高选择性分子筛膜作为预浓缩器在爆炸物检测中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从美国9/11事件之后,提高安全性和预防损伤的必要性比以往任何时候都重要。世界各地的恐怖主义威胁和数百万埋在地下未爆炸的地雷需要开发一种能够快速,可靠和紧凑的爆炸物检测设备,它应被纳入到手持设备或远程监控设备。考虑到普遍采用的爆炸装置大多数没有密封屏蔽,因此通过检测空气中的爆炸物分子来确定爆炸物的存在成为可能。但传感器设备进行检测的关键问题是环境条件下灵敏度低。这是由于常用的硝基炸药(TNT,硝酸甘油,DNT,黑索金,特屈儿等)本身的蒸汽压很低,而自然空气流动使浓度进一步稀释至更低的ppt或ppb级。在大型开放地域,如机场、火车站,即使是最好的传感器也很难检测这种经过稀释的低浓度爆炸物分子。一个简单而有效的解决方案是为传感器设计一个预浓缩装置,以提高检测灵敏度。
     由于其孔道尺寸和吸附选择性,分子筛膜近几十年来被用于气体分离。其中的MFI结构的分子筛膜具有0.51-0.56nm的孔道直径,由于其孔道直径小于爆炸物分子而大于空气分子而被用作分子筛膜材料。而一层超薄的分子筛膜应该能够过滤掉空气分子而使爆炸物蒸汽浓缩。由于分子筛膜的通量足够大,使得其能在短时间内流过大量空气分子,快速浓缩爆炸物分子,从而使传感器能够检测超低浓度(ppt或更低)的爆炸物。
     本课题采用二次生长法在多孔不锈钢,多孔镍和α-Alumina载体表面合成了无缺陷的薄沸石分子筛膜,经过热焙烧或紫外线处理后,表征其渗透速率和对爆炸性分子的浓缩效率。为了避免膜在高温焙烧时开裂,采用UV/Ozone处理方法在较低温度下脱除分子筛内的有机模板剂。选用1,3,5-三甲苯(TMB)分子作为模型化合物,通过分离氮气与TMB的混合气体检测膜的选择性。通过文献检索,这是首次采用分子筛膜进行TMB、氮气二元混合物分离的工作。
     与分子筛膜在载体一侧的单侧膜相比,分子筛膜在载体两侧的样品测得的选择性和渗透率较高。采用较大孔径的载体制备的膜可减少载体阻力,从而增加渗透率。经UV处理的α-Alumina支撑的双层膜具有最高的氮气通量(13.5mmol/m2·s)和选择性(10600)。
     有机官能化是一种对分子筛表面进行改性的有效方法。硅烷试剂与分子筛表面的羟基基团反应不仅能够提高分子筛膜的疏水性能,还能提高疏油性能。采用纯碳氟链的硅烷试剂有机官能化的分子筛膜比采用一般硅烷试剂拥有更高的疏水性能。疏水层的疏水角在130°-150°之间。由于ZSM-5有更强的羟基基团,其有机官能化后的疏水角高于同样条件下处理的Silicalite-1分子筛膜。且分子筛上的有机官能团具有较好的耐热性,能够耐300°C高温过程。有机官能化对分子筛膜分离渗透率或选择性影响不明显,但可增加膜分离含有强吸附有机物的混合气体或湿空气时的耐久性。另外,载体的性能也会影响分离层的耐久性,且烷基化α-Alumina支撑的分子筛膜的耐久性优于多孔镍支撑的分子筛膜。
After the tragic events of9/11in US, the need for increased security and damageprevention is now more sought out than ever. Terrorist threats and millions ofunexploded land mines buried around the world necessitate the development ofequipment for explosives detection that is rapid, reliable and compact enough to beincorporated into a hand-held device or a remote surveillance device. If can beconsidered the commonly employed devices, most are also not shielded hermetically,it is possible to detect the explosives molecular by a sensor. The critical problem fordetection by a sensor device is the low sensitivity caused by the low to ultra-lowconcentrations of nitro compounds under ambient conditions. The most commonlyused nitro-based explosives (TNT, NG, DNT, RDX, Tetryl, etc.) possess a smallvapor pressure. Furthermore, natural air movements dilute ppb level to ppt or evenlower. This problem is exacerbated in large and open areas, such as airports and trainstations, where even the best-engineered sensors will have a hard time detecting suchlow concentrations. A simple and effective solution is to design a preconcentrator forsensor device to improve sensitivity.
     Zeolite membranes have been developed for use in gas separation in recentdecades according to their pore size and selective adsorption. MFI type zeolite isconsidered as a promising membrane material for explosives separation because itspore size (0.51-0.56nm) is smaller than explosives molecules but much larger than aircomponents. Consequently, an ultrathin molecular sieving zeolite membrane couldfilter an air sample and serve as an explosives vapor concentrator. The membraneswill allow a large flux of air, thus leading to a concentration of the explosives vaporsby a large factor in a short time and will allow the detection of ultra-lowconcentrations (ppt or lower).
     The aim of this work is to synthesize continuous, pinhole-free, ultra thinmolecular sieving zeolite membranes with suitable pore sizes by a seeded growthmethod on porous stainless steel, porous nickel or α-Alumina substrates. Themembranes, after thermal calcination or UV-treatment, will be characterized in termsof their permeation rates and concentration efficiency for explosive molecules. Toavoid membrane cracking during high temperature calcination, an UV/ozone treatment method is employed as a low temperature alternative to remove the organictemplate. To examine the selectivity of the membrane,1,3,5-Trimethylbenzene (TMB)has been used as a surrogate of the explosive molecule. Toward that end, a mixture ofTMB/nitrogen feed will be used as the testing case for this desired application. To ourknowledge, this is the first application of zeolite membranes for TMB/nitrogen binarymixture separation.
     Higher selectivity and permeance are observed for samples with zeolite film onboth sides of the support, as compared to those with zeolite film on only one side ofthe support. In addition, by varying the type of support with different pore structures,it is shown that the support with large pore size can reduce the support resistance, andthereby increasing permeance. UV-treated membranes on both sides of α-Aluminasupport has the highest flux (13.5mmol/m2·s) and selectivity (10600) among allsamples tested.
     Furthermore, organic functionalization is a very common and efficient method tomodify the zeolite. Silane was reacted with hydroxyl group on the surface of zeolite,which not only can increase the hydrophobic properties but also the oleophobicproperties of zeolite. Meanwhile, the silane with fluorocarbon chain can furtherincrease the hydrophobic properties of zeolite. The contact angle to water of thehydrophobic coating is range from130to150°. At same condition, organicfunctionalized ZSM-5membranes can get higher contact angle than silicalite-1membranes, due to its stronger hydroxyl groups. Otherwise, the organic functionalgroups can surfer high temperature as high as300°C on the zeolite. Organicfunctionalization cannot dramatically increase the separation permeance or selectivityof zeolite, but can increase the durability of zeolite when separate organic mixture gasor moist air. In addition, the properties of substrate have a significant influence on thedurability of separation film. The durability of nitrogen permeance on silanizedα-Alumina supported zeolite is much better than that on silanized porous nickelsupported zeolite.
引文
[1]IN ITS OWN WORDS-The U.S. Army and Antipersonnel Mines in the Koreanand Vietnam Wars [M]. Human Rights Watch Arms Project Vietnam Veterans ofAmerica Foundation.
    [2]Sánchez C, Carlsson H, Colmsj A, et al. Determination of nitroaromaticcompounds in air samples at femtogram level using C18membrane sampling andon-line extraction with LC-MS.[J]. Analytical Chemistry,2003,75(17):4639-45.
    [3]Crockett A B, Craig H D, Jenkins T F, et al. Field Sampling and SelectiveAnalytical Methods for Explosives in Soil, Federal Facilities Forum IssueEPA/540/r-97/501[M]//AGENCY U E P. Washington, DC.1996:1-30.
    [4]Nitroaromatics and Nitramines by HPLC [M]//US ENVIRONMENTALPROTECTION AGENCY O O S W A E R. Washington, DC.1994.
    [5]Jenkins T F, Walsh M E, Schumacher P W, et al. Liquid chromatographic methodfor determination of extractable nitroaromatic and nitramine residues in soil [J].Journal of Association of Official Analytical Chemist,1989,72(890-9.
    [6]Reid Asbury G, Klasmeier J, Hill Jr H H. Analysis of explosives using electrosprayionization/ion mobility spectrometry (ESI/IMS)[J]. Talanta,2000,50(6):1291-8.
    [7]Yinon J. Detection of explosives by electronic noses [J]. Analytical Chemistry,2003,75(5):99-105.
    [8]Pettersson A, Wallin S, Brandner B, et al. Explosives Detection-A TechnologyInventory [J/OL]2006,
    [9]Davis M E. Distinguishing the (almost) indistinguishable [J]. Science,2003,300(5618):438-9.
    [10] Lai Z, Tsapatsis M. Gas and organic vapor permeation through b-oriented MFImembranes [J]. Industrial&Engineering Chemistry Research,2004,43(12):3000-7.
    [11] Lai Z, Bonilla G, Diaz I, et al. Microstructural Optimization of a ZeoliteMembrane for Organic Vapor Separation [J]. Science,2003,18,456-60.
    [12] Xomeritakis G, Lai Z, Tsapatsis M. Separation of xylene isomer vapors withoriented MFI membranes made by seeded growth [J]. Ind Eng Chem Res,2001,40(2):544-52.
    [13] Tavolaro A, Drioli E. Zeolite Membranes [J]. Advanced Materials,1999,11(12):975-96.
    [14] Xiao W, Yang J, Lu J, et al. A novel method to synthesize high performancesilicalite-1membrane [J]. Separation and Purification Technology,2009,67(1):58-63.
    [15] Zhao Q, Wang J, Chu N, et al. Preparation of high-permeance MFI membranewith the modified secondary growth method on the macroporous [alpha]-aluminatubular support [J]. Journal of Membrane Science,2008,320(1-2):303-9.
    [16] Hasegawa Y, Kimura K, Nemoto Y, et al. Real-time monitoring of permeationproperties through polycrystalline MFI-type zeolite membranes duringpervaporation using mass-spectrometry [J]. Separation and PurificationTechnology,2008,58(3):386-92.
    [17] Kanezashi M, O'brien J, Lin Y S. Template-free synthesis of MFI-type zeolitemembranes: Permeation characteristics and thermal stability improvement ofmembrane structure [J]. Journal of Membrane Science,2006,286(1-2):213-22.
    [18] Hasegawa Y, Ikeda T, Nagase T, et al. Preparation and characterization ofsilicalite-1membranes prepared by secondary growth of seeds with differentcrystal sizes [J]. Journal of Membrane Science,2006,280(1-2):397-405.
    [19] Reid R C, Prausnitz J M, Poling B E. The properties of gases and liquids [M].1987.
    [20] Pachtova O, Kocirik M, Zikanova A, et al. A comparative study of templateremoval from silicalite-1crystals in pyrolytic and oxidizing regimes [J].Microporous and Mesoporous Materials,2002,55(3):285-96.
    [21] Dong J, Lin Y S, Hu M Z C, et al. Template-removal-associated microstructuraldevelopment of porous-ceramic-supported MFI zeolite membranes [J].Microporous and Mesoporous Materials,2000,34(3):241-53.
    [22] Kiricsi I, Fudala, Kónya Z, et al. The advantages of ozone treatment in thepreparation of tubular silica structures [J]. Applied Catalysis A: General,2000,203(1): L1-L4.
    [23] Buchel G, Denoyel R, Llewellyn P L, et al. In situ surfactant removal fromMCM-type mesostructures by ozone treatment [J]. Journal of MaterialsChemistry,2001,11(2):589-93.
    [24] Parikh A N, Navrotsky A, Li Q, et al. Non-thermal calcination by ultravioletirradiation in the synthesis of microporous materials [J]. Microporous andMesoporous Materials,2004,76(1-3):17-22.
    [25] Li Q, Amweg M L, Yee C K, et al. Photochemical template removal and spatialpatterning of zeolite MFI thin films using UV/ozone treatment [J]. Microporousand Mesoporous Materials,2005,87(1):45-51.
    [26] Xiao L, Li J, Jin H, et al. Removal of organic templates from mesoporousSBA-15at room temperature using UV/dilute H2O2[J]. Microporous andMesoporous Materials,2006,96(1-3):413-8.
    [27] Zhang Y, Tokay B, Funke H H, et al. Template removal from SAPO-34crystalsand membranes [J]. Journal of Membrane Science,2010,363(1-2):29-35.
    [28] Heng S, Lau P P S, Yeung K L, et al. Low-temperature ozone treatment fororganic template removal from zeolite membrane [J]. Journal of MembraneScience,2004,243(1-2):69-78.
    [29] Motuzas J, Heng S, Ze Lau P P S, et al. Ultra-rapid production of MFImembranes by coupling microwave-assisted synthesis with either ozone orcalcination treatment [J]. Microporous and Mesoporous Materials,2007,99(1-2):197-205.
    [30] Keizer K, Burggraaf A J, Vroon Z a E P, et al. Two component permeationthrough thin zeolite MFI membranes [J]. Journal of Membrane Science,1998,147(2):159-72.
    [31] Mitra A, Subramanian S, Das D, et al. Alkylation of aromatics on zeolite beta.Unusual butylation of benzene with isobutanol [J]. Applied Catalysis A: General,1997,153(1-2):233-41.
    [32] Cai R, Sun M, Chen Z, et al. Ionothermal Synthesis of Oriented Zeolite AELFilms and Their Application as Corrosion Resistant Coatings [J]. AngewandteChemie International Edition,2008,47(3):525-8.
    [33]马英冲,徐云鹏,王少君等.室温离子液体中合成方钠石的研究[J].高等学校化学学报,2006,27(4):739-41.
    [34] Juergen Caro M N. Zeolite membranes-Recent developments and progress [J].Microporous and Mesoporous Materials,2008,115,215-33.
    [35] Wee L H, Wang Z, Tosheva L, et al. Silicalite-1films with preferred orientation[J]. Microporous and Mesoporous Materials,2008,116(1-3):22-7.
    [36] Sano T, Kiyozumi Y, Mizukami F, et al. Steaming of ZSM-5zeolite film [J].Zeolites,1992,12(2):131-4.
    [37] Sano T, Yanagishita H, Kiyozumi Y, et al. Separation of ethanol/water mixtureby silicalite membrane on pervaporation [J]. Journal of Membrane Science,1994,95(3):221-8.
    [38] Yan Y, Davis M E, Gavalas G R. Preparation of Zeolite ZSM-5Membranes byIn-Situ Crystallization on Porous. alpha.-Al2O3[J]. Industrial&EngineeringChemistry Research,1995,34(5):1652-61.
    [39] Wang Z, Yan Y. Controlling crystal orientation in zeolite MFI thin films by directin situ crystallization [J]. Chemistry of materials,2001,13(3):1101-7.
    [40] Verduijn J, Bixis A, Anthanis M. WO Patent9,601,683.1996.
    [41] Wang Z, Yan Y. Oriented zeolite MFI monolayer films on metal substrates by insitu crystallization [J]. Microporous and Mesoporous Materials,2001,48(1-3):229-38.
    [42] Aguado S, Mcleary E E, Nijmeijer A, et al. b-Oriented MFI membranes preparedfrom porous silica coatings [J]. Microporous and Mesoporous Materials,2009,120,165-9.
    [43] Mabande G T P, Pradhan G, Schwieger W, et al. A study of Silicalite-1andAl-ZSM-5membrane synthesis on stainless steel supports [J]. Microporous andMesoporous Materials,2004,75,209-20.
    [44] Lai Z, Bonilla G, Diaz I, et al. Microstructural Optimization of a ZeoliteMembrane for Organic Vapor Separation [J]. Science,2003,300,456-60.
    [45] Gouzinis A, Tsapatsis M. On the preferred orientation and microstructuralmanipulation of molecular sieve films prepared by secondary growth [J].Chemistry of materials,1998,10(9):2497-504.
    [46] Persson A, Schoeman B, Sterte J, et al. The synthesis of discrete colloidalparticles of TPA-silicalite-1[J]. Zeolites,1994,14(7):557-67.
    [47] Persson A, Schoeman B, Sterte J, et al. Synthesis of stable suspensions of discretecolloidal zeolite (Na, TPA) ZSM-5crystals [J]. Zeolites,1995,15(7):611-9.
    [48] Provis J L, Vlachos D G. Silica nanoparticle formation in theTPAOH-TEOS-H2O system: A population balance model [J]. The Journal ofPhysical Chemistry B,2006,110(7):3098-108.
    [49] Lin Y. Microporous and dense inorganic membranes: current status andprospective [J]. Separation and Purification Technology,2001,25(1-3):39-55.
    [50] Bernal M P, Xomeritakis G, Tsapatsis M. Tubular MFI zeolite membranes madeby secondary (seeded) growth [J]. Catalysis Today,2001,67(1-3):101-7.
    [51] Richter H, Voigt I, Fischer G, et al. Preparation of zeolite membranes on theinner surface of ceramic tubes and capillaries [J]. Separation and PurificationTechnology,2003,32(1-3):133-8.
    [52] Wang Z, Hedlund J, Sterte J. Synthesis of thin silicalite-1films on steel supportsusing a seeding method [J]. Microporous and Mesoporous Materials,2002,52(3):191-7.
    [53] De La Iglesia O, Sebastian V, Mallada R, et al. Preparation of Pt/ZSM-5films onstainless steel microreactors [J]. Catalysis Today,2007,125(1-2):2-10.
    [54] Cai R, Yan Y. Corrosion-resistant zeolite coatings [J]. Corrosion,2008,64(3):271-8.
    [55] Haag S, Hanebuth M, Mabande G T P, et al. On the use of a catalytic H-ZSM-5membrane for xylene isomerization [J]. Microporous and Mesoporous Materials,2006,96(1-3):168-76.
    [56] Mateo E, Paniagua A, Güell C, et al. Study on template removal from silicalite-1giant crystals [J]. Materials Research Bulletin,2009,44(6):1280-7.
    [57] Rebrov E, Seijger G, Calis H, et al. The preparation of highly ordered single layerZSM-5coating on prefabricated stainless steel microchannels [J]. AppliedCatalysis A: General,2001,206(1):125-43.
    [58] Soydas B, Dede O, ulfaz A, et al. Separation of gas and organic/water mixturesby MFI type zeolite membranes synthesized in a flow system [J]. Microporousand Mesoporous Materials,2010,127(1-2):96-103.
    [59] Tarditi A M, Horowitz G I, Lombardo E. A durable ZSM-5/SS composite tubularmembrane for the selective separation of p-xylene from its isomers [J]. Journal ofMembrane Science,2006,281(1-2):692-9.
    [60] Grill M, Sicard M, Ser F, et al. Preparation of zeolite Y and ZSM-5coatings forcracking fuel in a cooling system for hypersonic vehicles [J]. Studies in surfacescience and catalysis,2007,170,258-66.
    [61] Ohrman O, Hedlund J, Sterte J. Synthesis and evaluation of ZSM-5films oncordierite monoliths [J]. Applied Catalysis A: General,2004,270(1-2):193-9.
    [62] Dong J, Lin Y, Hu M Z C, et al. Template-removal-associated microstructuraldevelopment of porous-ceramic-supported MFI zeolite membranes [J].Microporous and Mesoporous Materials,2000,34(3):241-53.
    [63] Choi J, Jeong H K, Snyder M A, et al. Grain boundary defect elimination in azeolite membrane by rapid thermal processing [J]. Science,2009,325(5940):590.
    [64] Yan Y S, Davis M E, Gavalas G R. Preparation of highly selective zeolite ZSM-5membranes by a post-synthetic coking treatment [J]. Journal of MembraneScience,1997,123(1):95-103.
    [65] Gilbert K H, Baldwin R M, Way J D. The effect of heating rate and gasatmosphere on template decomposition in silicalite-1[J]. Industrial&Engineering Chemistry Research,2001,40(22):4844-9.
    [66] Eslava S, Iacopi F, Baklanov M R, et al. Ultraviolet-assisted curing ofpolycrystalline pure-silica zeolites: Hydrophobization, functionalization, andcross-linking of grains [J]. Journal of the American Chemical Society,2007,129(30):9288-9.
    [67] Stein A, Melde B J, Schroden R C. Hybrid inorganic–organic mesoporoussilicates—nanoscopic reactors coming of age [J]. Advanced Materials,2000,12(19):1403-19.
    [68] Bauer F, Chen W, Bilz E, et al. Surface modification of nano-sized HZSM-5andHFER by pre-coking and silanization [J]. Journal of catalysis,2007,251(2):258-70.
    [69] Beck J, Vartuli J, Roth W, et al. A new family of mesoporous molecular sievesprepared with liquid crystal templates [J]. Journal of the American ChemicalSociety,1992,114(27):10834-43.
    [70] Cauvel A, Brunel D, Di Renzo F, et al. Functionalization of Y zeolites withorganosilane reagents [J]. Studies in surface science and catalysis,1995,94,286-93.
    [71] Coltrain B K, Landry C J T, O'reilly J M, et al. Role of trialkoxysilanefunctionalization in the preparation of organic-inorganic composites [J].Chemistry of materials,1993,5(10):1445-55.
    [72] Huang M, Adnot A, Kaliaguine S. Silylation of H-ZSM-5: an X-rayphotoelectron and infrared spectroscopy study [J]. J Chem Soc, Faraday Trans,1993,89(23):4231-7.
    [73] Piryutko L, Parenago O, Lunina E, et al. Silylation effect on the catalyticproperties of FeZSM-11in benzene oxidation to phenol [J]. Reaction Kineticsand Catalysis Letters,1994,52(2):275-83.
    [74] Vankelecom I F J, Sacha Van Den Broeck, Merckx E, et al. Silylation to improveincorporation of zeolites in polyimide films [J]. The Journal of PhysicalChemistry,1996,100(9):3753-8.
    [75] Zhao X, Lu G, Whittaker A, et al. Comprehensive study of surface chemistry ofMCM-41using29Si CP/MAS NMR, FTIR, pyridine-TPD, and TGA [J]. TheJournal of Physical Chemistry B,1997,101(33):6525-31.
    [76]马丙丽,淳远,周炜等.三甲基氯硅烷修饰对HZSM-5沸石环己烯水合催化反应性能的影响[J]. PETROCHEMICAL TECHNOLOGY,2004,33(z1):
    [77] Vassylyev O, Chen J, Hall G S, et al. Efficient surface functionalization ofzeolites via esterification [J]. Microporous and Mesoporous Materials,2006,92(1-3):101-8.
    [78] Ballard C, Broge E, Iler R, et al. Esterification of the surface of amorphous silica[J]. The Journal of Physical Chemistry,1961,65(1):20-5.
    [79] Keana J F W, Shimizu M, Jernstedt K K. Functionalized silica gel as a supportfor solid-phase organic synthesis [J]. The Journal of Organic Chemistry,1986,51(10):1641-4.
    [80] Bu J, Rhee H K. Silylation of Ti-MCM-41by trimethylsilyl-imidazole and itseffect on the olefin epoxidation with aqueous H2O2[J]. Catalysis letters,2000,66(4):245-9.
    [81] Bu J, Rhee H K. Improvement in hydrophobicity of Ti-MCM-41using a newsilylation agent MSTFA [J]. Catalysis letters,2000,65(1):141-5.
    [82] Chiarakorn S, Areerob T, Grisdanurak N. Influence of functional silanes onhydrophobicity of MCM-41synthesized from rice husk [J]. Science andTechnology of Advanced Materials,2007,8(1-2):110-5.
    [83] Eslava S, Delahaye S, Baklanov M R, et al. Reaction of Trimethylchlorosilane inSpin-On Silicalite-1Zeolite Film [J]. Langmuir,2008,24(9):4894-900.
    [84] Igarashi N, Kidani S, Ahemaito R, et al. Direct organic functionalization ofTi-MCM-41: Synthesis condition, organic content, and catalytic activity [J].Microporous and Mesoporous Materials,2005,81(1-3):97-105.
    [85] Inagaki S, Fukushima Y. Adsorption of water vapor and hydrophobicity ofordered mesoporous silica, FSM-16[J]. Microporous and Mesoporous Materials,1998,21(4-6):667-72.
    [86] Li S, Li Z, Medina D, et al. Organic-functionalized pure-silica-zeolite MFI low-kfilms [J]. Chemistry of materials,2005,17(7):1851-4.
    [87] Tatsumi T, Koyano K, Tanaka Y, et al. Stabilization of M41S Materials byTrimethylsilylation [J]. Studies in surface science and catalysis,1998,117,143-50.
    [88] Tatsumi T, Koyano K A, Igarashi N. Remarkable activity enhancement bytrimethylsilylation in oxidation of alkenes and alkanes with H2O2catalyzed bytitanium-containing mesoporous molecular sieves [J]. Chem Commun,1998(3):325-6.
    [89] Yamamoto K, Tatsumi T. Remarkable improvement in hydrothermal stability ofMCM-41by surface modification with Grignard reagents [J]. Chemistry Letters,2000,29(6):624-5.
    [90] Zhao X, Lu G. Modification of MCM-41by surface silylation withtrimethylchlorosilane and adsorption study [J]. The Journal of Physical ChemistryB,1998,102(9):1556-61.
    [91] Bambrough C M, Slade R C T, Williams R T, et al. Sorption of nitrogen, watervapor, and benzene by a phenyl-modified MCM-41sorbent [J]. Journal of colloidand interface science,1998,201(2):220-2.
    [92] Bein T, Carver R F, Farlee R D, et al. Solid-state silicon-29NMR and infraredstudies of the reactions of mono-and polyfunctional silanes with zeolite Ysurfaces [J]. Journal of the American Chemical Society,1988,110(14):4546-53.
    [93]Jones C W, Tsapatsis M, Okubo T, et al. Organic-functionalized molecular sieves.III. Shape selective catalysis [J]. Microporous and Mesoporous Materials,2001,42(1):21-35.
    [94] Jones C W, Tsuji K, Davis M E. Organic-functionalized molecular sieves asshape-selective catalysts [J]. Nature,1998,393(6680):52-3.
    [95] Singh R, Dutta P K. Use of surface-modified zeolite Y for extraction of metalions from aqueous to organic phase [J]. Microporous and Mesoporous Materials,1999,32(1-2):29-35.
    [96] Lew C M, Liu Y, Day B, et al. Hydrofluoric-Acid-Resistant and HydrophobicPure-Silica-Zeolite MEL Low-Dielectric-Constant Films [J]. Langmuir,2009,25(9):5039-44.
    [97]鲍世国.“可溶”纳米HZSM-5分子筛的制备及在碳氢燃料催化裂解中的应用[D].天津;天津大学,2010.
    [98] Yuan P, Yang D, Lin Z, et al. Influences of pretreatment temperature on thesurface silylation of diatomaceous amorphous silica with trimethylchlorosilane[J]. Journal of Non-Crystalline Solids,2006,352(36-37):3762-71.
    [99]粟常红,陈庆民.仿荷叶表面研究进展[J].化学通报,2008,(1):24-31.
    [100] Li H, Wang X, Song Y, et al. Super-“Amphiphobic” Aligned Carbon NanotubeFilms [J]. Angewandte Chemie International Edition,2001,40(9):1743-6.
    [101] Yabu H, Takebayashi M, Tanaka M, et al. Superhydrophobic and lipophobicproperties of self-organized honeycomb and pincushion structures [J]. Langmuir,2005,21(8):3235-7.
    [102]晏良宏,蒋晓东,江波等.利用氟硅烷提高溶胶-凝胶SiO2增透膜的疏水性[J].强激光与粒子束,2007,19(8):1313-6.
    [103] Jasra R, Bhat S. Adsorptive bulk separations by zeolite molecular sieves [J].Separation Science and Technology,1988,23(10-11):945-89.
    [104] Funke H H, Frender K R, Green K M, et al. Influence of adsorbed molecules onthe permeation properties of silicalite membranes [J]. Journal of MembraneScience,1997,129(1):77-82.
    [105] Burggraaf A J, Vroon Z a E P, Keizer K, et al. Permeation of single gases inthin zeolite MFI membranes [J]. Journal of Membrane Science,1998,144(1-2):77-86.
    [106] Coronas J, Noble R, Falconer J. Separations of C4and C6isomers in ZSM-5tubular membranes [J]. Ind Eng Chem Res,1998,37(1):166-76.
    [107] Vroon Z a E P, Keizer K, Burggraaf A J, et al. Preparation and characterizationof thin zeolite MFI membranes on porous supports [J]. Journal of MembraneScience,1998,144(1-2):65-76.
    [108] Burggraaf A J. Single gas permeation of thin zeolite (MFI) membranes: theoryand analysis of experimental observations [J]. Journal of Membrane Science,1999,155(1):45-65.
    [109] Poshusta J C, Noble R D, Falconer J L. Temperature and pressure effects onCO2and CH4permeation through MFI zeolite membranes [J]. Journal ofMembrane Science,1999,160(1):115-25.
    [110] Takata Y, Tsuru T, Yoshioka T, et al. Gas permeation properties of MFI zeolitemembranes prepared by the secondary growth of colloidal silicalite andapplication to the methylation of toluene [J]. Microporous and MesoporousMaterials,2002,54(3):257-68.
    [111] Algieri C, Bernardo P, Golemme G, et al. Permeation properties of a thinsilicalite-1(MFI) membrane [J]. Journal of Membrane Science,2003,222(1-2):181-90.
    [112] Jareman F, Hedlund J, Creaser D, et al. Modelling of single gas permeation inreal MFI membranes [J]. Journal of Membrane Science,2004,236(1-2):81-9.
    [113] Xu X, Bao Y, Song C, et al. Synthesis, characterization and single gaspermeation properties of NaA zeolite membrane [J]. Journal of MembraneScience,2005,249(1-2):51-64.
    [114] Takaba H, Yamamoto A, Nakao S-I. Modeling of methane permeation througha defective region in MFI-type zeolite membranes [J]. Desalination,2006,192(1-3):82-90.
    [115] Gardner T Q, Martinek J G, Falconer J L, et al. Enhanced flux throughdouble-sided zeolite membranes [J]. Journal of Membrane Science,2007,304(1-2):112-7.
    [116] O'brien-Abraham J, Kanezashi M, Lin Y S. A comparative study on permeationand mechanical properties of random and oriented MFI-type zeolite membranes[J]. Microporous and Mesoporous Materials,2007,105(1-2):140-8.
    [117] Yu M, Falconer J L, Noble R D, et al. Modeling transient permeation of polarorganic mixtures through a MFI zeolite membrane using the Maxwell-Stefanequations [J]. Journal of Membrane Science,2007,293(1-2):167-73.
    [118] Wohlrab S, Meyer T, St hr M, et al. On the performance of customized MFImembranes for the separation of n-butane from methane [J]. Journal ofMembrane Science,2011,369(1):96-104.
    [119]王喜庆,宋茂莹,余辉等. MFI型沸石晶体的择优定向生长[J].化学学报,2001,59(9):1527-9.
    [120] Lovallo M C, Tsapatsis M. Preferentially oriented submicron silicalitemembranes [J]. AIChE journal,1996,42(11):3020-9.
    [121] Zhang B, Wang C, Lang L, et al. Selective Defect Patching of ZeoliteMembranes Using Chemical Liquid Deposition at Organic/Aqueous Interfaces[J]. Advanced Functional Materials,2008,18(21):3434-43.
    [122] Guo H, Zhu G, Li H, et al. Hierarchical Growth of Large Scale Ordered ZeoliteSilicalite1Membranes with High Permeability and Selectivity for RecyclingCO2[J]. Angewandte Chemie,2006,118(42):7211-4.
    [123]郭海玲.分子筛膜和金属有机框架膜的合成及应用[D].长春;吉林大学,2009.
    [124] Gardner T Q, Lee J B, Noble R D, et al. Adsorption and diffusion properties ofbutanes in ZSM-5zeolite membranes [J]. Industrial&Engineering ChemistryResearch,2002,41(16):4094-105.
    [125]徐如人,庞文琴.分子筛与多孔材料化学[M].北京:科学出版社,2004.
    [126]高滋.沸石催化与分离技术[M].中国石化出版社,1999.
    [127]刘鸿洲.催化热裂解催化材料的探索及相应微反评价装置的建立[D].北京;石油化工科学研究院;石油化工科学研究院,2000.
    [128] Wielers A, Vaarkamp M, Post M. Relation between properties and performanceof zeolites in paraffin cracking [J]. Journal of catalysis,1991,127(1):51-66.
    [129]苏建明,刘文波,刘剑利等.高硅铝比ZSM-5分子筛的合成及催化裂化性能研究[J].石油炼制与化工,2004,35(4):18-22.
    [130] Tseng-Chang T, Hsiang-Yun K, Shih-Tsung Y, et al. Effects of acid strength offluid cracking catalysts on resid cracking operation [J]. Applied Catalysis,1989,50(1):1-13.
    [131] Corma A, Orchilles A. Formation of products responsible for motor andresearch octane of gasolines produced by cracking:: The implication offramework Si/Al ratio and operation variables [J]. Journal of catalysis,1989,115(2):551-66.
    [132] Peters T, Van Der Tuin J, Houssin C, et al. Preparation of zeolite-coatedpervaporation membranes for the integration of reaction and separation [J].Catalysis Today,2005,104(2-4):288-95.
    [133] Abbot J, Guerzoni F. Roles of Br nsted and Lewis sites during cracking ofn-octane on H-mordenite [J]. Applied Catalysis A: General,1992,85(2):173-88.
    [134] Li S, Zheng A, Su Y, et al. Br nsted/Lewis Acid Synergy in Dealuminated HYZeolite: A Combined Solid-State NMR and Theoretical Calculation Study [J].Journal of the American Chemical Society,2007,129(36):11161-71.
    [135] Simon U, Flesch U, Maunz W, et al. The effect of NH3on the ionicconductivity of dehydrated zeolites Nabeta and Hbeta [J]. Microporous andMesoporous Materials,1998,21(1-3):111-6.
    [136] Osada M, Sasaki I, Nishioka M, et al. Synthesis of a faujasite thin layer and itsapplication for SO2sensing at elevated temperatures [J]. Microporous andMesoporous Materials,1998,23(5-6):287-94.
    [137] Beving D, O'neill C, Yan Y. Corrosion resistant high-silica-zeolite MFI coatings[J]. Studies in surface science and catalysis,2007,170,1629-34.
    [138] Chen G, Beving D E, Bedi R S, et al. Initial Bacterial Deposition on Bare andZeolite-Coated Aluminum Alloy and Stainless Steel [J]. Langmuir,2009,25(3):1620-6.
    [139] Cai R, Sun M, Chen Z, et al. Ionothermal Synthesis of Oriented Zeolite AELFilms and Their Application as Corrosion-Resistant Coatings [J]. AngewandteChemie International Edition,2008,47,525-8.
    [140] Beving D E, Mcdonnell A M P, Yang W, et al. Corrosion ResistantHigh-Silica-Zeolite MFI Coating [J]. Journal of the Electrochemical Society,2006,153, B325.
    [141] Munoz R, Beving D, Mao Y, et al. Zeolite Y coatings on Al-2024-T3substrateby a three-step synthesis method [J]. Microporous and Mesoporous Materials,2005,86,243-8.
    [142] Holmberg B A, Hwang S-J, Davis M E, et al. Synthesis and proton conductivityof sulfonic acid functionalized zeolite BEA nanocrystals [J]. Microporous andMesoporous Materials,2005,80,347-56.
    [143]Cai R, Yan Y S. Corrosion-resistant zeolite coatings [J]. Corrosion2008,64(3):271-278.
    [144] Caro J, Noack M. Zeolite Membranes-Status and Prospective [M]//STEFAN E.Advances in Nanoporous Materials. Elsevier.2010:1-96.
    [145]杨赞中,许珂敬,田贵山.支撑沸石分子筛膜的研究进展[J].人工晶体学报,2007,36(3):601-7.
    [146] Haiyang J, Baoquan Z, Lin Y S, et al. Synthesis of zeolite membranes [J].Chinese Science Bulletin,2004,49(24):254754.
    [147]李永生,王金渠,郭树才.沸石膜的合成最新进展[J].能工进曩,2001,(2):42-47.
    [148]郭伟. ZSM-5分子筛型催化剂涂层的制备及在可控吸热反应中应用[D].天津;天津大学,2009.
    [149]赵杰.二次生长ZSM-5膜及其超临界催化裂解正十二烷初步研究[D].Tianjin; Tianjin University,2008.
    [150] Lew C M, Cai R, Yan Y. Zeolite Thin Films: From Computer Chips to SpaceStations [J]. Accounts of chemical research,2009,43(2):210-9.
    [151] Dong Y, Peng Y, Wang G, et al. Corrosion-resistant zeolite silicalite-1coatingssynthesized by seeded growth [J]. Industrial&Engineering ChemistryResearch,2012,51(9),3646–3652.
    [152] Li Z, Johnson M C, Sun M, et al. Mechanical and Dielectric Properties ofPure‐S ilica‐Zeolite Low‐k Materials [J]. Angewandte Chemie InternationalEdition,2006,45(38):6329-32.
    [153]李庆宁.以1,6-己二胺合成高硅ZSM—5沸石的研究[J].精细石油化工文摘,1999,(5):28-33.
    [154] Geus E, Van Bekkum H. Calcination of large MFI-type single crystals, Part2:Crack formation and thermomechanical properties in view of the preparation ofzeolite membranes [J]. Zeolites,1995,15(4):333-41.
    [155] Gao X, Yeh C Y, Angevine P. Mechanistic study of organic template removalfrom ZSM-5precursors [J]. Microporous and Mesoporous Materials,2004,70(1-3):27-35.
    [156]梁治齐,陈溥.氟表面活性剂[M].中国轻工业出版社,1998.
    [157]吴克安,曹成波.有机氟皮革防水防油剂[J].皮革科学与工程,2002,12(5):33-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700