple frequency, sum frequency and differencefrequency of multiple modulation signals in the harmonics when multiple modulationsignals are super imposed onto the QCW diode laser injection current. Finally itobtained several sum frequency and difference frequency components that havinglarger amplitudes compared to the second harmonic wavelength modulation spectroscopy signal (2f-WMS) commonly used in tunable diode laser spectroscopy,and it may improve the detection sensitivity of QCW modulation spectroscopy.
     3. The detection of CH_4with QCW multi-mode laser wavelength modulationspectroscopy was studied experimentally. The principle of multi-mode diode laserabsorption spectroscopy was firstly studied through computer simulations. A QCWmulti-mode diode laser emitting at2.2μm, named LD220, was selected as the lightsource in this study. The laser’s tuning characteristics with current and temperaturewere examined experimentally by use of a Fourier transform infrared (FTIR)spectrometer. Finally, combined the QCW WMS studied previously, this thesisrealized the application of QCW multi-mode wavelength modulation spectroscopywith second harmonic to detect the green house gas CH_4, and a50ppm’s sensitivitywas obtained.
     QCW WMS by use of QCW diode lasers or QCW multi-mode diode lasers, havethe advangtages of low cost and wide wavelength cover range. It can detectmulti-gases or multi-lines of one gas with a single laser simultaneously. And it maypromote the widespread applictions of laser absorption spectroscopy.
引文
[1]齐晔,2010中国低碳发展报告,北京:科学出版社,2011
    [2] P. Werle, A review of recent advances in semiconductor laser based gasmonitors, Spectrochimica Acta, Part A,1998,54:197~236
    [3]董凤忠,阚瑞峰,刘文清等,可调谐二极管激光吸收光谱技术及其在大气质量监测中的应用,量子电子学报,2005,22(3):315~325
    [4] H. Cui, Z. Du, W. Chen, et al., Applying diode laser wavelength modulationspectroscopy to detect oxygen concentration, Lasers in Eng.,2008,18:263~270
    [5] M Terrel-Gutierrez, M Kranert, M Reiser, Methane emissions monitoring inthe environment using a portable TDLAS, VDI Berichte,2006,(1959):247-250
    [6] Marley, A. Nancy, Gaffney, et al., Measurements of ammonia in Mexico cityusing near-IR TDLAS open path system, Bulletin of the AmericanMeteorological Society, Combined Preprints:84th American MeteorologicalSociety (AMS) Annual Meeting,2004,6555-6559
    [7] I. Linnerud, P. Kaspersen, T. Jaeger, Gas Monitoring in the Process IndustryUsing Diode Laser Spectroscopy, Appl. Phys. B.1998,67(3):297~305
    [8] Frish, B. Michael, Kessler, et al., Simplified Tunable Diode Laser AbsorptionSpectroscopy (TDLAS) trace gas analyzer for on-line process measurementand control, ISA TECH/EXPO Technology Update Conference Proceedings,2000,400:197~206
    [9] Lackner M, Tunable diode laser absorption spectroscopy (TDLAS) in theprocess industries-A review,REVIEWS IN CHEMICAL ENGINEERING,2007,23:65~147
    [10] G. Durry, J. S. Li, I. Vinogradov, et al., Near infrared diode laserspectroscopy of C2H2, H2O, CO2and their isotopologues and the applicationto TDLAS, a tunable diode laser spectrometer for the martianPHOBOS-GRUNT space mission, Applied Physics B: Lasers and Optics,2010,99(1-2):339~51
    [11] S. Hunsmann, K. Wunderle, S. Wagner, et al., Absolute, high resolutionwater transpiration rate measurements on single plant leaves via tunablediode laser absorption spectroscopy (TDLAS) at1.37μm, Applied Physics B:Lasers and Optics,2008,92(3):393~401
    [12] V. Weldon, D. McInerney, R. Phelan, et al., Characteristics of several NIRtuneable diode lasers for spectroscopic based gas sensing: A comparison,Spectrochimica Acta Part A,2006,63:1013~1020
    [13] P. Kluczynski, J. Gustafsson, AM. Lindberg, et al., Wavelength modulationabsorption spectrometry-an extensive scrutiny of the generation of signals,SPECTROCHIM ACTA B,2001,56(8):1277-1354
    [14] M Troccoli, L Diehl, D P Bour, et al., High-Performance Quantum CascadeLasers Grown by Metal-Organic Vapor Phase Epitaxy and TheirApplications to Trace Gas Sensing, J. LIGHTWAVE TECHNOL,2008,26(21):3534-3555
    [15]刘泓波,赵玲娟,阚强等, Monolithic Integration of a Widely Tunable Laserwith SOA Using Quantum-Well Intermixing,半导体学报,2008,29(9):1657-1660
    [16]吴薇,刘辛,陈婷,基于半导体光放大器的可调谐激光器,应用激光,2008,28(1):42-44
    [17] A. Godard, Infrared (2-12μm) solid-state laser sources: a review, ComptesRendus Physique,2007,8:1100~1128
    [18] D. WEIDMANN, F.K. TITTEL, T. AELLEN, et al., Mid-infrared trace-gassensing with a quasi-continuous-wave Peltier-cooled distributed feedbackquantum cascade laser, Appl. Phys. B,2004,79(7):907~913
    [19] G. Somesfalean, M. Sj holm, L. Persson, et al., Temporal correlation schemefor spectroscopic gas analysis using multimode diode lasers, Appl. Phys. Lett.2005,86:184102-184104
    [20] L V Gatilova, K Allegraud, J Guillon, et al.,NO formation mechanismsstudied by infrared laser absorption in a single low-pressure plasma pulse,Plasma Sources Sci. Technol.2007,16(1): S107~S114
    [21] F. Thorsten, W. Thomas, Novel approaches to tunable lasers: Extendingmode-hop-free tuning range and spectral coverage, Frequenz,2008,62(3-4):84-88
    [22] M. Taslakov, V. Simeonov, H. van den Bergh, Open path atmosphericspectroscopy using room temperature operated pulsed quantum cascade laser,Abstracts of5th International Conference on Tunable Diode LaserSpectroscopy, Florence,2005,106
    [23] K Namjou, S Cai, E A. Whittaker, et al., Sensitive absorption spectroscopywith a room-temperature distributed-feedback quantum-cascade laser, Opt.Lett.1998,23:219~221
    [24] A A. Kosterev, F K. Tittel, C Gmachl, et al., Trace-Gas Detection in AmbientAir with a Thermoelectrically Cooled, Pulsed Quantum-Cascade DistributedFeedback Laser, Appl. Opt.2000,39:6866-6872
    [25]刘文清,崔志成,刘建国等,大气痕量气体测量的光谱学和化学技术,量子电子学报,2004,21(4):202~210
    [26]张学典,差分吸收光谱技术在环境监测中的理论和应用研究:[博士学位论文],天津:天津大学,2005
    [27]王海堂,黄琪兰,刘尚,基于NDIR法汽车尾气分析仪的设计与实现,天津工业大学学报,2006,25(6):48~53
    [28]刘强,尧德中,李新胜等,基于NDIR技术的麻醉气体浓度检测装置.医疗卫生装备,2005,26(7):26~27
    [29] J. Fonollosa, R. Rubio, S. Hartwig, et al., Design and fabrication ofsilicon-based mid infrared multi-lenses for gas sensing applications, Sensorsand Actuators, B: Chemical,2008,132(2):498~507
    [30] J. Shinar, R. Shinar, Organic light-emitting devices (OLEDs) andOLED-based chemical and biological sensors: an overview, Journal ofPhysics D: Applied Physics,2008,41(13):133001~133027
    [31] Ren YB, Li Y, Yu BH, et a1. Combination of neural network and SBFMalgorithm for monitoring VOCs distribution by open path FTIRspectrometry.Instrumentation Science&Technology,2007,35(1):1-14
    [32] Compendium Method TO-16: Long-Path Open-Path Fourier TransformInfrared Monitoring Of Atmospheric Gases.2th Edition[S].http://www.epa.gov/ttnamti1/files/ambient/airtox/to-16r.pdf
    [33] R M. Schotland, Some observation of the vertical profile of water vapor by alaser optical radar. Proc.4th Symposium on Remote Sensing of Environment,University of Michigan, Ann Arbor,1966,273~283
    [34] R. A. Meyers(Ed.), Encyclopedia of environmental analysis and remediation,Wiley, New York,1988,83
    [35] Dubinsky, N. Richard, Lidar moves toward the21st century, Laser Optronics,1988,7(4):92~106
    [36] Ahilleas N Maurellis, Rudiger Lang, A new DOAS parameterization forretrieval of trace gases with high structured absorption spectra, GeophysicalResearch Letters,2000,27(24):4069~4072
    [37] E. D. Hinkley, HIGH-RESOLUTION INFRARED SPECTROSCOPYWITH A TUNABLE DIODE LASER, Appl. Phys.Lett,1970,16(9):351~354
    [38] J. Reid, J. S. Wchun. B.K.Garside et al., High sensitivity pollution detectionemploying tunable diode lasers, Appl.Opt.1978,17(2):300~304
    [39]尹新,调谐激光光谱的气体分析技术研究,[硕士学位论文],天津,天津大学,2007
    [40]齐汝宾,基于调谐激光光谱技术的痕量气体检测技术研究,[硕士学位论文],天津,天津大学,2008
    [41]杜振辉,翟雅琼,李金义等,空气中挥发性有机物的光谱学在线监测技术,光谱学光谱分析,2009,29(12):3199~3203
    [42] Jeff Hecht, Dick Teresi, Laser: light of a million uses, New York: DoverPublications,1998
    [43] P. Werle, K. Maurer, R. Kormann, et al.. Spectroscopic Gas Analyzers Basedon Indium-Phosphide, Antimonide and Lead-Salt Diode-Lasers. Spectrochim.Acta A.2002,58(11):2361~2372
    [44] V. P. Duraev, A. A. Marmalyuk, A. V. Petrovskiy, Tunable Laser Diodes forthe1250-1650nm Spectral Range. Spectrochim, Acta A,2007,66(4-5):846~848
    [45] P. Werle, R. Mucke, F. D'Amato, et al., Near-Infrared Trace-Gas SensorsBased on Room-Temperature Diode Lasers, Appl. Phys. B,1998,67(3):307~315
    [46] Philip A. Martin,Near-infrared diode laser spectroscopy in chemical processand environmental air monitoring,Chem. Soc. Rev.,2002,31:201~210
    [47] Rui Liang, Jianfeng Chen, G. Kipshidze, et al., High-Power2.2-μm DiodeLasers With Heavily Strained Active Region, Photonics Technology Letters,IEEE,2011,23(10):603~605
    [48] J. G. Kim, L. Shterengas, R. U. Martinelli1, et al., High-powerroom-temperature continuous wave operation of2.7and2.8μmIn(Al)GaAsSb/GaSb diode lasers, Appl. Phys. Lett.,2003,83(10):1926~1928
    [49] S. Belahsene, L. Naehle, M. Fischer, et al., Laser Diodes for Gas SensingEmitting at3.06μm at Room Temperature, Photonics Technology Letters,IEEE,2010,22(15):1084~1086
    [50] M. Tacke, New developments and applications of tunable IR lead-salt lasers.Infrared Phys. Technol.,1995,36:447~463
    [51] Matthew R McCurdy, Yury Bakhirkin, Gerard Wysocki, et al., Recentadvances of laser-spectroscopy-based techniques for applications in breathanalysis, Journal of Breath Research,2007,1(1):014001~014013
    [52] Y.A. Bakhirkin, A.A. Kosterev, R.F. Curl, et al., Sub-ppbv nitric oxideconcentration measurements using cw thermoelectrically cooled quantumcascade laser-based integrated cavity output spectroscopy, APPLIEDPHYSICS B: LASERS AND OPTICS,2006,82(1):149~154
    [53] Robert F. Curl, Federico Capasso, Claire Gmachl, et al., Quantum cascadelasers in chemical physics, Chemical Physics Letters,2010,487(1-3):1~18
    [54] A.K.Y. Ngai, S.T. Persijn, G. von Basum, et al., Automatically tunablecontinuous-wave optical parametric oscillator for high-resolutionspectroscopy and sensitive trace-gas detection, Applied Physics B: Lasersand Optics,2006,85(2-3):173~180
    [55] D. Richter, A. Fried, B. P. Wert, et al., Development of a Tunable Mid-IRDifference Frequency Laser Source for Highly SensitiveAirborne Trace GasDetection, Appl. Phys. B,2002,75(2-3):281~288
    [56] D. Marinov, J. Rey, M. W. Sigrist, Mid-Infrared Spectroscopic Investigationof Methylamines by a Continuous-Wave Difference-Frequency GenerationBased System, Appl. Opt.,2008,47(12):1956~1962
    [57] Y. Arita, P. Ewart, Multi-mode absorption spectroscopy, OpticsCommunications,2008,281:2561~2566
    [58] Y. Arita, P. Ewart. Infra-red multi-mode absorption spectroscopy ofacetylene using an Er/Yb:glass micro-laser, Optics Express,2008,16(7):4437~4442
    [59] Xiutao Lou, Gabriel Somesfalean, Zhiguo Zhang, Gas detection bycorrelation spectroscopy employing a multimode diode laser, Applied Optics,2008,47(13):2392~2398
    [60] L. A. Coldren. Monolithic Tunable Diode Lasers. J. Sel. Top. Quant.2000,6(6):988~999
    [61] H. P. Zappe, M. Hess, M. Moser, et al., Narrow-Linewidth Vertical-CavitySurface-Emitting Lasers for Oxygen Detection, Appl. Opt.,2000,39:2475~2479
    [62] G. Totschnig, M. Lackner, R. Shau, et al., High-speed vertical-cavitysurface-emitting laser (VCSEL) absorption spectroscopy of ammonia (NH3)near1.54μm, Appl. Phys. B,2003,76(5):603~608
    [63] Markus C Amann, Recent Progress on High-Speed and Tunable VCSELs inthe1.3to2.6μm Wavelength Range, CLEO/QELS2010, CME1
    [64] L. Ricci, M. Weidemüller, T. Esslinger, et al., A Compact Grating-StabilizedDiode-Laser System for Atomic Physics. Opt. Commun.,1995,117(5-6):541~549
    [65] D. B. Oh, D. C. Hovde, Wavelength-modulation detection of acetylene witha near-infrared external-cavity diode laser, Appl. Opt.,1995,34(30):7000~7005
    [66] D. Wandt, M. Laschek, K. Przyklenk, et al., External cavity laser diode with40nm continuous tuning range around825nm, Opt. Commun.,1996,130(1-3):81~84
    [67] M.W. Sigrist, R. Bartlome, D. Marinov, et al., Trace gas monitoring withinfrared laser-based detection schemes, Applied Physics B: Lasers andOptics,2008,90(2):289~300
    [68] Peter Werle, Franz Slemr, Karl Maurer, et al., Near-and mid-infraredlaser-optical sensors for gas analysis, Optics and Lasers in Engineering,2002,37(2-3):101~114
    [69] J. Faist, F. Capasso, D. L. Sivco, et al., Quantum Cascade Laser. Science,1994,264(5158):553~556
    [70] A. A. Kosterev, and F. K. Tittel. Chemical Sensors Based on QuantumCascade Lasers, J. Quantum. Elect.,2002,38(6):582~591
    [71] S. M. Cristescu, S. T. Persijn, S. te Lintel Hekkert, et al., Laser-basedsystems for trace gas detection in life sciences, Applied Physics B: Lasersand Optics,2008,92(3):343~349
    [72] G. Wysocki, R.F. Curl, F.K. Tittel, et al., Widely tunable mode-hop freeexternal cavity quantum cascade laser for high resolution spectroscopicapplications, Applied Physics B: Lasers and Optics,2005,81(6):769~777
    [73] A. A. Kosterev, R. F. Curl, F. K. Tittel, et al., Transportable automatedammonia sensor based on a pulsed thermoelectrically cooledquantum-cascade distributed feedback laser, Applied Optics,2002,41(3):573~578
    [74] E. D. Hinkley, P. L. Kelley, Detection of Air Pollutants with Tunable DiodeLasers, Science,1971,171(3972):635~639
    [75] R. F. Curl, F. K. Tittel, Tunable infrared laser spectroscopy, Annu. Rep. Prog.Chem., Sect. C: Phys. Chem.,2002,98:219~272
    [76] J. U. White, Long optical paths of large aperture, J. Opt. Soc. Am.,1942,32:285~288
    [77] D. Herriot, H. Kogelnik, R. Kompfner, Off-Axis Paths in Spherical MirrorInterferometers, Appl. Opt.,1964,3(4):523~526
    [78] H. Riris, C. B. Carlisle, L. W. Carr, et al., Design of an open pathnear-infrared diode laser sensor: application to oxygen, water, and carbondioxide vapor detection, Appl. Opt.,1994,33:7059~7066
    [79] D. E. Jennings, Absolute line strengths in ν4,12CH4: a dual-beam diode laserspectrometer with sweep integration, Appl. Opt.,1980,19:2695~2700
    [80] J. E. Hayward, D. T. Cassidy, J. Reid, High-sensitivity transient spectroscopyusing tunable diode lasers, Applied Physics B: Lasers and Optics,1989,48(1):25~29
    [81] M. G. Allen, K. L. Carleton, S. J. Davis, et al., Ultrasensitive Dual-BeamAbsorption and Gain Spectroscopy-Applications For Near-Infrared andVisible Diode-Laser Sensors, Appl. Opt.,1995,34(18):3240~3249
    [82] P. Hobbs, Ultrasensitive laser measurements without tears, Appl. Opt.,1997,36(4):903~920
    [83] David S. Bomse, Alan C. Stanton, Joel A. Silver, Frequency modulation andwavelength modulation spectroscopies: comparison of experimental methodsusing a lead-salt diode laser, Appl. Opt.,1992,31:718~731
    [84] Rubin Qi, Zhenhui Du, Dongyu Gao, et al., Wavelength modulationspectroscopy based on quasi-continuous-wave diode lasers, Chin. Opt. Lett.,2012,10(3):033001.1~4
    [85]齐汝宾,杜振辉,孟繁莉等,准连续激光调制吸收谱的多谐波分析光谱学与光谱分析,光谱学光谱分析,2012,32(3):586~589
    [86] K. Duffin, A.J. Mcgettrick, W. Johnstone, et al., Tunable diode-laserspectroscopy with wavelength modulation: a calibration-free approach to therecovery of absolute gas absorption line shapes, Lightwave Technology,2007,25(10):3114~3125
    [87]陆同兴,路轶群,激光光谱技术原理及应用,合肥:中国科学技术大学出版社,2006
    [88]崔厚欣,吸收光谱法在实际应用中的关键问题的研究,[博士学位论文],天津,天津大学,2008
    [89] L.S. Rothman, I.E. Gordon, A. Barbe, et al., The HITRAN2008molecularspectroscopic database, Journal of Quantitative Spectroscopy and RadiativeTransfer,2009,110(9–10):533~572
    [90] Dwayne E. Heard, Analytical Techniques for Atmospheric Measurement,Oxford: Blackwell Publishing,2006
    [91] L.S. Rothman, R.L. Hawkins, R.B. Wattson, et al., Energy levels, intensities,and linewidths of atmospheric carbon dioxide bands, J. Quant. Spectrosc.Radiat. Transfer,1992,48:537~566
    [92]齐汝宾,尹新,杨立等,多成分有机气体的近红外光谱定量检测方法,光谱学与光谱分析,2008,28(12):2855~2858
    [93] R. Arndt, Analytical Line Shapes for Lorentzian Signals Broadened byModulation, Journal of Applied Physics,1965,36(8):2522~2524
    [94] O. Axner, P. Kluczynski,. M. Lindberg, A general non-complex analyticalexpression for the nth Fourier component of a wavelength-modulatedLorentzian lineshape function, Journal of Quantitative Spectroscopy andRadiative Transfer,2001,68(3):299~317
    [95]杜振辉,翟雅琼,胡波等,室温准连续SC-MQW激光二极管调谐特性的研究,纳米技术与精密工程,2010,8(2):24~29
    [96] O. E. Myers, E.J. Putzer, Measurement broadening in magnetic resonance, J.Appl. Phys.,1963,30(12):1987~1991
    [97] A. M. Russel, D. A. Torchia, Harmonic analysis in systems using phasesensitive detectors, Rev. Sci. Instrum.,1962,33(4):442~444
    [98] G. V. H. Wilson, Modulation broadening of NMR and ESR line shapes, J.Appl. Phys.,1963,34(11):3276~3285
    [99] E. Normand, M. McCulloch, G. Duxbury, et al., Fast, real-time spectrometerbased on a pulsed quantum-cascade laser, Optics Letters,2003,28(1):16~18
    [100] A. A. Kosterev, R. F. Curl, F. K. Tittel, et al., Chemical sensing with pulsedQC-DFB lasers operating at15.6μm, Appl. Phys. B: Lasers and Optics,2002,75(2-3):351~357
    [101] D. S. Baer, V. Nagali, E. R. Furlong, et al., Scanned-and fixed-wavelengthabsorption diagnostics for combustion measurements using a multiplexeddiode-laser sensor system, AIAA J.,1996,34:489~493
    [102] D. S. Baer, R. K. Hanson, M. E. Newfield, et al., Multiplexed diode-lasersensor system for simultaneous H2O, O2, and temperature measurements, Opt.Lett.,1994,19(22):1900~1902
    [103] Y. Arita, R. Stevens, P. Ewart, Multi-mode absorption spectroscopy ofoxygen for measurement of concentration, temperature and pressure,APPLIED PHYSICS B: LASERS AND OPTICS,2008,90(2):205~211
    [104] Wolfgang Demtroder, Laser spectroscopy: basic concepts andinstrumentation. Springer, third Edition,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700