铝-水电化学制氢体系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文在前人研究铝-水电池的基础上,采用新颖、独特的设计思路,制造出的一种新型铝-水电化学制氢体系,该体系主要由铝合金电极、析氢电极、中性电解液、反应容器、储液槽、电解液循环系统、氢气流量控制系统等构成。该体系的最大特点,在于它在向负载输出电能的同时,还可输出高纯氢气,实现电能与氢能的共生;在反应过程中仅消耗铝合金电极和水,体系产生的唯一副产品为Al(OH)3,回收风干后为氧化铝。因而,该体系是一种全新概念的高效、清洁、安全、廉价的环保型能量储存及释放体系。
    在本设计中,采用了从反应器底部进电解液、上部溢流的方法,及时的排出了反应过程中产生的沉淀,成功的解决了Al(OH)3沉淀在反应器内絮凝、沉淀的问题。在回收Al(OH)3方面,本系统采用了独特的设计,使Al(OH)3沉淀能顺利的富积并能随时从整个体系中排出,从而使电池大功率、长时间工作成为可能。根据设计制造出铝-水电化学制氢体系试运行180min,体系运行状态一直良好,开路电压可以达到19.8V,最大短路电流可达到7.8A,并且可在出氢速率大于1.0L/min的同时,以0.45V的电压和7.5A的恒电流向外界供电。
    同时,本论文还就热处理对铝合金电极电化学性能的影响进行了研究。在实验中,采用了退火、回火等热处理工艺对铝合金电极进行了改性。结果表明:铝合金在高温加热时,处于晶界的第二相会由于固溶作用而进入铝晶格中形成固溶体,降低了晶界处第二相的含量;与未经处理的铝合金相比,经过退火、回火的铝合金电极,其电化学活性增大的同时化学反应腐蚀速率大大降低,改善了铝合金电极的电化学性能。
In this paper, a new type of aluminium-water hydrogen generator system is fabricated. This system is mainly composed of aluminum alloy anodes, hydrogen-evolution electrodes, neutral electrolyte, reactor, electrolyte storage tank, deposition collector, electrolyte recycling system and the hydrogen flux controlling system. The system is characterized by its capability of producing high purest hydrogen at the same time of electricity output. The reacting process only coat aluminum alloy anodes and water, and the byproduct is Al(OH)3 which becomes alumina after recycle and dehydration. Therefore, this system is totally new conceptional environmental energy storage and discharge system with high efficiency, clearness safety and low cost.
    In this design, we use the way of the electrolyte flow in through the bottom of reactor and overfall at the top of reactor to discharge the deposition at the process of reaction. Thus, we successfully solve the problem of the flocculation and deposition of Al(OH)3 in the reactor. As to the recycle of Al(OH)3 , electrolyte storage tank with funnelform bottom is adopted to enrich Al(OH)3 deposition in the deposition collector which is under the storage tank. and discharge the Al(OH)3 deposition timely and conveniently. In this case, it is possible for the aluminium-water hydrogen storages battery to work at high-power with long life.
    At the same time, the effect of heat treatment on the electrochemical properties of aluminium alloy electrodes is studied. In the experiment, the quenching and anneal are used to modify the aluminium alloy anodes. The result show that under the solution treatment, the crystal boundary of aluminium alloy enter the aluminium crystal lattice and decrease the content of the second phase between crystal boundary when the aluminium alloy is heated at high temperature. After those treatments the electrochemical activation is improved and the chemical corrosion is decreased.
引文
[1] 任南琪,李建政,生物制氢技术,太阳能,2003(2):2~4
    [2] 周未,王金全,制氢技术发展概况,贵州化工,2003,28(1):5~9
    [3] Winter C J. Niisch J. Eds, Hydrogen as an Energy Carrier Technology Vol 1.Boca Raton.CRC Press 1986
    [4] 曲钧娥,齐公台.铝阳极电流效率的影响因素.中国海上油气(工程).2001,13(5):11~13
    [5] 王兆文,李延祥,李庆峰等,铝电池阳极材料的开发与应用,有色金属,2002,54(1):19~22
    [6] D.M.DRAZIC, S.K.ZECEVIC, R.T.ATANASOSKI, et al, The Effect of Anions on the Electrochemical Behavior of Aluminium, Electrochemical Acta. 1983, 28(5):751~755.
    [7] L.F.Lin, C.Y.Chao, and D.D.Machdonald, A Point Defect Model for Anodic Passive Films, J.Electrochem. Soc. 1981, 128(6):1194.
    [8] M.Kliskic, J.Radosevic, S.Gudic, et al, Cathodic polarization of Al~Sn alloy in sodium chloride solution, Electrochimica Acta, 1998, 43(21~22):3241~3255.
    [9] A.R.DESPIC, D.M.DRAZIC, M.M.PURENOVIC, et al, Electrochemical properties of aluminium alloys containing indium, gallium and thallium, J. Appl. Electrochem., 1976, 6:527~542.
    [10] WERNER BOHNSTEDT, The influence of electrolyte additives on the anodic dissolution of aluminium in alkaline solution, J.Power.Sources, 1980, 5:245~253.
    [11] M.C.REBOUL, M.C.DELATTE, Activation Mechanism for Sacrificial Al~Zn Hg Anodes, Materials Performance, 1980, 19(5):35~40.
    [12] M.C.REBOUL, PH.GIMENEZ, J.J.RAMEAU, A proposed activation mechanism for Al anodes, Corrosion, 1984, 40:366~371.
    [13] 齐公台,郭稚弧,张华民等,铝合金牺牲阳极金相组织与电化学性能关系研究,腐蚀与防护技术,1997,9(3),231~235
    [14] Rohman, Al~Zn~Hg alloy, U.S.A, 27558082, 1952
    [15] Radot, aluminum sacrificial anode, U.S.A, 1217051, 1958
    [16] Radot, aluminum sacrificial anode, U.S.A 1222717, 1959
    [17] J.T.Reding and J.J.Newport, Al alloy, Mater.Prot, 1966(5):15
    [18] 唐和清,铝合金牺牲阳极的研究与应用,化工腐蚀与防护, 1990, 18(1):1~9
    [19] 许刚,曹楚南,林海潮,阴离子对铝电极电化学行为的影响,中国腐蚀与防护学报,1998,18(3):209~213
    
    [20] A.R.DESPIC, D.M.DRAZIC, M.M.PURENOVIC, et al, Electrochemical properties of aluminium alloys containing indium, gallium and thallium, J. Appl. Electrochem., 1976, 6:527~542.
    [21] 许刚,林海潮,张鉴清等,溶液中添加In3+对铝电极负差数效应的影响,腐蚀科学与防护技术,1997,9(4):271~275
    [22] M.Kliskic, J.Radosevic, S.Gudic, et al, Catholics polarization of Al~Sn alloy in sodium chloride solution, Electrochemical Acta, 1998, 43(21~22):3241~3255
    [23] P.M.Natishan, E.McCafferty, and G.K.Hubler, The Effect of Zero Charge on the Pitting Potential, J.Electrochem.Soc. 1986, 133(5):1061~1062.
    [24] Carroll W M, Breslin C.B., Activation of aluminium in halide solution containing Activator ions’, Corros. Sci., 1992, 33(7):1161~1177.
    [25] 李振亚,余远彬,秦学等,铝-水电池的研究,电源技术,1997,21(1):11~14
    [26] 李振亚,王为,电化学铝-水储氢、制氢的方法及设备,中国,发明专利,02148850.9,2003.05.14
    [27] Shen, P.K., Tseung A C C. Development of on aluminium/sea water battery for subsea applications. Journal of Power Sources, 1994(47):119~127
    [28] Shen,P.K.,Tseung A C C. Design of a dome shaped Al/H2O battery, J of Applied Electrochemistry ,1994;24:145~148
    [29] Dow, E.G., The development of aluminium aqueous batteries torpedo propulsion: prototype development of a replenishment electrolyte management system for activation and control of a pile configured battery cartridge. Battery Conference on Applications and Advance, 1996, 11:61~66
    [30] 刘稚惠,李振亚,王泉等,船用大功率静止中性电解液铝-空气电池组的研究,电源技术,1993,6:7~10
    [31] 刘稚惠,李振亚,静止电解液中性铝-空气电池设计,电源技术,1992(5):6~8
    [32] Despic A R and Milanovic P D. Aluminium-air battery for electric vehicles. Rec Trav Inst Sciences Techniques Academic Serial Sciences Arts, 1979 12(1):1~18
    [33] Cooper J F. Preliminary design and analysis of aluminium-air cells providing for continuous feed and full utilization of anodes. UCID-19178.1981, 8, 16
    [34] Valand T, Mollstad O and Nilsson G. Aluminium-Air Cells-Potential Small Electric Generators for Filed Use Power sources symp, Brighton, England, 1980.10
    [35] 李庆华,邱竹贤,铝-电池的开发与应用进展,东北大学学报(自然科学版),2001,22(2):130~132
    [36] 金相图谱编写组,变形铝合金金相图谱,北京,冶金工业出版社,1975
    
    
    [37] 屈钧娥,齐公台,张磊,温度对Al-Zn-In-Sn-Mg阳极性能影响的探讨,华中科技大学学报,2001,29(8):102~104
    [38] 秦学,李振亚,铝合金阳极活化机理研究进展,电源技术,2000.24(1):53~56
    [39] 许文江,王向东,阚素荣等,铝/空气电池用铝阳极的研究,稀有金属,1999,23(5):366~369
    [40] Li, Q.; Qiu, Z. Advances in development and application of aluminium batteries, Journal of Northeastern University, 2001, 22(2):130-132
    [41] 王龙彪,吴俊,黄清安等,电沉积 Ni-W-P 合金上析氢行为的研究,材料保护,2000,33(2):1~2
    [42] Burchardt. Trygve Hydrogen evolution reaction on NiPx alloys.International Journal of Hydrogen Energy,2000,25(7):627-634
    [43] A. H. 弗鲁霍姆金等,朱荣昭等译,电机过程动力学,北京:科学出版社1957.45
    [44] Frumkin, A. N., Adv. Electrochem and Electrochem Engineering. 1961(3),65~122
    [45] 荆日福,适用于住宅的新型铜铝散热器,山西建筑,2003,29(4):143~144
    [46] 李平,新型铝塑复合散热器,建材工业信息,2003(2):24~24
    [47] 牟灵泉,宋为民,梁定铿,新编及修编供暖散热器标准介绍,暖通空调,2003,33(1):26~28
    [48] 陈奇海,曹立荣,一种新型的铝铜复合散热器的制造,电子工艺技术,2003,24(2):83~84
    [49] 陈树芸,带有肋形散热器的电子设备强迫风冷设计,电光系统,2003(1):56~61
    [50] 刘永光,化工开发实验技术,天津:天津大学出版社,1993.26~27
    [51] 王自和,范砧,气体流量标准装置,北京:中国计量出版社,1994.
    [52] 查全性等,电极过程动力学导论(第三版),北京:科学出版社,2002.236~287
    [53] 王振波,尹鸽平,史鹏飞,铝电池用合金阳极的研究进展,电池,2003,33(2):41~43
    [54] Elshayeb H A, Abd EI, Wshab F M, et al. Role of indium ions on the activation of aluminium. J Applied Electrochemistry, 1999,29:601-609
    [55] REN Xue-you(任学佑),铝/空电池发展(上),Battery Bi-Monthly(电池),1994,24(6):284~286
    [56] 汪振道,王晓黎,田芸,海水铝—空气燃料电池,电源技术,1997,21(3):106~113
    
    
    [57] 柴诚敬,张国亮,化工流体流动与传热,北京:化学工业出版社,2001:10~210
    [58] 天津大学化工技术基础实验教研室,化工基础实验技术,天津:天津大学出版社,1989
    [59] 叶淬,电工电子技术,北京:化学工业出版社教材出版中心,2000
    [60] 吴建强,电工学,北京:机械工业出版社,2003
    [61] [美]萨尔塔杰·萨尼等著,周丽琴,孔芳等译,C语言软件开发教程,北京:中国水利水电出版社,2003.7
    [62] 李培金,C语言程序设计案例教程,西安:西安电子科技大学出版社,2003.7:46~70
    [63] 周爱月,化工数学,北京:化学工业出版社,2000:16~187
    [64] 化工系统高校数学协作组,工程数学·线性代数,北京:中国计量出版社,1992.6
    [65] 朱中南,戴迎春,化工数据处理与实验设计,北京:烃加工出版社,1989:163~179
    [66] 潘亚明,朱鹤孙,化学与化工中的数学方法,北京:北京理工大学出版社,1993
    [67] 杭州大学化学系分析化学教研室,分析化学手册 第三分册 电化学分析与光学分析,北京:化学工业出版社,1983
    [68] 涂淑凤,李前谋,化工热力学,广州:华南理工大学出版社,1992
    [69] 吕明祥,化学电源,天津,天津大学出版社,1990
    [70] 郭鹤桐,应用电化学教程,天津,天津大学出版社,1999
    [71] 天津大学无机化学教研室,无机化学(第二版),上册,高等教育出版社,北京:1994
    [72] 杨显万,高温水溶液热力学数据计算手册,北京:冶金工业出版社,1983
    [73] 珊瑚化工厂,有机玻璃,及同类聚合物,,上海:上海人民出版社,1975
    [74] (苏)尤·姆·塔诺波尔斯基等著,张国梁译,复合材料静载性能试验方法,北京航空工业出版社,1988
    [75] 夏华成,周勃,王严力,有机玻璃热改性的研究,沈阳建筑工程学院学报:自然科学版,2003,19(2):140~142
    [76] 董绍胜,魏月贞,耐热有机玻璃的研制,高分子材料科学与工程,2000,16(1):173~175
    [77] 杨瑞芹,陈尔凡,提高有机玻璃耐热性的研究进展,塑料,1999,28(1):14~18
    [78] 肖莉,有机玻璃材料中内应力对零件质量的影响及消除措施,江南航天科技,1998(4):62~65
    [79] 陶公德,有机玻璃制孔的研究,西飞科技,1996(3):36~41
    
    [80] 韦安邦,有机玻璃注塑成型,特区科技,1993(2):8~9
    [81] Lee, C.-F. The properties of core–shell composite polymer latex. Effect of heating on the morphology and physical properties of PMMA/PS core–shell composite latex and the polymer blends, Polymer,2000,41(4):1337-1344
    [82] Zheng, X.L.; Wang, H.; Yan, J.H. Notch strength and notch sensitivity of polyethylene methacrylate glasses, Materials Science and Engineering: A , 2003,349(1-2),:80-88
    [83] 刘道德,化工设备的选择与工艺设计,长沙:中南工业大学出版社,2003
    [84] 亢文祥,徐磊,王兆华,内燃机车散热器散热面积与冷却风扇功率的匹配,内燃机车,2003(5):12~14
    [85] 孙国强,论供暖系统的设计热负荷及散热器的散热过程,经济技术协作信息,2003(10):62~62
    [86] Zheng, Wenge; Wong, Shing-Chung; Sue, Hung-Jue, Transport behavior of PMMA/expanded graphite nanocomposites, Polymer, 2002,43(25): 6767-6773
    [87] 阎利,黄承亚,王绍东,有机玻璃增韧改性的研究进展,中国塑料,2001,15(11):10~14
    [88] 查全性等,电极过程动力学导论(第三版),北京:科学出版社,2002.236~287

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700