中国地区近20年云的变化特征及其与模拟结果的对比
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气候变化是当前倍受各国政府和科学界关注的重大问题。但由于目前认知的不足,使得我们无论是对过去的气候还是对未来气候的了解都存在很大的不确定性。地球的绝大部分能量来自于太阳,云通过影响地气系统的辐射从而对整个地气系统的能量平衡具有强烈的调节作用。云的辐射特性不仅依赖于云量及其分布,还依赖于光学厚度、云水含量、有效半径及云的其它微物理特性。本论文主要关注于中国地区云的变化趋势及气溶胶对云的影响,具体包含以下两个主要研究内容:
     一.分别利用ISCCP (International Satellite Cloud Climatology Project)最新的D2云气候资料集,以及MODIS (MODerate-resolution Imaging Spectro-radiometer)最新的云资料,给出总云量、高云量、中云量、云光学厚度和有效半径在我国地区的分布特征,分别对季节平均和年平均的时间序列进行线性趋势分析,并进行信度检验。结果表明:(1)近20年以来中国大部分地区总云量没有显著的变化趋势,然而,在华南地区和西北部分地区的总云量有增加的趋势,青藏高原中部的总云量有所减少;在不同季节,各地总云量、高云量和中云量的变化趋势是不同的。(2)综合云的光学厚度和云的有效半径的变化趋势可以发现,与云量变化情况相对应,夏季云的光学厚度和有效半径变化趋势最显著,这可能暗示云的有效半径的变化对云光学厚度的影响可能在夏季最大,即气溶胶的间接气候效应可能在夏季最强;云量、云的光学厚度和有效半径的变化也表明在长江以南地区和青藏高原地区可能是气溶胶间接气候效应比较显著的地区。(3)中国地区冰云光学厚度与有效直径的相关具有很强的区域特征,说明冰云的微物理机制比水云更复杂。
     二.在前人的工作基础上,将两个国际上比较先进的模式即由NCAR/UCAR联合开发的新一代大气环流模式Community Atmospheric Model3.0(CAM3.0)与加拿大气溶胶模块Canadian Aerosol Module(CAM)进行单向在线耦合,在模式中采用Abhul-Razzak等[2002]发展的气溶胶活化方案,最终目的是研究暖云有效半径的分布和变化。采用了IPCC AR5 2005年的排放源资料,模式从1980年1月1日开始到1996年12月30日模拟了16年,分析后10年的资料。通过模式结果与卫星资料的对比评估模式,从中可以看到:
     (1)模式可以较好的模拟全球总云量的季节和年平均分布特征,尤其对赤道地区及海洋上空的总云量模拟的较好。模式模拟的全球高云量的分布基本体现了实际情况,在赤道及低纬度地区,模拟的高云量偏大,在两极则偏小。模式模拟的全球中云量的分布较好地再现了观测结果,只是在两极地区偏差较大。模式对总云量模拟效果最好。
     (2)模式模拟的中国地区总云量分布形势与卫星资料比较相似,但云量偏低;模式模拟的中国地区高云量分布基本反映了高云的分布特点,但是模拟的云量偏高,尤其在青藏高原地区;模式模拟中国地区中云的分布与观测有较大差异,主要是在青藏高原地区。
Climate change has raised the concern of the current governments and scientific community. However, the past and future climate simulations are considered uncertainly with the lack of awareness and knowledge. Most of the solar radiation to the earth makes the climate effects through clouds in climate system, which also plays a strong regulatory role of the radiation effect to the entire earth-atmosphere system. Direct climate effects of clouds has been understood more clearly, however, the radiation characteristics of cloud depends not only on its distribution, but also on cloud cover, optical thickness, cloud water path, effective radius and other cloud microphysical properties, then these factors would indirectly affect on climate. This paper would contain the following two main research contents.
     Firstly,the temporal and spatial characteristics of cloud over China have been analyzed using the ISCCP (International Satellite Cloud Climatology Project) monthly mean D2 data from July 1983 to June 2005 and MODIS ( MODerate-resolution Imaging Spectro-radiometer) monthly mean MOD06 data from 2000 March to 2009 June. The results show that: (1) over the past 20 years, total cloud amount has little change in trend in most parts of China; in the South China and the northwest of China, the total cloud amount over there is in an increased trend, while it has been decreased trend in the central part of Qinghai-Tibet Plateau. (2) It is also found that the total cloud amount in different seasons has different trend. The changes in cloud effective radius have the greatest effect to the cloud optical thickness during summer, which means that aerosol indirect climatic effect may be the strongest during summer. The changes of cloud optical thickness and effective radius also show that the cloud over the Yangtze River region and the Qinghai-Tibet Plateau region may be caused prominently by aerosol indirect climatic effects. (3) Besides, the ice cloud optical thickness and effective diameter are associated with strong regional characteristics in China, indicating that the ice cloud micro-physical mechanism is more complex than the water cloud.
     Secondly, with the previous work, the CAM3.0 model we used is based on comparison of two internationally advanced models, one of which is the NCAR/UCAR joint development of new generation atmospheric general circulation models Community Atmospheric Model3.0 (CAM3.0), and the other is the Canadian Aerosol Module Canadian Aerosol Module (CAM) for one-way online interaction. The model has also used the theory of Hayder Abhul-Razzak et al. which provides the aerosol activation progress, as Aerosols-Climate coupled model simulation, and it uses AeroCom 2009 pollution source data. By CAM3.0 model simulation from January 1, 1980 to December 30, 1996, the later 10 years data has been analyzed and several major conclusions have been drawn, with the comparisons to the satellite data.
     (1) Model can simulate the global total cloud amount of seasonal and annual distribution, especially over the equatorial region and marine region. The simulation of the global distribution of high cloud reflects the basic reality; in the equatorial and low latitude regions, the simulated valu is lager than the satellite data, while in the polarization it is smaller. The simulation of the middle cloud amount global distribution approaches the observations, but larger deviations in the Polar Regions. The best Model analysis is the simulation of the total cloud amount.
     (2) Model simulated total cloud amount distribution in China is similar to the observations, but the valu is lower; model simulated high cloud amount distribution in China basically reflects the distribution of reality, but the value is higher than observation, especially in Tibetan Plateau; model simulated the distribution of middle cloud amount in China are quite different from observations, mainly in the Tibetan Plateau.
引文
Ackerman, A.S, M.P. Kirkpatrick, D.E. Stevens, and O.B. Toon. The impact of humidity above stratiform clouds on indirect aerosol climate forcing. J. Nature, 2004, 432:1014-1017.
    Albrecht B. Aerosols, cloud microphysics and fractional cloudiness. J. Science, 1989, 245:1227-1230.
    Andreae, M.O., et al. Atmospheric science: smoking rain clouds over the Amazon. J. Science, 2004, 303(5662):1337-1341.
    Barth M.C., P.J. Raseh, J.T. Kiehl, C.M. Benkovitz and S.E.Schwartz. Sulfur chemistry in the National Center for Atmospheric Researeh Community Climate Model: Description, evaluation,features and sensitivity to aqueous chemistry. J.Geophys.Res, 2000, 105:1387-1415.
    Bonan G.B.,K.W.Oleson,M.Vertenstein,S.Levis,X. Zeng,Y. Dai,R.E. Diekinson and Z.L.yang,The land surface climatology of the cornmunity Land Model coupled to the NCAR Community Climate Model. J. Climate, 2002, 15:3123-3149.
    Brenguier J.L. et al. Radiative properties of boundary layer clouds: droplet effective radius versus number concentration. J. Atmos. Sci., 2000a, 57:803-821.
    Brenguier, J.L. et al. An overview of the ACE-2 cloudy column closure experiment. Tellus, 2000b, 52(B):815-827.
    Charlson, R. J., J. E. Lovelock, M. O. Andreae, and S. G. Warren: Ocean phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature, 1987, 326, 655-661.
    Charlson, R.J., S.E. Schwartz, J.M. Hales, R.D. Cess, J.A. Coakley, J.E. Hansen and D.J. Hofmann: Climate forcing by anthropogenic aerosols. Science, 1992,255, 423?430.
    Coakley J.A., R.D. Cess and F.B. Yurevich. The effort of tropospheric aerosols on the Earth radiation budget: A Parameterization for climate models. J.Atmos. Sei., 1983, 40:116-138.
    Collins W.D. Parameterization of generalized cloud overlap for radiative calculations in general circulation models. J.Atmos. Sci., 2001, 58:3244-3242.
    Cook, J., and E.J. Highwood. Climate response to tropospheric absorbing aerosols in an intermediate general circulation model. Q. J. R. Meteorol. Soc., 2004, 130: 175-191.
    Deardorff J.W., Parameterization of the planetary boundary layer for use in general circulation models. J.Mon.Wea Rev., 1972, 100:93-106.
    Durkee, P. A., K. K. Noone, and R. T. Bluth. The Monterey Area Ship Track Experiment, J. Atmos. Sci., 2000, 57:2523-2541.
    Eagan, R., P.V. Hobbs, and L. Radke. Measurements of CCN and cloud droplet size distributions in the vicinity of forest fires. J. Appl. Meteorol., 1974: 13, 537–553.
    Facchini, M.C., M. Mircea, S. Fuzzi, and R.J. CharlsonCloud albedo enhancement by surface active organic solutes in growing droplets. J.Nature, 1999, 401:257-259.
    Feichter, J. E. Roeckne, U. Lohmann, and B. Liepert. Nonliner aspects of the climate response to greenhouse fas and aerosol forcing, J. Clim., 2004, 17:2384-2398.
    Feingold, G. Modelling of the first indirect effect: Analysis of measurement requirements. J.Geophys. Res. Lett., 2003, 30(19):354-367.
    Feingold, G., and S. M. Kreidenweis. Cloud processing of aerosol as modeled by a large eddy simulation with coupled microphysics and aqueous chemistry. J.Geophys. Res, 2002, 107(D23):4687-4694.
    Feingold, G., H. Jiang, and J. Y. Harrington. On smoke suppression of clouds in Amazonia, J. Geophys. Res. Lett., 2005, 32, L02804, doi:10.1029/ 2004GL021369.
    Ghan, S., N. Laulainen, R. Easter, R. Wagener, S. Nemesure, E. Chapman, Y. Zhang, and R. Leung. Evaluation of aerosol direct radiative forcing in MIRAGE, J. Geophys. Res., 2001b, 106:5295-5316.
    Ghan, S.R. Easter, J. Hudson, and F.M. BreonEvaluation of aerosol indirect radiative forcing in MIRAGE, J. Geophys. Res., 106:5317-5334.
    Gunn, S.R., and B.B. Phillips. 1957: An experimental investigation of the effect of air pollution on the initiation of rain. J. Meteorol., 2001a, 14(3):272-280.
    Hack, J.J., B.A. Boville, B.P. Briegleb, J.T.Kiehl, P.J. Raseh, and D.L. Williamson. Description of the NCAR Community Climate Model (CCM2). Teeh. ReP. NCAR/TN-382_STR, National Center for Atmospheric Researeh, 1993, 120:231-245.
    Hansen, J., M. Sato, and R. RuedyRadiative forcing and climate response, J. Geophys. Res., 1997, 102(D6):6832– 6864.
    Hayder Abdul-Razzak,Steven J. Ghan,Carlos Rivera-Carpio. A parameterization of aerosol activation 1. Single aerosol type. J. Geophys. Res.,1998, 103(D6): 6123-6131.
    Hayder Abdul-Razzak,Steven J. Ghan,Carlos Rivera-Carpio;A parameterization of aerosol activation 2. Multiple aerosol types. J. Geophys. Res., 2000, 105(D5): 6237-6843.
    Hayder Abdul-Razzak,Steven J. Ghan,Carlos Rivera-Carpio;A parameterization of aerosol activation 3, Sectional representation. J. Geophys. Res., 2002, 107(D3): 1029-1036.
    Haywood, J.M., and O. Boucher, 2000: Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review. Rev. Geophys., 38, 513–543.
    Holtslag A.A. M. and B.A. Boville. Local versus nonlocal boundary-layer diffusion in a global climate model. J. Climate, 1993, 6:1825-1842.
    Holtslag A.A. M. And C. H. Moeng, Eddy diffusivity and countergradient transport in the convective atmospheric boundary layer. J.Atmos.Sci., 1991, 48:1690-1698.
    IPCC, 2007: Climate Change 2007: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 881.
    Jacobson, M.Z. Control of fossil-fuel particulate black carbon and organic matter, possibly the most effective method of slowing global warming. J. Geophys. Res., 2002, 107(D19), 4410, doi:10.1029/2001JD001376.
    Jiang, H., and G. Feingold. Effect of aerosol on warm convective clouds: Aerosol-clouds-surface flux feedbacks in a new coupled large eddy model. J. Geophys. Res., 2006, 111, D01202, doi:10.1029/2005JD006138.
    Joesph J.H., W.J. Wiscombe and J.A. Weinman. The delta-Eddington approximation for adiative flux transfer. J.Atmos.Sci., 1976, 33:2452-2459.
    Johnson, B.T., K.P. Shine, and P.M. Forster. The semi-direct aerosol effect: Impact of absorbing aerosols on marine stratocumulus. Q. J. R. Meteorol. Soc., 2004, 130:1407-1422.
    Kiehl, J.T., J.J. Hack, G..B. Bonan, B.B. Boville, D.L. Williamson, and P.J. Raseh. The National Center for Atmospheric Research Community Climate Model: CCM3,J. Climate, 1998, 11:1131-1149.
    Leaitch, W.R, C.M. Banic, G.A. Isaac, M.D. Couture, P.S.K. Liu, I.Gultepe, and S.M. Li, Physical and chemical observations in marine stratus during the 1993 North Atlantic Regional Experiment: Factors controlling cloud droplet number concentrateions, J. Geophs. Res., 1996,101(29):123-135.
    Lohmann, U. and C. Leck. Importance of submicron surface active organic aerosols for pristine Arctic clouds. Tellus, 2005, 57(B):261-268.
    Lohmann, U., and J. Feichter. Global indirect aerosol effects: A review. Atmos. Chem. Phys., 2005, 5:715-737.
    Menon, S., et al. Evaluating aerosol/cloud/radiation process parametrizations withsingle-column models and Second Aerosol Characterization Experiment (ACE-2) cloudy column observations. J. Geophys. Res., 2003, 108(D24):4762-4785, doi:10.1029/ 2003JD003902.
    Ming, Y., V. Ramaswamy, P.A. Ginoux, and L.H. Horowitz. Direct radiative forcing of anthropogenic organic aerosol. J. Geophys. Res., 2005a, 110(D):202-208, doi:10.1029/ 2004JD005573.
    Mircea, M. et al. Importance of the organic aerosol fraction for modeling aerosol hygroscopic growth and activation: a case study in the Amazon Basin. Atmos. Chem. Phys., 2005, 5:3111-3126.
    Nakajima, T. and A. Higurashi. AVHRR remote sensing of aerosol optical properties in the Persian Gulf region, summer 1991. J. Geophys. Res., 1997, 102(16):935-946.
    Nakajima, T., A. Higurashi, K. Kawamoto, and J. PennerA possible correlation between satellite-derived cloud and aerosol microphysical parameters. G?eophys. Res. Lett., 2001, 28:1171-1174.
    Nakajima, Teruyuki, King, Michaeld, Spinhirne, Jamesd, Radke, Lawrencef. Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. II - Marine stratocumulus observations. Journal of the Atmospheric Sciences, 1991, 48:728-750.
    Nenes, A., et al. Can chemical effects on cloud droplet number rival the first indirect effect? Geophys. Res. Lett., 2002, 29:1848, doi:10.1029/2002GL015295.
    Penner, J.E., et alAerosols, their direct and indirect effects. In: Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2001, 289-348.
    Ramanathan V. and P.Downey, A nonisothermal emissivity and absorptivity for mulation for water vapor. J.Geophys.Res., 1986, 91:8649-8666.
    Ramaswamy, V., et al. Radiative forcing of climate change. In: Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change [Houghton, J.T., et al.]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2001, 349-416.
    Randles, C.A., L.M. Russell, and V. Ramaswamy. Hygroscopic and optical properties of organic sea salt aerosol and consequences for climate forcing. Geophys. Res. Lett., 2004, 31, L16108, doi:10.1029/2004GL020628.
    Rasch P.J. and J.E. Kristjansson. A comparison of the CCM3 model climate using diagnosed and predicted condensate parameterizations. J.Climate, 1998, 11:1587-1614.
    Raseh P.J., M.C. Barth, J.T. Kiehl, S.E. Schwartz and C.M. Benkovitz. A description of the global sulfur cycle and its controlling proeesses in the National Center for Atmospheric Research Conununitiy Climate Model, Version3, J.GeOPhys.Res., 2000, 105:1367-1385.
    Reid, J.S., et al. Use of the Angstrom exponent to estimate the variability of optical and physical properties of aging smoke particles in Brazil. J. Geophys. Res., 1999, 104(D22):27473-27490.
    Rissler, J. et al. Physical properties of the sub-micrometer aerosol over the Amazon rain forest during the wet-to-dry season transition Comparison of modeled and measured CCN concentrations. Atmos. Chem. Phys., 2004, 4:2119-2143.
    Rosenfeld, D., R. Lahav, A. Khain, and M. Pinsky. The role of sea spray in cleansing air pollution over the ocean via cloud processes. Science, 2002, 297:1667-1670.
    Rossow W.B., Schiffer R.A. Advances in understanding clouds from ISCCP. Bull Amer Meteor Soc, 1999, 80:2261-2287.
    S. L.Gong, L. A. Barrie, J.P. Blanchet, K. von Salzen, U. Lohmann, G. Lesins, L. Spacek, L. M. Zhang, E. Girard, H. Lin, R. Leaitch, H. Leighton, P. Chylek, and P. Huang. Canadian Aerosol Module: A size-segregated simulation of atmospheric aerosol processes for climate and air quality models 1. Module development. 2003, 108(D1):AAC3.1-AAC3.16.
    Stevens, B., W. R. Cotton, G. Feingold and C.H. Moeng, Largeeddy simulations of strongly precipitating, shallow, stratocumulus-topped boundary layers, J. Atmos. Sci., 1998,55, 3616– 3638.
    Twohy, C.H., et al., 2005: Evaluation of the aerosol indirect effect in marine stratocumulus clouds: droplet number, size, liquid water path, and radiative impact. J. Geophys.Res., 110, D08203, doi:10.1029/2004JD005116.
    Twomey. Indirect effect using ground-based remote sensors. J.Geophys. Res. Lett., 2003, 30(6), 1287, doi:10.1029/2002GL016633.
    Twomey, S.A. The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci., 1977, 34:1149-1152.
    Warner, J., and S.A. Twomey. The production and cloud nuclei by cane fires and the effect on cloud droplet concentration. J. Atmos. Sci., 1967, 24:704-706.
    Xue, H., and G. Feingold. Large eddy simulations of trade-wind cumuli: investigation of aerosol indirect effects. J. Atmos. Sci., 2006, 63:1605-1622.
    Zhang M., W.Lin, C.S.Bretherton, J.J. Hack and P.J.Rasch. Amodified formulation fractional stratiform condensation rate in the NCAR community atmospheric modelCAM2. Geophys. Res., 2003, 108(D1):233-254.
    陈勇航,黄建平,陈长和,等.西北地区空中云水资源的时空分布特征[J].高原气象,2005,24(6):905-912.
    达布希拉图,苏立娟,邓晓东.内蒙古地区云量时空分布及变化趋势分析[J].气象科技,2009,37(3):306-310.
    丁守国,石广玉,赵春生.利用ISCCP D2资料分析近20年全球不同云类云量的变化及其对气候可能的影响[J].科学通报,2004,49(11):1105-1111.
    丁守国,赵春生,石广玉,武春爱.近20年全球总云量变化趋势分析[J].应用气象学报,2005,16(5):670-677.
    段婧,毛节泰.气溶胶与云相互作用的研究进展[J].地球科学进展,2008,23(3):156-170.
    李成才,毛节泰,刘启汉,等.利用MODIS研究中国东部地区气溶胶光学厚度的分布和季节变化特征[J].科学通报,2003,48(19):2094-2100.
    李萍云,王亚非,李琰.青藏高原地形对5、6月北半球环流影响数值模拟[J].气象科技,2010,38(2):165-169.
    李兴宇,郭学良,朱江.中国地区空中云水资源气候分布特征及变化趋势[J].2008,32(5):1094-1106.
    刘洪利,朱文琴,宜树华,李维亮,陈隆勋,白立杰.中国地区云的气候特征分析[J].气象学报,2003,61(4):466-475.
    刘瑞霞,刘玉洁.中国云气候特征的分析[J].应用气象学报,2004,15(4):468-476.
    刘晓春,毛节泰.云中液水含量与云光学厚度的统计关系研究[J].北京大学学报,2008,44(1):115-120.
    刘校辰,刘奇俊.云模式中气溶胶物理过程参数化方案研究概述[J].气象,2006,32(16):35-46.
    刘煜,李维亮.青藏高原臭氧低谷的加深及其可能的影响[J].气象学报,2001,59(1):97-106.
    罗勇,王邵武,党鸿雁,赵宗慈.近20年来气候模式的发展与模式比较计划[J].地球科学进展,2002,17(3):372-377.
    毛节泰,张军华,王美华.中国地区大气气溶胶研究综述[J].气象学报,2002,60(5):156-163.
    石广玉,王标,张华,赵剑琦,檀赛春,温天雪.大气气溶胶的辐射与气候效应[J].大气科学,2008,32(4):826-840.
    孙家仁,刘煜.中国区域气溶胶对东亚夏季风的可能影响(I):硫酸盐气溶胶的影响[J].气候变化研究进展,2008,4(2):111-116.
    汪宏七,赵高祥.云微物理特性对云光学和云辐射性质的影响[J].应用气象学报,1996,7(1): 36-44.
    王维佳.四川地区云和空中水资源分布与演变[J].气象科技,2010,38(1):58-65.
    魏丽,钟强,侯萍.中国大陆卫星反演云参数的评估[J].高原气象,1996,15(2):147-156.
    翁笃鸣,韩爱梅.我国卫星总云量与地面总云量分布的对比分析[J].应用气象学报,1998,9(1):32-37.
    吴涧,蒋维楣,刘红年,汤剑平.硫酸盐气溶胶直接和间接辐射气候效应的模拟研究[J].环境科学学报,2002,22(2):131-134.
    杨琨,孙照渤,倪东鸿.1999-2003年我国气溶胶光学厚度的变化趋势[J].南京气象学院学报,2008,31(1):92-96.
    宜树华,刘洪利,李维亮,刘煜.中国西北地区云时空分布特征的初步分析[J].气象,2003,29(1):7-11.
    赵春生,方圆圆,汤洁,郑向东,周广强.MOPITT观测的CO分布规律及与瓦里关地面观测结果的比较[J].2007,18(1):36-41.
    赵春生,彭大勇,段英.海盐气溶胶和硫酸盐气溶胶在云微物理过程中的作用[J].应用气象学报,2005,16(4):417-425.
    周秀骥,李维亮,罗云峰.中国地区大气气溶胶辐射强迫及区域气候效应的数值模拟[J].大气科学,1998,32(4):418-427.
    周允华,叶芳德,周淑秀,等.利用TIROS-N卫星云图对1979年夏季青藏高原云量分布的研究[J].高原气象,1983,2(1):39-51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700