三乙胺法冷芯盒制芯工艺影响因素的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三乙胺法冷芯盒制芯工艺具有高效、节能、铸件表面质量好、尺寸精度高、砂芯溃散性好等优点,广泛应用于汽车、内燃机、拖拉机、工程机械、机车车辆、制泵等行业。但是,国内的一些企业在生产过程中存在如树脂加入量偏高、砂芯强度偏低、存放性差等问题,致使铸件废品率偏高。因此,对这些问题进一步的探讨和研究,可为三乙胺冷芯盒制芯工艺优化、提高砂芯性能和降低生产成本提供技术支持,具有重要的现实意义。
     本文结合东风汽车有限公司商用车铸造一厂(以下简称:铸造一厂)三乙胺法冷芯盒制芯车间的生产实际,分析了该厂目前树脂用量偏高和制芯效率低的原因,研究工艺条件对三乙胺法冷芯盒砂芯性能的影响,并提出了三乙胺法冷芯盒制芯工艺的改进措施,取得了如下研究成果。
     通过对铸造一厂三乙胺法冷芯盒制芯工艺的原材料质量和生产流程的分析发现,原砂水分偏高和压缩空气含水量较高是造成树脂用量偏高的主要原因。
     研究了树脂加入量对砂芯性能的影响。结果表明,随着树脂加入量的增加,砂芯的初始强度和24h终强度增加,砂芯发气量也相应增大。在树脂加入量为1.8%时,当组分Ⅰ与组分Ⅱ之比在50:50时,砂芯24h终强度达到最大值,在55:45时砂芯的初始强度达到最大值。组分Ⅰ与组分Ⅱ之比在50:50~55:45之间的比例,砂芯的抗拉强度的稳定性较好。
     研究水基涂料、环境湿度和温度对砂芯强度和砂芯断裂的影响。结果表明,水基涂料使砂芯24h终强度显著下降,下降幅度随树脂加入量的增加而减少;砂芯存放1~6h后浸涂的强度低于即时浸涂的强度和24h浸涂的强度。在常温高湿环境下,随着砂芯存放时间的延长,砂芯强度出现显著的下降;在40℃、RH100%的环境下,砂芯的强度在5h达到最大值,随后砂芯的强度随放置时间的延长迅速下降。在常温低湿环境下,树脂粘结桥断口为以内聚断裂为主的复合断裂,而常温高湿环境里存放的砂芯,水分使树脂粘结桥出现裂纹、砂芯呈附着断裂。
     基于上述研究结果,针对铸造一厂的降低树脂用量和提高制芯效率的目标,从原砂水分、混砂工艺、空气干燥器、浸涂料与烘烤、工艺与工装参数、砂芯仓储等几个方面提出了相应的改进措施。
Tri-ethylamine Cold Box Core-making Process, with the features of more efficiency, energy saving, good casting surface quality, accurate dimension, good core collapsibility, has been widely used in automobiles, internal combustion engines, tractor, engineering machinery, rolling stock, brake pump. However, the high usage amount of resin, low performance and bad storage of sand core lead to the high scrap rate in production process of some Foundry Enterprise. Therefore, further studies on these problems can provide technical support for optimization of Tri-ethylamine Cold Box Core-making Process, enhancing sand core performance and reducing production cost, which have important realistic significance.
     In this paper, combining the production practice of No.1 Foundry Plant, Dongfeng motor Co., Ltd (hereinafter called: No.1 Foundry Plant), reasons for the high usage amount of resin and low efficiency of core-making were analyzed. Furthermore, effects of process conditions for sand core performance of Tri-ethylamine Cold Box based on actual production were studied. Finally, several improvement measures of ISOCURE of No.1 Foundry Plant were proposed, and the results achieved are as follows.
     Through analyzing quality of raw materials and production process of Tri-ethylamine Cold Box Core-making of No.1 Foundry Plant, high water content of the raw sand and the compressed air is identified as the main reason for high usage amount of resin.
     The effect of the amount of added resin on sand core performance was studied. The results showed that the initial strength and the 24h final strength of sand core increased with the increase of amount of addition of resin, the gas evolution indicate the same variation tendency. When the amount of added resin is 1.8%, he 24h final strength reach the maximum at the ratio of two components is 50:50, and the initial strength reaches its maximum at the ratio of 55:45. It is also can be seen that the tensile strength of sand core has good stability when the ratio is between 50:50 and 55:45.
     And then, research of water-based paint, environmental humidity and temperature on strength and fracture of sand core were also explored. The results showed that the water-based paint made the 24h final strength decrease significantly, but the decline rate decreased with the increase amount of added resin; the strength of core painted during storage time 1-6h was lower than that of immediate painted core and painted after storage 24h. In the environment of room temperature and high humidity, the core strength decreased significantly due to high humidity with the extension of storage time. In the environment of 40℃and RH100%, the sand core reaches its maximum strength within 5h, and then the strength declined rapidly with the extension of storage time. The resin binding bridge showed cohesive-fracture-dominated compound fracture in the environment of room temperature and low humidity, While, the resin binding bridge showed the adhesive fracture because of moisture-induced cracks in high humidity environment.
     Based on these, several improvements for the raw water content, sand mulling, compressed air dryer, dip coating and heating, process and tooling parameters and sand core storage have been proposed to reduce the usage amount of resin and increase efficiency of core-making.
引文
[1]吉祖明.我国冷芯盒制芯(型)技术的现状及其发展前景.柴油机设计与制造, 1994, (4): 40~43.
    [2]张俊德,冀守勋,马万幸等.冷芯盒工艺的现状与发展前景.现代铸铁, 1994, (2): 32~36.
    [3]魏结练,李远才,王文清等.胺法冷芯盒粘结剂性能的研究.造型材料, 2001, (1): 15~19.
    [4]顾炳章.对冷芯盒制芯工艺在我国铸造业中发展前景的探讨.柴油机设计与制造, 1996, (2): 21~29.
    [5] M.Hurme, M.Dohnal, M.Jarvelalnen. Qualitative decision support system for cold box operation. Computers&Chemical Engineering, 1994, 1(18):541~545.
    [6] J.T.Schneider. A Two-part Chemically Curing Core and Mold Adhesive System. AFS Trans, 1986, (2): 291~296.
    [7]胡彭生.型砂.第二版.上海科技技术出版社, 1980.
    [8] A.D.Busby. Recent Developments in Binder Technology. The Foundry man, 1993, (9): 324~328.
    [9] Nanyu H, Jirong L, etc. Defects in Phenol-Formaldehyde Precoated Sand Cores and Molds. AFS Trans, 1992, (725): 732~739.
    [10] Hoyt D, Sturtz G, etc. The Effects of Iron Oxide Additions on Core Properties and Casting Quality . Modern Casting, 1982, (10): 29~32.
    [11] Sanders C.A. The Use and Value of Iron Oxide. Modern Casting, 1971, (3): 61~63.
    [12]吉祖明,翟芝碧,余强.三乙胺冷芯高温性能试验研究.柴油机设计及制造, 2001, (4): 29~32.
    [13]中国机械工程学会铸造分会.铸造手册·造型材料.第二版.北京:机械工业出版社, 2002.
    [14]章九清.胺法冷芯盒树脂砂造芯工艺的研究及应用(1).现代铸铁, 1998, (4): 50~55.
    [15]邹化仲.三乙胺法冷芯盒制芯工艺的应用及探讨.汽车工艺与材料, 1997, (1): 14~16.
    [16] British. Patent. NO.1190644.
    [17]丁能读.国外气体硬化制芯(型)技术的新发展.造型材料, 1987, (1): 23~26.
    [18]孟爽芬,王思刚.三乙胺及SO2冷芯盒树脂砂性能及使用情况的比较.造型材料, 1986, (3): 27~31.
    [19]张致洵,蒋桂英,田敏.三乙胺法在铸钢配件生产中的应用和研究.造型材料, 1984, (2): 21~25.
    [20] C.K.Johnson, D.R.Armbruster, R.C.Cooke. Developments in Phenolic Ester Cured Cold Box Technology. AFS Trans, 1988, (2): 581~584.
    [21] P.H.Lemon, M.Stevenson. Principles and Practice of the Alphaset Cold-Setting Process. BCIRA Conference Warwick University, 1984, (4):209~218.
    [22] D.Boenish. Das Coldbox-plus-verfahren. Giesserei, 1989, 76(2): 35~41.
    [23] D.Boenish. Die Festig Keit Von Cold-Box-Formteilen. Giesserei, 1984,71(5): 187~196.
    [24] H.Heckers. Defects of Cold box sand core and its prevent. Foundrary, 1986, (10):56.
    [25]吴浚郊.试论我国砂型铸造设备发展战略.铸造, 1999,增刊: 52~55.
    [26] Asland化学公司.工装设计亚什兰冷芯盒工艺. 1986.
    [27] Asland化学公司.亚什兰冷芯盒工艺. 1986.
    [28]刘增华,商联华.用冷芯盒工艺的几点体会.铸造, 1991, (5): 27~36.
    [29]王文清.国内外树脂砂现状及努力方向.铸造, 1998, (1): 15~19.
    [30]张翼飞,吴浚郊.采用圆片试样分析工艺参数对冷芯盒砂芯强度的影响.铸造工程, 2000, (1): 17~19.
    [31]徐杰,章九清.顶射式垂直分型冷芯盒制芯机在生产中应用.柴油机设计与制造, 2004, (4): 45~47.
    [32]齐亚平,李克强,韩志濂.三乙胺冷芯盒制芯工艺的应用与探索.中国铸造装备与技术, 2006, (3): 66~68.
    [33]朱文英,华静燕.冷芯盒树脂砂应用技术研究.铸造工程, 2009, (1): 2~6.
    [34]吴殿杰,韩清江.三乙胺法冷芯盒造芯设备及操作.中国铸造装备与技术, 1997, (2): 27~30.
    [35]童乃安,朱能山.冷芯盒制芯工艺在4JR3缸体上的应用.现代铸铁, 2006, (3): 62~67.
    [36]杨清林,刘永安.胺法冷芯盒制芯工艺中的影响因素.中国铸造装备与技术, 2003, (6): 42~45.
    [37] H. Lemon. Why choose a cold-box process. Foundry Trade Journal. 1985, 158(3318):505~511.
    [38] Langer Heimo J, Dunnavant W.R. New cold box process is developed. Foundry M&T, 1982,2(110):63~69.
    [39]刘琦,万仁芳,黄天佑.高湿环境下冷芯盒制芯工艺的优化及其在轿车铸件生产中的应用.铸造, 1999, (6): 31~34.
    [40]吉祖明.胺法冷芯盒制芯车间的工艺设计.铸造设备研究, 1993, (5): 17~22.
    [41] H. Heckers. Experience on Cold Box Core-making Process. Foundry Trade Journal, 1986, 152(3237):630~637.
    [42]陈学细.铸造用植物油沥青粘结剂的研究现状.化学工程与装备, 2007, (6):73~78.
    [43]吉祖明.胺法冷芯盒制芯工艺的应用与探讨.柴油机设计与操作, 1993, (3): 36~42.
    [44]朱玉龙,蔡震升.原砂粒度对树脂砂强度影响的分析.铸造, 1996, (12): 35~36.
    [45] Sanders C.A, Doelman R.L. A Review of Sand Surface Area Relationshif. AFS Trans, 1968, (76): 85~91.
    [46]孙颢,刘国平.树脂砂原砂粒度对强度的影响.机车车辆工艺, 1998, (3): 7~9.
    [47]汪存萦,张芳,孙燕明.原砂的粒形与树脂砂强度相关关系的研究.铸造, 1986, (5): 60~64.
    [48]杨晶,李欧卿,程军. PEPSET树脂用量和型砂强度关系的数学模型.铸造, 1997, (2): 13~16.
    [49]周标,金晓红,吴浚郊.冷芯盒制芯工艺对砂芯性能影响的研究.中国铸造设备与技术, 1999, (2): 15~17.
    [50]章九清.略述胺法冷芯盒树脂砂原辅材料的选用与工艺性能的影响.柴油机设计与制造, 1995, (2): 55~58.
    [51]高洪学. SVA60L冷芯盒射芯机.中国铸造设备与技术, 1998, (3): 32~34.
    [52]董文波,周杰,江贤波.用于缸体缸盖生产的三乙胺法冷芯盒制芯工艺研究.铸造, 2008, 57(3): 266~269.
    [53]刘敏歆,吕新华,邹化仲等.原砂温度及湿度对冷芯盒法砂芯强度的影响.铸造, 1994, (11): 5~9.
    [54]刘玉田.三乙胺法冷芯盒制芯工艺的应用.中国铸造装备与技术, 2001, (4): 26~28.
    [55]陈代海,王涛,魏结练等.三乙胺气硬冷芯盒法工艺研究.造型材料, 2000, (4): 13~15.
    [56]陈代海,王涛,魏结练等.冷芯盒树脂可使用时间和抗湿性的研究.造型材料, 2001, (2): 14~16.
    [57]叶天汉,黄光伟,韦民等.胺法冷芯盒制芯工艺研究.装备制造技术, 2008, (4): 13~14.
    [58]吕新华,李墨林,陈汝淑.水基涂料对冷芯盒法砂芯强度影响的研究.中国铸造装备与技术, 1998, (3): 19~21.
    [59]刘敏歆,肖殿照,吕新华等.冷芯盒法砂芯的高温力学性能.大连铁道学院学报, 1992, 13(3): 61~65.
    [60] Laitar R, Johnson C.K. High Hot Strength Phenolic Urethane Cold Box System. AFS Trans, 1986, (94): 187~194.
    [61]张永年,东野英.弱界面层对树脂砂粘结桥附着力的影响机理研究.天津大学学报, 1987, (4): 95~102.
    [62] G.S.Lukacek. Humidity-Its Effect on No bake Binders. AFS Trans, 1983, (6):84~91.
    [63] Gesner B.D. Polymer Stabilization. Wiley-Inter science, 1972, Chapter 2.
    [64]刘敏歆,肖殿照,赵立信等.降低冷芯盒法砂芯粘结剂用量的途径.铸造, 1993, (1): 32~35.
    [65]张永年,柬野英.酚醛-脲烷树脂自硬砂研究.热加工工艺, 1998, (4): 19~23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700