黄土剖面粘粒矿物的组成特征及其环境意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄土高原完整的黄土-古土壤序列作为第四纪古环境三大支柱记录之一,储存了2.5Ma B.P.以来丰厚的地学-生物学信息,它记录了黄土高原乃至整个欧亚大陆第四纪多旋回的生物气候环境变迁,为研究古气候和古环境变化提供了很好的研究材料。粘粒矿物作为土壤的重要组成成分,它的形成与转化受温度、湿度等环境条件的影响。因此,矿物组成特征可指示土壤演化过程与成壤环境。本研究以武功、洛川、安塞全新世黄土-古土壤以及武功第五层古土壤为研究对象,采用X-射线衍射(X-raydiffraction)、X-射线荧光光谱法(X-ray fluorescence)、选择性溶提等技术研究了不同土壤层次的矿物学特征,结合14C加速器质谱法测年、粒度组成、CaCO_3以及磁化率分析,探讨全新世黄土-古土壤和第五层古土壤中的矿物风化与成壤过程,揭示地质时期古气候与成壤环境的时空特征,取得的主要结果有:
     1.武功全新世黄土剖面的土层(上覆黄土层/L0,0-50cm;均一古土壤层/S0,50-150cm;古土壤与马兰黄土层之间的过渡黄土层/LT,,150-200cm)明显可辨。根据~(14)C测年结果进行插值计算,L0、S0、LT土层的更迭说明了黄土高原南缘全新世0-3,100yrB.P.、3,100-8,500yr B.P.、8,500-11,500yr B.P.期间气候干冷-暖湿-干冷变化的“三阶段”模式。武功全新世黄土-古土壤剖面的CaCO3含量、粒度组成、磁化率均与成壤作用呈相应的周期变化。相对下伏马兰黄土层(L_1,200cm以下)及上覆黄土层(L0),全新世古土壤(S0)CaCO_3的强烈淋溶、粘粒的富集、磁化率的增强,说明该层土壤的成壤发育作用增强。根据武功全新世古土壤层CaCO_3的淋溶量、迁移深度及磁化率推算,全新世中期S0发育时的年均降水量高达800mm以上。该区全新世中期气候类型相当于现今亚热带北缘(秦岭南坡)土壤发育的气候条件。
     2.黄土高原南缘武功全新世黄土粘土矿物的组成特征分析结果表明,全剖面粘土矿物组成相似,以伊利石为主,绿泥石、蛭石次之,含有少量高岭石与蒙脱石等。古土壤S0中存在少量的层间羟基物矿物(hydroxy-interlayered minerals,HIM),这意味着全新世中期黄土高原南缘以森林为主的古土壤环境。柠檬酸钠溶液80oC连续处理结果HIM主要由层间羟基物蒙脱石(hydroxy-interlayered smectite,HIS)和层间羟基物蛭石(hydroxy-interlayered vermiculite,HIV)组成,并提出了古土壤中硅酸盐矿物的形成与转化过程及HIM形成的可能途径。
     3.黄土高原南缘武功全新世古土壤层(S0)中的伊利石结构特征指数相对较高,但全剖面(L_0、S_0、L_1)伊利石的半高宽(half height width,HHW)、积分宽度(integralbreadth,IB)、化学指数(illite chemistry index,ICI)分别在0.25-0.30o2θ、0.4-0.6o2θ、0.25-0.40之间变化,表明土壤形成于物理风化较强的环境中,矿物化学风化较弱。富含CaCO_3的风尘物质的连续沉积抑制了矿物的风化演化,减弱了古土壤的成壤发育强度,主要的矿物风化过程是伊利石的脱钾作用和绿泥石的风化。因此,黄土高原地质时期的古气候及成壤环境条件,比黄土-古土壤层中的矿物风化及成壤特征所反映的气候更为暖湿。
     4.黄土高原自北向南的安塞、洛川和武功全新世黄土-古土壤(~(14)C测年:23860±90-0yr B.P./晚更新世晚期至今)剖面中的层状硅酸盐矿物以伊利石为主,绿泥石、蛭石次之,含有少量高岭石与蒙脱石等,其矿物及元素组成相似,并且各剖面之间的矿物与元素组成也相似。沿气候梯度,自北(安塞剖面)向南(武功剖面),古土壤层中蛭石含量逐渐增加、高岭石和蒙脱石略有减少,同时伴有粘粒的富集、碳酸盐强烈的淋溶以及磁化率的增强。安塞全新世剖面的层状硅酸盐粘土矿物组成一致且含量稳定,与剖面中高砂粒含量、稳定的CaCO_3含量以及极低的磁化率一致,风尘沉积后经历的矿物风化、成壤作用弱,这说明黄土高原北部11,500yr B.P.以来气候及成壤环境稳定,全新世中期并没有受到东南亚暖湿季风气候的影响。黄土高原黄土-古土壤中的矿物学组成特征确切地记录了地质时期成壤环境的时空变化。黄土高原全新世期间的气候变化存在地区差异,典型的全新世气候变化的“三阶段”模式在区域上并不具有普适性。
     5.黄土高原南缘武功第五层复合古土壤(S_5)每一层古土壤层(S_(5-1)、S_(5-2)、S_(5-3))的CaCO3在成壤前期完全淋失,在古土壤底部形成了30-50cm厚的CaCO3结核层。S5-1土层中的粘粒含量和磁化率均明显高于S_(5-2)和S_(5-3)土层,说明S5-1土层经历了更为强烈的物理、生物化学风化,其成土作用较S_(5-2)和S5-3土层的强烈。S5的粘粒/粉粒比值较高,小于0.002mm的粘粒含量高出下伏黄土层(L_6)约60-100%。粒度结果表明,S5的粘化作用较全新世古土壤(S0)的强。各古土壤层中部磁化率在120-310SI(10-8m~3kg~(-1))范围内波动,远比S0的磁化率(190-220SI/10~(-8)m3kg~(-1))高。可以推断S5古土壤代表了比全新世中期更为暖湿的气候条件。武功S5复合古土壤成壤过程中CaCO_3完全淋失、粘化作用强烈、磁化率增强,都说明S5在暖湿的气候条件下经历了强烈的成壤作用。
     但是,粘土矿物的分析表明,S5的粘粒矿物组成相似,S_(5-1)、S_(5-2)和S_(5-3)的粘土矿物均以伊利石为主,并含有不同数量的绿泥石、蛭石、高岭石与蒙脱石等。S5并没有表现出比其上覆黄土层(L_5)和下伏黄土层(L_6)更为强烈的矿物风化,这与粒度组成、CaCO_3及磁化率的分析结果矛盾。这可能是因为每层复合古土壤层底部坚硬、致密的CaCO_3淀积层和粘化层对下渗水的滞留作用,阻碍了上伏土层中碱土金属元素和硅的淋移,抑制了矿物的风化转化。
The complete set of “loess-paleosol” sequences on the Loess Plateau, China, as one ofthe three records for paleoenvirenment during the Quaternary period, record the biologic,climatic and environmental changes of the Loess Plateau, even of the Eurasian since2.5Ma B.P.. Soils derived from the Loess Plateau of China are regionally important andexpression of the soil properties along the soil profile may be directly related to climatechanges. Clay minerals are derived from weathering of parent material and/or precipitatedfrom the soil solution. They reflect successive stages of mineralogical evolution dependingon the various environmental conditions that have prevailed during soil formation.Therefore, this study focused on the mineralogy in the Holocene loess-paleosol in theWugong, Luochuan and Ansai sections and the fifth paleosol (S_5) in the Wugong section,together with the specific properties (e.g. grain size, carbonate content and magneticsusceptibility)、~(14)C dating by the accelerator mass spectrometry method (AMS) and fieldobservations to access the clay mineral transformation, in relation to the pedogenesis andthe regional climate changes. The main results are as follows:
     1) The main stratigraphic subdivisions of the Holocene loess-paleosol in the Wugongsection clearly identified in the field were confirmed by analytical data with single-weldedpaleosol S0(8,500-3,100year B.P.) and a cover loess L0(3,100–0year B.P.) and atransitional loess (L_T)(11,500–8,500year B.P.). They presented a pretty classic picture asa complete episode of the Holocene climate change, corresponding to a glacial-interglacialclimatic fluctuation on the southernmost Loess Plateau. The intensive decalcification,enrichment of clay content and increasing of magnetic susceptibility in the paleosol (S_0,50-150cm) signified the strong pedogenesis with respect to the Malan loess. Thecalculated from the magnetic susceptibility and the depth and the total amount of carbonateleaching suggested that the average annual precipitation during the mid-Holocene was up to800mm. And the climate type in this period was analogous with the modern climateconditions in the northern subtropical zone (the southern slope of Qingling Mountains) forthe formation of Udic Luvisols (Brown Soil).
     2) Mineralogy of the Holocene loess-paleosol in the Wugong section on thesouthernmost Loess Plateau suggested that clay mineralogical compositions were similar inthe stratums with the illite in the majority throughout the profile. The changes of thephyllosilicate minerals were consistent with the soil genetic horizons and with thevariations in CaCO_3content, particle size distribution, and magnetic susceptibility. Arelatively high vermiculite content and the presence of hydroxyl-interlayered mineral (HIM)occurred in the most weathered palaeosol (S_0). According to the XRD analysis before andafter sodium citrate extraction, the HIM in the paleosol was mainly composed of thehydroxy-interlayered smectite (HIS) and the hydroxy-interlayered vermiculite (HIV). Thehydroxyl-interlayers common present in Alfisol of southern China, occurred in the paleosolsignified the dominant forest landscape palaeoecology and the acidic paleosol environmentduring the mid-Holocene. The contradiction between the type clay minerals present and themeasured alkaline soil pH values in the palaeosol could be understood by therecalcification caused by the post-pedogenic leaching from the overlying loess. A mostlikely explanation for the occurrence of HIM and transformation of phyllosilicate mineralsin the paleosol stratum derived from loess was suggested.
     3) The relatively high values of half height width (HHW) and integral breath (IB) andthe relatively low values of chemical index of illite (ICI) represent relatively low illitecrystallinity and intensive weathering and pedogenesis in the Holocene paleosol (S0) withrespect to the overlying and underlying loess. However, the values of HHW, IB and ICIshowed no significant variations throughout the profile ranging from0.25to0.30(o2θ),0.4to0.6(o2θ) and0.25to0.40(o2θ) throughout the profile, respectively, whichimplied a weak chemical weathering. The successive adding of eolian sediments withabundant CaCO_3restrained the intensity of mineral weathering and pedogennesis.Generally, the depotassication of illite and the degradation of chlorite were the majormineral transformation processes that occurred with soil-formation of the Holocenepalaeosol on the southernmost Loess Plateau and the pedogenic strength did not reachedthe level of Udic Luvisols (Brown Soil). Due to the special pedogenesis pattern, the palaeoclimate would be warmer and wetter than the climate that was derived from themineral weathering and soil evolution characteristics in paleosol.
     4) Analysis of the Holocene loess-paleosol at Ansai, Luochuan and Wugong in anorth-south transect and in geological age from the late Epipleistocene (0-23860±90yearB.P.) suggested that the mineralogy were similar over the Loess Plateau, China. However,in detail, there were significant temporal and spatial variations in analytical results ofpedogenesis and mineralogy of the profiles in the three sections along the climate gradient.Mineral weathering and pedogenesis resulted in a vital increase of vermiculite in paleosolof Wugong section with more clayey, intensive decalcification and increasing of magneticsusceptibility. The subtle decrease of kaolinite and smectite in paleosol southward resultedfrom the resilication by strong plant/clay interaction and leaching of soil base ions withlush vegetation and increasing precipitation during the mid-Holocene. The pedogeneticcyclicity and mineral weathering were progressively weakened with the trendingsouth-north across the Loess Plateau signified the weaker climate fluctuation since11,500years and the decreased influence of summer monsoon on pedogenesis and mineralweathering intensity northward. In general Holocene loess in Ansai section preserved inthick eolian deposits was found to be relatively homogeneous as far as grain size and claymineralogy. There was no significantly variation in phyllosilicate composition with depthwhich coincided with more coarse grains and constant CaCO_3content signified the leastweathering and pedogenesis under stable and dry climate and pedogenic environment overthe last11,500years. The mineralogical composition in loess-paleosol across the CLPrecords precise temporal and spatial variability of the palaeoenvironment. The traditionalscheme of the Holocene climatic change is not a unique phenomenon across the LoessPlateau.
     5) The fifth paleosol (S_5) is a complex paleosol essentially composed of threewell-developed reddish soil pedons (S_(5-1), S_(5-2), S_(5-3)). The carbonate of each paleosol pedonswas absolutely leached from the paleosol during the early stage of soil formation underintensive eluviation condition, and deposited beneath the pedons of30-50cm in thicknesswhich can easily be recognized as stratigraphic markers between each pedons. The claycontent and magnetic susceptibility in the S5-1pedon were absolutely higher than those inthe S_(5-2)and S_(5-3)pedons which signified more intensive physical and biochemical weathering and pedogenesis in the S_(5-1)with respect to the S_(5-2)and S_(5-3)pedons. The clay/siltratio was higher in the S5than those in the overlying and underlying loess (L5and L6) andclay content in the S5was60-100%higher than those in the L5and L6. Particle sizedistribution illustrated that the intensified clayification in situ after deposition in the S5than that in the Holocene paleosol (S_0). It was possible that the S5with clay content higherthan that in yellow-brown earth is belong to the soil type formed in the subtropical zone.Magnetic susceptibility in the S5varied from120to310SI(10~(-8)m~3kg~(-1))was well abovethe turnout of the S0, signified intensive pedogenesis under much warmer and wetterclimatic condition than that during the mid-Holocene.
     Nevertheless, the results of mineralogy analysis showed the similar composition ofphyllosilicate minerals throughout the complex paleosol (S_(5-1), S_(5-2), S_(5-3)). Mineralweathering processes in the S5were depotassication and hydration of primary minerals anddegradation of chlorite. The S5did not shown more intensive mineral weathering than theL5and L6which was incompatible with the results of CaCO_3content, particle sizedistribution and magnetic susceptibility. One of the possible reasons was that the trappingaffection of harder and denser of CaCO_3illuvial horizon and argillic horizon in eachpaleosol pedons on the water percolation which listened for the loss of alkali and alkalineearth elements and restrained the transformation of soil mineral.
引文
[1]刘东生.黄土与环境[M].北京:科学出版社,1985.
    [2]黄春长.渭河流域全新世黄土与环境变迁[J].地理研究,1989,8:20-31.
    [3] An Z S, Kukla, Porter S C, et al. Magnetic susceptibility evidence of monsoonvariation on the Loess Plateau of Central China during the last130,000years[J].Quaternary Research,1991,36:29-36.
    [4]鹿化煜,安芷生.黄土高原黄土粒度组成的古气候意义[J].中国科学(D辑),1998,28:278-283.
    [5] Chen J, An Z S, Head J. Variation of Rb/Sr ration in the loess paleosol sequences ofCentral China during the last130,000years and their implication for monsoonpaleoclimatology[J]. Quaternary Research,1999,51:215-219.
    [6]刘东生.黄土·第四纪地质·全球变化(第一集,第二集)[C].北京:科学出版社,1990.
    [7]刘东生.黄土·第四纪地质·全球变化(第三集)[C].北京:科学出版社,1992.
    [8]黄春长.渭河流域3100年前资源退化与人地关系演变[J].地理科学,2001,21:30-35.
    [9]黄春长,庞奖励,陈宝群,等.渭河流域先周-西周时代环境和水土资源退化及其社会影响[J].第四纪研究,2003,23:404-414.
    [10]Huang C C, Pang J L, Chen S E, et al. Holocene dust accumulation and the formationof policyclic cinnamon soils in the Chinese Loess Plateau[J]. Earth Surface Processesand Landforms,2003,28:1259-1270.
    [11]Huang C C, Pang J L, Zhou Q Y, et al. Holocene pedogenic change and the emergenceand decline of rain-fed cereal agriculture on the Chinese Loess Plateau[J]. QuaternaryScience Reviews,2004,23:2525-2535.
    [12]庞奖励,黄春长,张占平,等.陕西岐山黄土剖面Rb、Sr组成与高分辨率气候变化[J].沉积学报,2001,19:638-641.
    [13]Guo Z T, Liu D S, Guiot J, et al. High frequency pulses of East Asian monsoonclimate in the last two glaciations: Link with the North Atlantic[J]. Climate Dynamics,1996,12:701-709.
    [14]陈骏,汪永进,季峻峰,等.陕西洛川黄土剖面的Rb/Sr值及其气候地层学意义[J].第四纪研究,1999,7:350-356.
    [15]陈骏,安芷生,汪永进,等.最近800ka洛川黄土剖面中Rb、Sr分布和古季风变迁[J].中国科学(D辑),1998,128:498-504.
    [16]文启忠,刁桂仪,贾蓉芬,等.末次间冰期以来渭南黄土剖面地球化学指标所反映的古气候变化[J].地球化学,1996,25:529-535.
    [17]Liu T S, Guo Z T, Liu J Q, et al. Variation of eastern Asian monsoon over the last140000years[J]. Bulletin de la Societe Geologique de France,1995,166:221-229.
    [18]郭正堂,刘东生,安芷生.渭南黄土沉积中十五万年来的古土壤及其形成时的古环境[J].第四纪研究,1994,3:256-269.
    [19]朱海之.黄土的显微结构及埋藏土壤中的光性方向粘土薄片观察结果[J].中国第四纪研究,1965,4:62-76.
    [20]安芷生,魏兰英.淀积铁质粘粒胶膜及其成因意义[J].科学通报,1979,24:356-359.
    [21]安芷生,魏兰英.离石黄土中的第五层古土壤及其古气候意义[J].土壤学报,1980,17:1-10.
    [22]唐克丽.武功黄土沉积中埋藏古土壤的微形态及其发生学[J].科学通报,1981,26,177-179.
    [23]郭正堂, Fedoroff N,刘东生.130ka来黄土-古土壤序列的典型微形态特征与古气候事件[J].中国科学(D),1996,26:392-398.
    [24]郭正堂,丁仲礼,刘东生.黄土中的沉积-成壤事件与第四纪旋回[J].科学通报,1996,41:56-59.
    [25]郭正堂, Fedoroff N,刘东生.全新世与上次间冰期气候差异的古土壤记录[J].第四纪研究,1993,2:41-55.
    [26]郭正堂,刘东生,吴乃琴,等.最后两个冰期黄土中记录的Heinrich型气候节拍[J].第四纪研究,1996,1:21-30.
    [27]孙建中,等.黄土还要更老些[J].海洋地质与第四纪地质,1987,(1):105-112.
    [28]岳乐平.蓝田段家坡黄土剖面磁性地层研究[J].地质论评,1989,5:479-488.
    [29]赵景波.黄土中风化壳的确定与研究[J].地质论评,1991,37:117-124.
    [30]孙有斌,安芷生.最近7Ma黄土高原风尘通量记录的亚洲内陆干旱化的历史和变率[J].中国科学(D辑),2001,31:769-776.
    [31]An Z S. The history and variability of the East Asian paleomonsoon[J]. QuaternarySeiences Reviews,2000,19:171-187.
    [32]Sun D H, An Z S, Shaw J, et al. Magnetostratigraphy and paleoclimatic significanceof late tertiary aeo1ian sequences in the Chinese Loess Plateau[J]. GeoPhysicalJournal International,1998,134:207-212.
    [33]安芷生,王苏民,吴锡浩,等.中国黄土高原的风积证据:晚新生代北半球大冰期开始及青藏高原的隆升驱动[J].中国科学(D辑),1998,25:481-490.
    [34]吴锡浩,安芷生.黄土高原黄土古土壤序列与青藏高原隆升[J].中国科学(D辑),1996,26:103-110.
    [35]Ding Z L, Sun J M, Liu T S, et al. Wind-blown origin of the Pliocene red-clayformation in the central Loess Plateau, China[J]. Eharth and Planetary Science Letters,1998,161:135-143.
    [36]An Z S, Liu T S, Lu Y C, et al. The long-term paleomonsoon variation recorded by theloess-paleosol sequence in central China[J]. Quaternary International,1990,7:91-95.
    [37]鹿化煜,安芷生.黄土高原黄土粒度组成的古气候意义[J].中国科学(D辑),1998,28:278-283.
    [38]汪海斌,陈发虎,张家武.黄土高原西部地区黄土粒度的环境指示意义[J].中国沙漠,2002,22:21-25.
    [39]鹿化煜,安芷生.洛川黄土粒度组成的古气候意义[J].科学通报,1997,42:66-69.
    [40]孙有斌,鹿化煜,安芷生.黄土-古土壤中石英颗粒粒度分布[J].科学通报,2000,45:2094-2097.
    [41]孙有斌,周杰,鹿化煜,等.风化成壤对原始粉尘粒组成的改造证据[J].中国沙漠,2002,22:16-20.
    [42]孙有斌,安芷生.最后4个冰期旋回中国黄土记录的亚冬季风变化[J].中国地质大学学报(地球科学),2002,7:19-24.
    [43]Sun D H, Bloemendal J, Rea D K, et al. Grain-size distribution function of polymodalsediments in hydraulic and aeolian environments, and numerical partitioning of thesedimentary components[J]. Sedimentary Geology,2002,152:263-277.
    [44]Prins M A, Postma G, Weltje G. Controls on the terrigenous sediment supply to theArabian Sea during the late Quaternary: The Makran continental slope[J]. MarineGeology,2000,169:351-371.
    [45]孙有斌,高抒,李军.边缘海陆源物质中环境敏感粒度组分的初步分析[J].科学通报,2003,48:83-86.
    [46]肖尚斌,李安春.东海内陆架泥区沉积物的环境敏感粒度组分[J].沉积学报,2005,23:122-129.
    [47]Boulay S, Colin C, Trentesaux A, et al. Mineralogy and sedimentology of Pleistocenesediments on the South China Sea (ODP Site1144)[R]. Proceedings of the OceanDrilling Program. Scientific Results,2002.184.
    [48]Vandenberghe J, An Z S, Nugteren G, et al. New absolute time scale for theQuaternary climate in the Chinese loess region by grain size analysis[J]. Geology,1997,25:35-38.
    [49]鹿化煜,安芷生,Vandenberghe J,等.洛川黄土地层定年的一个模式及其初步应用[J].沉积学报,1997,15:150-152.
    [50]鹿化煜,安芷生,杨文峰.洛川黄土序列时间标尺的初步建立[J].高校地质学报,1997,2:230-236.
    [51]朱显谟.我国黄土性沉积物中的古土壤[J].中国第四纪研究,1965,4:7-19.
    [52]赵景波.西北黄土区第四纪土壤与环境[M].西安:陕西科技出版社,1994.
    [53]卢演俦.黄土地层中CaCO3含量变化与更新时期候旋回[J].地质科学,1981,2:122-130.
    [54]赵景波.黄土中古土壤双层淀积研究[J].西安地质学院学报,1994,16:50-53.
    [55]王永焱,林在贯.中国黄土的结构特征及物理力学性质[M].北京:科学出版社,1990.152-155.
    [56]雷祥义.靖远曹岘的形成时代及显微结构特征[J].地理学报,1995,50:521-533.
    [57]赵景波.黄土中古土壤淀积类型[J].地理学报,1995,50:35-40.
    [58]中国科学院南京土壤研究所.中国土壤[M].北京:科学出版社,1978.
    [59]田均良,彭祥林.黄土高原土壤地球化学[M].北京:科学出版社,1994.110-147.
    [60]雷祥义,岳乐平.陕西关中晚更新世黄土-古土壤序列特征及其记录的古环境变迁[J].地质论评,1997,43:193-202.
    [61]甘肃土壤普查办公室.甘肃土壤[M].北京:农业出版社,1993.215-239.
    [62]赵景波.黄土地层中的CaCO3与环境[J].沉积学报,1993,11:136-142.
    [63]赵景波.古土壤CaCO3淀积层与大气降水入渗形式研究[J].地理科学,1995,15:344-351.
    [67]赵景波.风化淋滤带地质新理论-CaCO3淀积深度理论[J].沉积学报,2000,18:29-35.
    [68]陆景冈.土壤地质学[M].北京:地质出版社,1997.14-23.
    [66]熊毅,张敬森,傅积平,等.土壤胶体(第2册)[M].北京:科学出版社,1985.245-250.
    [67]徐凤琳,李学垣,黄巧云,等.鄂湘两省山地土壤粘粒矿物的究[J].土壤学报,1990,27:293-300.
    [68]师育新,戴雪荣,李节通,等.末次间冰期兰州黄土记录中的粘土矿物及其环境意义探讨[J].海洋地质与第四纪地质,1997,17:87-93.
    [69]何良彪.海洋沉积岩心中粘土矿物变化与古气候变迁的关系[J].科学通报,1982,13:809-812.
    [70]陈云.从陕西黄土堆积序列中的粘土矿物探讨古气候[A],第四纪冰川与第四纪地质论文集(五)[C].北京:地质出版社,1988.
    [71]郑洪汉.中国黄土粘土矿物及其在剖面中的变化趋势[J].第四纪研究,1985,6:158-165.
    [72]黄丽.亚热带典型土壤铁锰胶膜的微形态与化学特征[D].武汉:华中农业大学,2004.
    [73]郭正堂,Fedoroff N.西峰和西安黄土中盐碱化古土壤气候意义初步探讨[J].第四纪研究,1992,12:107-117.
    [74]赵景波,童国榜.秦岭太白盆地黄土地层发育时的古环境[J].西安地质学院学报,1994,16:64-70.
    [75]朱显谟,程文礼.中国黄土高原古土壤粘粒胶膜移动问题探讨[J].土壤学报,1994,35:371-375.
    [76]朱显漠,赵景波.黄土与红褐色古土壤中粘土胶膜的形成及其意义[J].世界科技研究与发展,1999,21:17-22.
    [77]文启忠,刁桂仪,贾蓉芬,等.黄土剖面中古气候变化的地球化学记录[J].第四纪研究,1995,15:223-231.
    [78]刁桂仪,文启忠.黄土中铁的形态分布及其组合特征研究[J].海洋地质与第四纪地质,1999,19:75-82.
    [79]赵景波.黄土地层化学成分迁移深度与含量研究[J].陕西师范大学学报(自然科学版),1999,27:103-107.
    [80]Zhao J B. Illuvial depth of CaCO3of the paleosols in the loess of Guanzhong Plain[J].Chinese Science Bulletin,1992,37:403-407.
    [81]赵景波.陕西黄土高原500ka BP的古土壤与气候带迁移[J].地理学报,2001,56:323-331
    [82]Sanz A, Garcia-Gonzalez M T, Vizcayno C, et al. Iron-manganese nodules in asemi-arid environment[J]. Australian Journal Soil Research,1996,34:623-634.
    [83]Uzochukwu G A, Dixon J B. Manganese oxide minerals in nodules of two soils ofTexas and Alabama[J]. Journal of Soil Science,1986,50:1358-1363.
    [84]张民,龚子同.钙质变性土形成中的某些地球化学特征[J].土壤,1989,21:226-233.
    [85]Taylor R M. The Mineralogy and chemistry of manganese oxides in some Australiansoils[J]. Australian Journal of Soil Research,1964,2:235-248.
    [86]胡雪峰,龚子同.土壤发生学与第四纪研究[J].热带亚热带土壤科学,1998,7:257-259.
    [87]史学正,龚子同.从雷州半岛埋藏古土壤性质论华南第四纪古气候环境的演变[J].土壤学报,1995,32:184-193.
    [88]Heller F, Liu T S. Palaeoclimatic and sedimentary history from magneticsusceptibility of loess in China[J].Geophysical Research Letters,1986,13:1169-1172.
    [89]胡雪峰.黄土-古土壤序列中氧化铁和有机质对磁化率的影响[J].土壤学报,2004,41:7-12.
    [90]刘秀铭,刘东生.中国黄土磁性矿物特征及其古气候研究[J].第四纪研究,1993,3:281-287.
    [91]邓成龙,袁宝印,胡守云,等.环境磁学的某些研究进展[J].海洋地质与第四纪地质,2000,20:93-101.
    [92]马玉增,董元杰,史衍玺,等.坡面侵蚀土壤化学性质对磁化率影响机理的研究[J].水土保持学报,2008,22:51-54.
    [93]安芷生, Kukla G,刘东生.洛川黄土地层学[J].第四纪研究,1989,2:155-168.
    [94]Han J M, Hus J J, Paepe R, et al. The rock magnetic properties of the Malan and Lishiformations in the Loess Plateau of China[A]. In: Liu T S. Loess Environment andGlobal Change[M]. Beijing: Science Press,1991.30-47.
    [95]Hus J J, Han J M. The contribution of loess magnetism in China to the retrieval ofpast global changes: Some problems[J]. Physics of the Earth and Planetary Interiors,1992,7:154-168.
    [96]Vandenberghe R E, de Grave E, Hus J J, et al. Characterization of Chinese loess andassociated palaeosol by Mossbauer spectroscopy[J]. Hyperfine Interactions,1992,70:977-980.
    [97]Eyre J K, Shaw J. Magnetic enhancement of Chinese loess: The role of-Fe2O3[J].Geophysical Journal International,1994,117:265-271.
    [98]Hunt C P, Banerjee S K, Han J M, et al. Rock magnetic proxies of climate change inthe loess-paleosol sequences of the western Loess Plateau of China[J]. GeophysicalJournal International,1995,123:232-244.
    [99]Patrick W H J R, Henderson R E. Reduction and reoxidation cycles of manganese andiron in flood soil and in water solution[J]. Soil Science Society of America Journal,1981,45:855-859.
    [100]Goth S, Patrick W H J. Transformation of iron in a waterlogged soil as influenced byredox potential and pH[J]. Soil Science Society of America Proceedings,1974,38:66-71.
    [101]Armstrong W, Beckett P M. Internal aeration and the development of stelar anoxia insubmerged roots: A multishelled mathematical model combing axial diffusion ofoxygen in the cortex radial gasses to the stele, the wall layer and the rhizosphere[J].New Phytol,1987,105:221-245.
    [102]刘秀铭,刘东生,Heller F,许同春.黄土频率磁化率与古气候冷暖变换[J].第四纪研究,1990,1:42-50.
    [103]Barbara A, Maher B A. Paleorainfall reconstructions from pedogenic magneticsusceptibility variation in the Chinese loess and paleosols[J]. Quaternary Research,1995,44:383-391.
    [104]Rolph T C, Shaw J, Derbyshire E, et al. The magnetic mineralogy of a loess sectionnear Lanzhou, China[A]. In: Pye K. The Dynamics and Environmental Context ofAeolian Sedimentary Systems (Geological Special Publication72)[M]. London:Geological Society,1993.311-323.
    [105]Kletetschka G, Banerjee S. Magnetic stratigraphy of Chinese loess asa record ofnatural fires[J]. Geophysical Research Letters,1995,22:1341-1343.
    [106]Kukla G, Heller F, Liu X M, et al. Pleistocene climates in China dated by magneticsusceptibility[J]. Geology,1988,16:811-814.
    [107]Zhou L P, Oldfield F, Wintle A G, et al. Partly pedogenic origin of magneticvariations in Chinese loess[J]. Nature,1990,346:737-739.
    [108]Heller F, Liu X M, Liu T S, et al. Magnetic susceptibility of loess in China[J]. Earthand Planetary Science Letters,1991,103:301-310.
    [109]Maher B A, Thompson R. Mineral magnetic record of the Chinese loess andpaleosols[J]. Geology,1991,19:3-6.
    [110]Baneee S K, Hunt C P, Liu X M. Separation of local signals from the regionalPalaeomonsonn record of the Chinese loess plateau: a rock magnetic approach[J].Geophysical Research Letters,1993,20:843-846.
    [111]Eyre J K, Shao J. Magnetic enhancement of Chinese loess-the role of γ-Fe2O3[J].Geophysical Journal International,1994,177:265-274.
    [112]Fine P, Singer M J, Verosub K L. Use of magnetic susceptibility measurements inassessing soil uniformity in chronosequence studies[J]. Soil Science Society ofAmerica Journal,1992,56:1195-1199.
    [113]Fine P, Singer M J, Verosub K L, et al. New evidence for the origin of ferrimaneticsusceptibility in Loess from China[J]. Soil Science Society of America Journal,1993,57:1537-1542.
    [114]俞劲炎,卢升高编著.土壤磁学[M].南昌:江西科学技术出版社,1991.
    [115]Meng X M, Derbyshire E, Kemp R A. Origin of the magnetic susceptibility signal inChinese loess[J]. Quaternary Science Review,1997,16:833-839.
    [116]Heller F, Liu T S. Magnetism of Chinese loess deposits[J]. Geophysical Journal ofthe Royal Astronomical Society,1984,77:125-141.
    [117]顾兆炎,韩家懋,刘东生.中国第四纪黄土地球化学研究进展[J].第四纪研究,2000,20:41-45.
    [118]吕厚远,刘东生.C3、C4植物及燃烧对土壤磁化率的影响[J].中国科学(D辑),2001,31:43-53.
    [119]刁桂仪,文启忠.黄土风化成土过程中主要元素迁移序列[J].地质地球化学,1999,27:21-26.
    [120]马毅杰,陈家坊.我国红壤中氧化铁形态及其特性和功能[J].土壤,1998,1:1-6.
    [121]Han J M, Lu H Y, Wu N Q, et al. The magnetic susceptibility of modern soils inChina and its use for paleoclimate reconstruction[J]. Studia Geophysica etGeodaetica,1996,40:262-275.
    [122]Maher B A. Magnetic properties of modern soil and Quaternary loessic palaeosols:Palaeoclimatic implications[J]. Palaeogeography, Palaeoclimatology, Palaeoecology.1998,137:25-54.
    [123]Verosub K L, Flne P, Singer M J, et al. Pedogenesis and paleoclimate: interpretationof the magnetic susceptibility record of Chinese loess-paleosol sequences[J].Geology,1993,21:1011-1014.
    [124]Maher B A, Thompson R, Liu X, et al. Pedogenesis and paleoclimate: interpretationof the magnetic susceptibility record of Chinese loess-paleosol sequences:comments[J]. Geology,1994,22:857-859.
    [125]Liu X M, Hesse P, Rolph T. Origin of maghaemite in Chinese loess deposits: Aeolianor pedogenic?[J]. Physics of Earth Planetary Interiors,1999,112:191-201.
    [126]Zhu R, Lin M, Pan Y. History of the temperature-dependence of susceptibility and itsimplications: Preliminary results along an E-W transect of the Chinese LoessPlateau[J]. Chinese Science Bulletin,1999,44:81-86.
    [127]邓成龙,刘青松,潘永信,等.中国黄土环境磁学[J].第四纪研究,2007,27:193-209.
    [128]Liu Q S, Deng C L, Torrent J, et al. Reviews on recent developments of mineralmagnetism of the Chinese loess[J]. Quaternary Science Reviews,2007,26:368-385.
    [129]Schwertmann U. Inhibitory effect of soil organic matter on the crystallization ofamorphous ferric hydroxide[J]. Nature,1966,212:645-646.
    [130]徐德福,黎成厚.氧化铁和有机质对土壤有机无机复合状况的影响[J].贵州大学学报(农业与生物科学版),2002,21(6):397-403.
    [131]Li R S, Dai S, Liu Y, et al. Effect of micorbes upon magnetic susceptibiltiy of buriedsoils (I) Analysis of ferribacteris in Shaanxi loess[A]. In: Fu J M. Annual ResearchReports of the State Key Laboratory of Organic Geochemistry[C]. Beijing: SciencePress,1992.167-169.
    [132]刘秀铭,刘东生,Heller F,等.中国黄土磁颗粒分析及其古气候意义[J].中国科学(B辑),1991,6:639-644.
    [133]吴瑞金.湖泊沉积物的磁化率、频率磁化率及其古气候意义[J].湖泊科学,1993,5:128-135.
    [134]卢高升.第四纪红土的磁性与氧化铁矿物学特征及其古环境意义[J].土壤学报,2000,37:182-191.
    [135]Maher B A, Tayor R G. Formation of ultrafine grained magnetite in soils[J]. Nature,1989,30:178-281.
    [136]Huang C C, Pang J L, Zhao J B. Chinese loess and the evolution of the East Asiamonsoon[J]. Progress in Physical Geography.2000,24:75-96.
    [137]Beer J, Shen C D, Heller F, et al.10Be and magnetic susceptibility in Chinese loess[J].Geophysical Research Letters,1993,20:57-60.
    [138]Heller F, Shen C D, Beer J, et al. Quantitative estimates of pedogenic ferromagneticmineral formation in Chinese loess and palaeoclimatic implications[J]. Earth andPlanetary Science Letters,1993,114:385-390.
    [139]Liu X M, Rolph T, Blomendal J, et al. Quantitative estimates of palaeoprecipitationat Xifeng, in the Loess Plateau of China[J]. Palaeogeography, Palaeoclimatology,Palaeoecology,1995,113:243-248.
    [140]吕厚远,韩家懋,吴乃琴,等.中国现代土壤磁化率分析及其古气候意义[J].中国科学(B辑),1994,24:1290-1297.
    [141]韩家懋,姜文英,吴乃琴,等.黄土中钙结核的碳氧同位素研究(一)氧同位素及其古气候意义[J].第四纪研究,1995,2:130-137.
    [142]顾兆炎,Lal D,郭正堂,等.黄土高原黄土和红粘土10Be地球化学特征[J].第四纪研究,2000,20:409-422.
    [143]Monaghan M C, Krishnaswarni S, Thomas J H.10Be concentrations and thelong-term fate of particle-reactive nuclides in five soil profiles from California[J].Earth and Planetary Science Letters,1983,65:51-60.
    [144]Pavich M J, Brown L, Harden J, et al.10Be distribution in soils from Merces Riverterraces, California[J]. Geochimica et Cosmochimica Acta,1986,50:1727-1735.
    [145]Gu Z Y, Lal D, Liu T S, et al. Five million year10Be recored in Chinese loess andred-clay: Climate and weathering relationships[J]. Earth and Planetary ScienceLetters,1996,144:273-287.
    [146]Ding Z L, Yu Z W, Rutter N W, et al. Towards an orbital time scale for Chinese loessdeposits[J]. Quaternary Science Reviews,1994,13:39-70.
    [147]刘嘉麒,陈铁梅,聂高众,等.渭南黄土剖面的年龄测定及十五万年来高分辨率时间序列的建立[J].第四纪研究,1994,3:193-202.
    [148]Gu Z Y, Lal D, Liu T S. Weathering histories of Chinese1oess deposits based onuranium and thorium series nuclides and cosmogenic10Be[J].Geochimica etCosmochimica Acta,1997,61:5221-5231.
    [149]韩家懋,姜文英,吕厚远,等.黄土中钙结核的碳氧同位素研究(二)碳同位素及其古环境意义[J].第四纪研究,1995,4:367-377.
    [150]Cerling T E. The stable isotoPic composition of modern soil carbonate and itsrelationship to climate[J]. Earth and Planetary Science Letters,1984,71:229-240.
    [151]Cerling T E, Hay R L. An isotopic study of paleosol carbonates from OlduvaGorge[J]. Quarternary Research,1986,25:63-78.
    [152]Cerling T E, Quade J, Wang Y, et al. Carbon isotopes in soils and palaeosols asecology and palaeoceology indicators[J]. Nature,1989,341:138-139.
    [153]Quade J, Solounias N, Cerling T E. Stablel iotopic evidence from paleosolcarbonates and fossil teeth in greece for forest or woodlands over the past11Ma[J].Palaeogeography, palaeoclimatology, Palaeoecolophy,1994,108:41-53.
    [154]Zheng S, Wang Y, Chen C. Studies on the stable isotopes in carbonates in LuochuanLoess Section: Applicability of the Ca daduies as paleoclimates[A]. In Liu T S,Aspects of Loess Researeh[C]. Beiiing: China ocean press,1987,283-290.
    [155]Wang Y, Zheng S. Paleosol nodules as pleistocene paleoclimatic indicators,Luochuan, P. R. China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,1989,76:39-44.
    [156]Gu Z Y, Liu R, Liu Y. Response of the stable isotopic composition of loess-paleosolcarbonate to paleoenvironmental changes[A]. In: Liu T S, Loess, Environment andGlobal Change[M]. Science press, Beijing,1991.82-92.
    [157]Frakes L A, Sun J Z. ACarbon Isotope Record of the Upper Chinese Loess Sequenee:Estimates of plant Types during Stadials and Interstadials[J]. Palaeogeophy,Palaeoclimatology, palaeoecology,1994,108:183-189.
    [158]李天杰,郑应顺,王云.土壤地理学[M].北京:人民教育出版社.1979,110-150.
    [159]林本海,刘荣谟.最近800ka夏季风变迁的稳定同位素证据[J].科学通报,1992,37:1691-1693.
    [160]Fink J, Kukla G. Pleisotocene climate in Central Europe: at least17interglacialsafter the Olduvai event[J]. Quaternary Research,1977,7:363-371.
    [161]Heller J, Tchernov E. Pleisotocene land snails from the Coastal PLaln of Israel[J].Israel Journal of Zoology,1978,27:1-10.
    [162]Leng M J, Heaton T H E, Lamb H F, et al. Carbon and oxygen isotope variationswithin the shell of an African land snail (Limicolaria kambeul chudeaui Germanin):a high-resolution record of climate seasonality[J]. Holocene,1998,8:407-412.
    [163]Goodfriend G A, Magaritz M. Carbon and oxygen isotope composition of shellcarbonate of desert land snails[J]. Earth and Planetary Science Letters,1987,86:377-388.
    [162]Yapp C J. Oxygen and carbon isotope measurements of land snail shell carbonate[J].Geochimica et Cosmochimica Acta,1977,43:629-635.
    [165]文启忠,中国黄土地球化学[M].北京:科学出版社,1989.
    [166]刁桂仪,文启忠.渭南黄土剖面碳酸盐和铁变化的古气候记录[J].地球化学,1995,24:75-82.
    [167]薛祥煦,岳乐平,周杰,等.陕西旬邑晚新生代红土-黄土序列磁化率特征与环境变迁[J].第四纪研究,2003,23:103-108.
    [168]陈骏,汪永进,陈旸,等.中国黄土地层Rb和Sr地球化学特征及其古季风气候意义[J].地质学报,2001,75:259-266.
    [169]贾耀锋,黄春长,庞奖励,等.全新世黄土剖面Li/Ba值变化及其古气候意义[J].第四纪研究,2005,25:770-776.
    [170]龚子同.中国土壤系统分类[M].北京:科学出版社,1999.
    [171]McLean E O. Soil pH and lime requirement. In: Page A L, Miller R H, Keeney D R.Methods of Soil Analysis Part2[M].2nded. Agron. Monogr., vol.9. ASA and SSSA,Wisconsin, USA: Madison,1982.199-224.
    [172]Nelson, D.W., Sommers, L.E., Total carbon, organic carbon and organic matter.Methods of Soil Analysis[M]. ASA and SSSA, Wisconsin, USA: Madison,1982.534-580.
    [173]Dreimanis A. Quantitative gasometric determination of calcite and dolomite byusing Chittick apparatus[J]. Journal of Sedimentary Petrology,1962,32:520-529.
    [174]Gee G W, Bauder JW. Particle-size Analysis. In: Klute A. Methods of Soil Analysis.Part1-Physical and Mineralogocal Method[M].2nded. Agron. Monogr., vol.9. ASAand SSSA, Wisconsin, USA: Madison,1986.383-411.
    [175]Mehra O P, Jackson M L. Iron oxides removed from soils and clays bydithionote-citrate system buffered with sodium bicarbonate. Clays and ClayMinerals[J],1960,7:317-327.
    [176]McKeague J A, Brydon J E, Miles N M. Differentiation of forms of extractable ironand aluminum in soils[J]. Soil Science Society of America Proceedings,1971,35:33-38.
    [177]Pai C W, Wang M K, Wang W M, et al. Smectites in iron-rich calcareous soil andblack soils of Taiwan[J]. Clays and Clay Minerals,1999,47:389-398
    [178]Biscaye P E. Distinction between kaolinite and chlorite in recent sediments by X-raydiffraction[J]. America Mineral,1964,49:1281-1289.
    [179]Brindley G W, Brown G. Crystal structures of clay minerals and their X-rayidentification[M]. Monogr. No.5, London: Mineralogical Society,1980.495.
    [180]李学垣.土壤化学及实验指导[M].北京:中国农业出版社,1997.231-234.
    [181]刘东生.黄土的物质组成与结构[M].北京:科学出版社,1966.
    [182]Richardson S M, McSween H Y. Geochemistry Pathways and Processes[M].Englewood Cliffs, NJ:Prentice Hall,1989.
    [183]Han J T, Fyfe W S, Longstaffe F J. Climatic Implications of the S5paleosol complexon the southernmost Chinese Loess Plateau[J]. Quaternary Research,1998,50:21-33.
    [184]赵景波,侯甬坚,杜鹃,等.关中平原全新世环境演变[J].干旱区地理,2003,26:17-22.
    [185]施雅风,孔昭宸,王苏民,等.中国全新世大暖期的气候变化波动与重要事件[J].中国科学(B辑),1992,22:1300-1308.
    [186]赵景波,顾静.关中平原全新世土壤与环境研究[J].地质评论,2009,55:753-760.
    [187]Huang C C, Zhao S C, Pang J L, et al. Climatic aridity and the relocations of thezhou culture in the southern loess plateau of china[J]. Climatic Change,2003,61:361-378.
    [188]Huang C C, Pang J L, Li P H. Abruptly increased climatic aridity and its socialimpact on the loess Plateau of China at3100aB.P.[J]. Quaternary Science Reviews,2002,52:87-99.
    [189]赵景波,郝玉芬,岳应利.陕西洛川地区全新世中期土壤与气候变化[J].第四纪研究,2006,26:969-975.
    [190]何勇,秦大河,任贾文,等.塬堡全新世黄土剖面有机质碳同位素的气候记录[J].地球化学,2004,33:178-184.
    [191]张月鸿,黄春长,周群英.渭河阶地全新世成壤环境演变的高分辨率研究[J].生态环境,2004,13:200-203.
    [192]庞奖励,黄春长,张战平.周原全新世复合古土壤和成壤环境的微形态学研究[J].土壤学报.2003,40:22-28.
    [193]赵景波.关中地区全新世大暖期的土壤与气候变迁[J].地理科学,2003,23:554-559.
    [194]唐克丽,贺秀斌.黄土高原全新世黄土-古土壤演替及气候演变的再研讨[J].第四纪研究,2004,24:129-140.
    [195]毛江龙,李亚兵,王计平,等.南京江北地区全新世土壤粒度分布及其古环境意义[J].海洋地质与第四纪地质,2005,25:127-132.
    [196]Xiao J, Porter S C, An Z S, et al. Grain-Size of Quartz as an indicator of wintermonsoon strength on the Loess Plateau of central China during the Last130,000yr[J]. Quaternary Research,1995,43:22-29.
    [197]Sun J M, Li S H, Han P, et al. Holocene environmental changes in the central InnerMongolia, based on single-aliquot-quartz optical dating and multi-proxy study ofdune sands[J]. Palaeogeophy, Palaeoclimatology, palaeoecology,2006,233:51-62.
    [198]刘秀铭,刘东生.中国黄土磁性矿物特征及其古气候意义[J].第四纪研究,1993,3:281-287.
    [199]Liu X M, Shaw J, Liu T S, et al. Magnetic mineralogy of Chinese loess and itssignificance[J]. Geophysical Journal International,1992,108:301-308.
    [200]Chadwick O A, Chorover J. The chemistry of pedogenic thresholds[J]. Geoderma,2001,100:321-353
    [201]Velde B, Meunier A (Eds). The origin of clay minerals in soils and weatheredrocks[M]. Springer-Verlag, Berlin Heidelberg,2008. pp.75-76,301-319,325.
    [202]Chadwick O A, Gavenda R T, Kelly E F, et al. The impact of climate on thebiogeochemical functioning of volcanic soils[J]. Chemical Geology,2003,202:195-223.
    [203]White A F, Blum A E. Effects of Climate on Chemical-Weathering in Watersheds[J].Geochimica Et Cosmochimica Acta,1995,59:1729-1747.
    [204]Wilson J J. The origin and formation of clay minerals in soil; past, present and futureperspectives[J]. Clay Mineralogy,1999,34:7-25.
    [205]Amundson R G, Chadwick O A, Sowers J M, et al. The stable isotope chemistry ofpedogenic carbonates at Kyle Canyon, Nevada[J]. Soil Science Society of AmericaJournal,1989,53:201-210.
    [206]Gylesj S, Arnold E. Clay mineralogy of a red clay-loess sequence from Lingtai, theChinese Loess Plateau[J]. Global and Planetary Change,2006,51:181-194.
    [207]Kalm V E, Rutter N W, Rokosh C D. Clay minerals and their paleoenvironmentalinterpretation in the Baoji loess section, Southern Loess Plateau, China[J]. Catena,1996,27:49-61.
    [208]Zhang N, Yuan B. Study of clay minerals in Louchuan section and theirpaleoenvironment significance[A]. In: Liu T S. Aspects of Loess Research[C].Beijing, China: Ocean Press,1987,348-362.
    [209]Territo C, Vieillard P, Righi D, et al. A new simple approach to evaluate pedogenicclay transformation in a Vertic Calcisol[J]. Journal of Geochemical Exploration,2006,88:345-349.
    [210]Chiang H C, Wang M K, Houng K H, et al. Mineralogy of B horizons in alpineforest soils of Taiwan[J]. Soil Science,1999,164:111-122.
    [211]Carnicelli S, Mirabella A, Cecchini G, et al. Weathering of chlorite to a low-chargeexpandable mineral in a spodosol on the Apennine mountains, Italy[J]. Clays andClay Minerals,1997,45:28-41
    [212]Porter S C, Hallet B, Wu X H, et al. Dependence of near-surface magneticsusceptibility on dust accumulation rate and precipitation on the Chinese LoessPlateau[J]. Quaternary Research,2001,55:271–283.
    [213]Righi D, Petit S, Bouchet A. Characterization of hydroxyl-interlayered vemiculiteand illite/smectite interstratified minerals from the weathering of chlorite in aCryothod[J]. Clays and Clay Minerals,1993,41:484.
    [214]Zhao L, Ji J F, Chen J, et al. Variations of illite/chlorite ratio in Chinese loesssections during the last glacial and interglacial cycle: Implications for monsoonreconstruction[J]. Geophysical Research Letters,2005,32: L20718.doi:10.1029/2005GL024145.
    [215]Ehrmann W. Implications of late Eocene to early Miocene clay mineral assemblagesin McMurdo Sound (Ross Sea, Antarctica) on paleoclimate and ice dynamics[J].Palaeogeography Palaeoclimatology Palaeoecology,1998,139:213-231.
    [216]Liu Z F, Colin C, Trentesaux A, et al. Clay mineral records of East Asian monsoonevolution during late Quaternary in the southern South China Sea[J]. Science inChina (Series D-Earth Sciences),2005,48:84-92.
    [217]Egli M, Mirabella A, Fitze P. Clay mineral formation in soils of two differentchronosequences in the Swiss Alps [J]. Geoderma,2001,104:145-175.
    [218]Mirabella A, M. Egli, Structural transformations of clay minerals in soils of aclimosequence in an Italian Alpine environment[J]. Clays and Clay Minerals,2003,51:264-278.
    [219]Fanning D S, Keramidas V Z, El-Desoky M A. Micas. In: J.B. Dixon and S.B. Weed,Editors, Minerals in Soil Environment (2nd Ed.)[M], Soil Science Society ofAmerica, Madison, WI, USA,1989, pp.551–634.
    [220]Li G J, Ji JF, Zhao L, et al. Response of silicate weathering to monsoon changes onthe Chinese Loess Plateau[J]. Catena,2008,72:405-412.
    [221]Huang C Q, Zha, W, Liu F, et al. Environmental significance of mineral weatheringand pedogenesis of loess on the southernmost Loess Plateau, China[J]. Geoderma,2011,163:219-226.
    [222]Rich C I. Hydroxy interlayers in expansible silicates[J]. Clays and Clay Minerals,1968,16:15-30.
    [223]He J Z, Li X Y, Xu FL, et al.1.4-nm intergrade mineral derived from smectite insoils[J]. Chinese Science Bulletin,1994,39:676-680.
    [224]李学垣,徐凤琳,Huang P M.中南地区淋溶土的层间羟基物矿物[J].土壤学报,2002,39:326-333.
    [225]Pai C W, Wang M K, King H B, et al. Hydroxy-interlayered minerals of forest soilsin A-Li Mountain, Taiwan[J]. Geoderma,2004,123:245-255.
    [226]Huang L, Tan W F, Liu F, et al. Composition and transformation of1.4nm mineralsin cutan and matrix of Alfisols in central China[J]. Journal of Soils and Sediments,2007,7(4):240-246.
    [227]Bautista-Tulin A.T., Inoue K. Hydroxy interlayered minerals in Japanese soilsinfluenced by eolian deposition[J]. Soil Science Society of America Journal,1997,61:631-640.
    [228]Wang M K, Chang C M, Cheng Y W, et al. Comparison of synthetic and soilAl-substituted lepidocrocite[J]. Soil Science,1999,164:311-321.
    [229]Aide M, Marshaus A. Fragipan genesis in two Alfisols in east central Missouri[J].Journal of Soil Science,2002,167:453-464.
    [230]Zhao Y, Yu Z C, Chen FH. Spatial and temporal patterns of Holocene vegetationand climate changes in arid and semi-arid China[J]. Quaternary International,2009,194:6-18.
    [231]Tamura, T. Identification of clay minerals from acid soils[J]. Journal of Soil Science,1958,9:141-147.
    [232]Egli M, Mirabella A, Mancabelli A, et al. Weathering of soils in alpine areas asinfluenced by climate and parent material[J]. Clays and Clay Minerals,2004,52:287-303.
    [233]Sawhney B L. Weathering and aluminum interlayer in a soil catena:Hollis-Charlton-Leiceter[J]. Proceedings-Soil Science Society of America,1960,24:221-226.
    [234]Violante A, Krishnamuti G S R, Huang P M. Formation and stability of hydroxyaluminum-iron-montmorillonite complexes: influence of ferron iron[J]. Soil ScienceSociety of America Journal,1998,62:1448-1454.
    [235]Proust D, Eymery J, Beaufort D. Supergene vermiculitization of a magnesianchlorite: iron and magnesium removal processes [J]. Clays and Clay Minerals,1986,34:572-580.
    [236]Martin J H. Glacial-interglacial CO2change: the iron hypothesis [J].Paleoceanography,1990,1:1-13.
    [237]Bain D C. The weathering of chlorite minerals in some Scottish soils [J]. Journal ofSoil Science,1977,28:144-164.
    [238]Brahy V, Titeux H, Iserentant A, et al. Surface podzolization in Cambisols underdeciduous forest in the Belgian loess belt[J]. European Journal of Soil Science,2000,51:15-26.
    [239]唐克丽,贺秀斌.黄土高原全新世黄土-古土壤演替及气候演变的再研讨[J].第四纪研究,2004,24:129-140.
    [240]Kapoor B S. The formation of2:1-2:2intergrade clays in some NorwegianPodzols[J]. Clay Minerals,1973,10:79-86.
    [241]Turpault M P, Righi D, Uterano C. Clay minerals: Precise markers of the spatial andtemporal variability of the biogeochemical soil environment[J]. Geoderma,2008,147:108-115.
    [242]April R, Keller D. Mineralogy of the rhizosphere in forest soils of the eastern UnitedStates[J]. Biogeochemistry,1990,9:1-18.
    [243]An Z S, Kukla G, Porter S C, et al., Late Quaternary dust flow on the Chinese LoessPlateau[J]. Catena,1991,8:125-132.
    [244]He X B, Tang K L, Lei X Y. Heavy mineral record of the Holocene environment onthe Loess Plateau in China and its pedogenetic significance[J]. Catena,1997,29:323-332.
    [245]Jeong G Y, Hillier S, Kemp R A. Changes in mineralogy of loess-paleosol sectionsacross the Chinese Loess Plateau[J]. Quaternary Research,2011,75:245-255.
    [246]Kukla G, An Z S. Loess stratigraphy in central China[J]. Palaeogeography,Palaeoclimatology, Palaeoecology,1989,72:203–225.
    [247]Lu H Y, Sun D H. Pathways of dust input to the Chinese Loess Plateau during thelast glacial and interglacial periods[J]. Catena,2000,40:251–261.
    [248]Kemp R A, Derbyshire E, Chen F H, et al. Pedosedimentary development andpalaeoenvironmental significance of the S1palaeosol on the northeastern margin ofthe Qinghai-Xizang (Tibetan) Plateau[J]. Journal of Quaternary Science,1996,11:95-106.
    [249]Kemp R A. Pedogenic modification of loess: significance for palaeoclimaticreconstructions[J]. Earth-Science Reviews.2001,54:145-156.
    [250]Derbyshire E, Kemp R, Meng X M. Variations in loess and paleosol properties asindicators of paleoclimatic gradients across the loess plateau of North China[J].Quaternary Science Reviews,1995,14:681-697.
    [251]Kemp R A, Derbyshire E, Meng X M. Micromorphological variation of the S1paleosol across northwest China[J]. Catena,1997,31:77-90.
    [252]Yang S L, Ding F, Ding Z L. Pleistocene chemical weathering history of Asian aridand semi-arid regions recorded in loess deposits of China and Tajikistan[J].Geochimica Et Cosmochimica Acta,2006,70:1695–1709.
    [253]Jeong G Y, Hillier S, Kemp R A. Quantitative bulk and single-particle mineralogy ofa thick Chinese loess–paleosol section: implications for loess provenance andweathering[J]. Quaternary Science Reviews,2008,37:1271-1287.
    [254]Eden D N, Wen Q, Hunt J L, et al. Mineralogical and geochemical trends across theLoess Plateau, North China[J]. Catena,1994,21:73-90.
    [255]唐克丽,贺秀斌.第四纪黄土剖面多元古土壤形成发育信息的提示[J].土壤学报,2002,39:609-617.
    [256]Lucas, Y, Luizao, F J, Chauvel, A, et al. The relation between biological-activity ofthe rain-forest and mineral-composition of soils[J]. Science,1993,260:521-523.
    [257]Schenk, H J, Jackson, R B. The global biogeography of roots[J]. EcologicalMonographs,2002,72:311-328.
    [258]Hunt C P, Singer M J, Kletetschka G, et al. Effect of citrate-bicarbonate-dithionitetreatment on fine-grained magnetite and maghemite[J]. Earth and Planetary ScienceLetters,1995,130(1-4):87-94.
    [259]Singer M J, Bowen L H, Verosub K L, et al. Mossbauer spectroscopic evidence forcitrate-bicarbonate-dithionite extraction of maghemite from soils[J]. Clay and ClayMinerals,1995,43:1-7.
    [260]赵景波.淀积理论与黄土高原环境演变[M].北京:科学出版社,2002.1-212.
    [261]Gallet S, Jahn B-M, Torii M. Geochemical characterization of the Luochuanloess-paleosol sequence, China, and paleoclimatic implications[J]. ChemicalGeology,1996,133(1-4):67-88.
    [262]Li G J, Ji JF, Zhao L, et al. Response of silicate weathering to monsoon changes onthe Chinese Loess Plateau[J]. Catena,2008,72:405-412.
    [263]Huang C C, Pang J L, Hang P, et al. High-resolution studies of the oldest cultivatedsoils in the southern Loess Plateau of China[J]. Catena,2002,47:29-42.
    [264]Huang C C, Zhou J, Pang J L, et al. A regional aridity phase and its possible culturalimpact during the Holocene Megathermal in the Guanzhong Basin, China[J].Holocene,2000,10:135-143.
    [265]Zhou W J, An Z S, Jull A, et al. Reappraisal of Chinese Loess Plateau stratigraphicsequences over the last30,000years: precursors of an important Holocene monsoonclimatic event[J]. Radiocarbon,1998,40:905-913.
    [266]O’Brien S R, Mayewski P A, Meeker L D. Complexity of Holocene climate asreconstructed from a Greenland ice core[J]. Science,1995,270:1962-1964.
    [267]Heller F, Evans M E. Loess magnetism[J]. Reviews of Geophysics,1995,33:211–240.
    [268]Kukla G. Loess stratigraphy in Central China[J]. Quaternary Science Reviews,1987,6:191–219.
    [269]An Z S, Liu T S, Zhu Y Z, et al. The paleosol complex S5in the China LoessPlateau-A record of climatic optimum during the last1.2Ma[J]. Geojournal,1987,15:141–143.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700