用户名: 密码: 验证码:
生物质颗粒破碎以及生物质与煤混合颗粒的流动特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以生物质与煤的干法气流床共气化技术为背景,主要对生物质原料的预处理以及生物质与煤混合颗粒的流动特性进行研究。考察了生物质粉碎后其颗粒的外形及粒径分布规律,并结合其组织结构的各向异性建立了关于生物质颗粒破碎的二维有限随机分裂模型。生物质颗粒与煤颗粒在形状、密度、粒径等方面存在较大差异,这会对颗粒之间的填充、压缩、摩擦、混合以及流化等特性产生影响,故对混合颗粒的流动性以及在料仓中的行为特性进行了研究。主要内容如下:
     (1)利用显微镜对几种典型农林废弃物(松树、悬铃木、樟树、水杉、稻草、芦苇、豆秸等)粉碎后的颗粒拍照,并用统计分析和分形方法对颗粒的形状进行了定量研究,同时用筛分法考察了生物质颗粒破碎后的粒径分布。结果表明,生物质材料组织结构的各向异性明显,颗粒外形极不规则。各向异性越强,针状特性越明显,随着颗粒粒径的减小,各向异性减弱。分形和圆度在表征生物质颗粒的外形方面存在线性关系:C=-0.61D+1.20。在实验粒径范围内,生物质颗粒的累计质量分率w和无因次化粒径d之间存在线性关系:w=65.49d-16.37,且不同种生物质以及不同生物质部位得到的颗粒的粒径分布存在良好的一致性。
     (2)基于生物质材料组织结构的各向异性,结合有限随机分裂模型,建立了针对生物质颗粒破碎的二维有限随机分裂模型(2D-FSBM),结合实验数据和生物质材料的自身特性对模型参数进行了确定,并对生物质颗粒的粒径分布进行了模拟。通过比较模拟结果和实验结果,发现二者具有良好的吻合度,表明该模型在相关参数确定后,可以对生物质颗粒破碎后的粒径分布进行合理的预测。
     (3)对煤与稻草组成的混合颗粒的流动性进行了研究,重点考察了稻草的粒径以及含量对混合颗粒的流动性的影响,并用Haunser ratio、内摩擦角、壁摩擦角以及休止角等流动性参数进行了表征。结果表明,稻草颗粒的可压缩性较煤粉低,而内摩擦角和壁摩擦角却高于煤粉。稻草含量较低时,稻草粒径对混合颗粒堆积密度的影响并不明显,但随着含量增加,影响变得显著。由于两种颗粒密度和粒径的差异所造成的离析,Hausner ratio无法对混合颗粒的流动性做出正确的表征。稻草的加入导致混合颗粒的内摩擦角和休止角均有所增加,并且在稻草含量较低时,内摩擦角ΦI及休止角ΦR与稻草含量w和颗粒外形A分别存在如下关系:tanφ1-tanφ1,c=0.209w(A-1.87) tanα-tanα=0.213w(A-1.87)式中,α=(ΦI+ΦR)/2。
     (4)分别在不同的料位下,对煤与稻草的混合颗粒进行自然重力下料研究,考察了稻草粒径及含量、煤粉粒径、存储时间等因素对下料流率的影响。结果表明,稻草含量较低时会促进混合颗粒的下料,但是含量过高则作用恰好相反。在料仓直段,稻草含量较低时,混合颗粒的下料速率随着煤粉粒径的增加而增大,随着稻草粒径的增大而减小。并且随着稻草含量的增加,煤粉粒径的影响减弱。煤粉和稻草的混合颗粒在料仓锥段的下料速率随着稻草含量的增加呈现出减小趋势。混合颗粒在料仓中的存储时间对于颗粒的流动性有一定的影响,并且对锥段下料速率的影响较为明显。
     (5)在通气料仓中对混合颗粒进行下料实验,考察了流化气速、料仓压力等对下料速率的影响。结果发现,对于北宿煤粉与稻草组成的混合颗粒,稻草含量低于10%时,物料在通气料仓中的流动状态与单独的煤粉比较接近;稻草含量超过10%后,料仓中容易出现结拱现象。料仓压力对下料稳定性有积极作用,它能有效地破坏结拱,在稻草含量较低时,作用明显;稻草含量较高时,作用变得微弱,并且流化气容易穿透物料层,对下料起到阻碍作用。
     (6)通过研究混合颗粒在流化状态以及流出料仓后的混合情况,对在物性方面存在较大差异的混合颗粒的混合特性进行考察。结果发现,在流化床中,稻草在一定含量下,与物性存在较大差异的石英砂(或玻璃微珠)组成的混合颗粒可获得稳定的床层压降,实现有效流,并且流化床中不同床层高度的物料组成差异较小。此外,稻草与玻璃微珠的混合颗粒在料仓下料过程以及进入到接料罐后,其均匀度与原物料的差异不大,并未出现明显的离析现象。
Under the background of co-gasification of biomass and coal in an entrained flow gasifier, the present work focused on the pretreatment of biomass material and the research on the characteristics of biomass and coal blends. The shape and size distribution of biomass particles were studied firstly, and the 2 dimension finite stochastic breakup model of biomass particle was proposed based on the anisotropy of biomass material in organizational structure. There are great differences between biomass particles and coal particles in shape, density, and size, which would influence the packing, compressibility, friction, mixing, and fluidizing of the blends. Thus the flow ability and the behavior in the hopper of biomass and coal blends were also studied. The main contents are as follow:
     (1) Several typical biomass materials (pine, chinar, camphor tree, metasequoia, rice straw, reed, and beanstalk) were chosen. After being ground, the shape of biomass particles was studied with the method of statistics and fractal, and meanwhile, the particle size distribution was also researched with the sieving method. Results showed that the organizational structure of biomass materials is anisotropic, which induces the irregular shape of biomass particles. The stronger the anisotropy, the more needle-shaped the biomass particles. And the anisotropy decrease with particle size. It is also found that the fractal dimension of biomass particles increase with the roundness decreasing, just as C=-0.61D+1.20. The cumulative mass fraction of biomass particles has a linear relationship with particle size, w= 65.49d-16.37, and a good consistency could be obtained for different kinds of biomass.
     (2) The 2 dimension finite stochastic breakup model of biomass particle (2D-FSBM) was proposed based on the anisotropy of biomass material, which describes the breakup process of biomass particles. The parameters of the model were also determined by the experimental data. Comparing the experimental and simulation results, it was found that 2D-FSBM could predict the results after that the relative parameters were confirmed.
     (3) The characteristics of biomass and coal blends were studied, and the main object is to research the effects of content and size of biomass particle on the flow ability of the blends. Results showed that the Haunser ratio of rice straw particles is lower than coal, whereas the friction angle is much higher. When the content of rice straw is lower, the effect of rice straw particle size on the bulk density of the blends is weak, but become stronger with the increase of rice straw content. Hausner ratio is not a good indicator to the flow ability of the blends due to the segregation induced by the difference of size and density. The addition of rice straw leads to the increase of the angle of internal friction and angle of repose of the blends. When the content of rice straw is lower, the increment of tangent of friction angle (φ) has something with the rice straw content (w) and particle shape (A), just as follow: tanφ1-tanφ1,c=0.209w(A-1.87) tanα-tanαc=0.213w(A-1.87) in which,α=(φ1+φR)/2.
     (4) The effects of particle size, content, storage time on the flow rate of the blends from hopper under gravity were studied. Results showed that rice straw could enhance the flow rate when its content is lower, but it will act contrarily when the content is too high. Both the increase of coal particle size and decrease of rice straw size are positive to the flow of the blend when the content of rice straw is lower. But the effect of coal particle size becomes weaker with the increase of rice straw content. The flow rate of the blends in the cone of the hopper decrease with the increase of rice straw content. In addition, the storage time influences the flow ability of the blends, which is more serious in the cone of hopper.
     (5) The effects of fluidizing gas velocity and hopper pressure on the flow rate of the blends were studied in an aerated hopper with the blends of biomass particles and beisu coal paritcles. When the content of rice straw is lower, the flow state of the blends is similar to that of coal. And arching would occur easily if rice straw content is too high. Hopper pressure plays a positive role on the discharge, which get weaker with the increase of rice straw content. When the content of rice straw is high, fluidizing gas passes the material layer easily to block the discharge.
     (6) The segregation was researched in a fluidized bed and after the blends discharging from the hopper. Results showed that the blends of rice straw and quartz sand (or glass bead) could fluidize although there is a great difference in physical properties between different particles. And the content of rice straw is nearly the same at different heights of bed. In addition, the segregation of the blends is unobvious during the discharge and in the reviser hopper.
引文
[1]于遵宏,王辅臣等.煤炭气化技术[M].北京:化学工业出版社,2010.
    [2]侯坚,张培栋,张宝茸等.中国林业生物质能源资源开发利用现状与发展建议[J].可再生能源,2009,27(6):113-117.
    [3]孙立,张晓东.生物质发电产业化技术[M].北京:化学工业出版社,2011.
    [4]Collot A G, Zhuo Y, Dugwell D R, et al. Co-Pyrolysis and Co-Gasification of Coal and Biomass in Bench-Scale Fixed-Bed and Fluidised Bed Reactors[J]. Fuel,1999,78 (6): 667-679.
    [5]Hein K R G, Bemtgen J M. Eu Clean Coal Technology—Co-Combustion of Coal and Biomass[J].Fuel Processing Technology,1998,54 (1-3):159-169.
    [6]Bridgwater A V. The Technical and Economic Feasibility of Biomass Gasification for Power Generation [J]. Fuel,1995,74 (5):631-653.
    [7]Lede J, Broust F, Ndiaye F-T, et al. Properties of Bio-Oils Produced by Biomass Fast Pyrolysis in a Cyclone Reactor[J]. Fuel,2007,86 (12-13):1800-1810.
    [8]Kannan M P, Richards G N. Gasification of Biomass Chars in Carbon Dioxide: Dependence of Gasification Rate on the Indigenous Metal Content[J]. Fuel,1990,69 (6): 747-753.
    [9]Cara C, Ruiz E, Ballesteros M, et al. Production of Fuel Ethanol from Steam-Explosion Pretreated Olive Tree Pruning[J]. Fuel,2008,87 (6):692-700.
    [10]陈洪章,王岚.生物质能源转化技术与应用(Ⅷ)—生物质的生物转化技术原理与应用[J].生物质化学工程,2008,42(4):67-72.
    [11]应浩,蒋剑春.生物质能源转化技术与应用(Ⅳ)—生物质热解气化技术研究和应用[J].生物质化学工程,2007,41(6):47-55.
    [12]蒋剑春,应浩,戴伟娣等.生物质流态化催化气化技术工程化研究[J].太阳能学报,2004,25(5):211-216.
    [13]孙立.低质生物质原料固定床热解气化反应特性[C].中国太阳能学会生物质能专业委员会2001年年会论文集,2001.
    [14]孙绍增,宿凤明,赵义军等.稻壳旋风空气气化的机理研究[J].太阳能学报,2008,29(3):370-373.
    [15]谢军,吴创之,阴秀丽等.中型流化床中二次风对生物质气化的影响[J].太阳能学报,2007,28(8):852-856.
    [16]张晓东,周劲松,骆仲泱等.生物质中热值气化技术中试实验[J].太阳能学报,2003,24(1):74-79.
    [17]Rickets B. Technology Status Review of Waste/Biomass Co-Gasification with Coal[C]. IChem Fifth European Gasification Conference,2002.
    [18]Wakker A, Egging R, Thuijl E, et al. Viewls:Biofuel and Bio-Energy Implementation Scenarios, Modeling Studies[R]. Final Report of VIEWLS WP5,2005.
    [19]王立群,张俊如,朱华东等.在流化床气化炉中生物质与煤共气化的研究(Ⅰ)以空气-水蒸汽为气化剂生产低热值燃气[J].太阳能学报,2008,29(2):246-251.
    [20]李克忠,张荣,毕继诚.煤和生物质共气化制备富氢气体的实验研究[J].燃料化学学报,2010,38(6):660-665.
    [21]鲁许鳌.生物质和煤流化床共气化特性的试验研究[C].2009全国博士生学术会议—电站自动化信息化论文集,2009.
    [22]宋新朝,李克忠,王锦凤等.流化床生物质与煤共气化特性的初步研究[J].燃料化学学报,2006,34(3):303-308.
    [23]Chmielniak T, Sciazko M. Co-Gasification of Biomass and Coal for Methanol Synthesis[J]. Applied Energy,2003,74 (3-4):393-403.
    [24]Kumabe K, Hanaoka T, Fujimoto S, et al. Co-Gasification of Woody Biomass and Coal with Air and Steam[J]. Fuel,2007,86 (5-6):684-689.
    [25]Brown R C, Liu Q, Norton G. Catalytic Effects Observed During the Co-Gasification of Coal and Switchgrass[J]. Biomass and Bioenergy,2000,18 (6):499-506.
    [26]Mclendon T R, Lui A P, Pineault R L, et al. High-Pressure Co-Gasification of Coal and Biomass in a Fluidized Bed[J]. Biomass and Bioenergy,2004,26 (4):377-388.
    [27]Sjostrom K, Chen G, Yu Q, et al. Promoted Reactivity of Char in Co-Gasification of Biomass and Coal:Synergies in the Thermochemical Process[J]. Fuel,1999,78 (10): 1189-1194.
    [28]Minchener A J. Syngas Europa Mech Eng.1999. Avaliable From: Http://www.memagazine.org/Backissues/July99/Features/Syngas/Syngas.Html.
    [29]Ree R. Co-Gasification of Coal and Biomass Waste in Entrained-Flow Gasifiers:Phase 1: Preliminary Study[R]. ECN Brandstoffen, Conversie & Milieu,1997.
    [30]Korbee R, Eenkhoom S, Heere P, et al. Co-Gasification of Coal and Biomass Waste in Entrained-Flow Gasifiers:Phase 2:Exploratory Lab-Scale Experimentation[R]. ECN Brandstoffen, Conversie & Milieu,1998.
    [31]谭立新.各种粒度表征技术的相关性研究[D].长沙:中南大学,2009.
    [32]陶珍东,郑少华.粉体工程与设备[M].北京:化学工业出版社,2003.
    [33]蔡小舒,苏明旭,沈建琪等.颗粒粒度测量技术及应用[M].北京:化学工业出版社,2010.
    [34]Allen T.颗粒大小测定[M].北京:中国建筑工业出版社,1984.
    [35]窦彦玲,任中京,江海鹰.斜投影显微图像分析法测量片状颗粒厚度的研究[J].中国粉体技术,2004,10(2):18-21.
    [36]Fayed M E, Otten L粉体工程手册[M].北京:化学工业出版社,1992.
    [37]王书运.纳米颗粒的测量与表征[J].山东师范大学学报(自然科学版),2005,20(2):45-47.
    [38]潘为刚.全自动激光粒度仪的研制[D].济南:山东大学,2006.
    [39]袁玉燕.不规则粉体粒度及形貌的表征与测试技术研究[D].2001.
    [40]徐永康,董学民.粉体材料的粒度及其测量的基础知识[J].检测技术,2005,2:42-47.
    [41]Hausner H H. Handbook of Powder Metallurgy[M]. New York: Chemical Publishing, 1973.
    [42]Zou R P, Yu A B. Evaluation of the Packing Characteristics of Mono-Sized Non-Spherical Particles[J]. Powder Technology,1996,88 (1):71-79.
    [43]Carnavas P C, Page N W. Particle Shape Factors and Their Relationship to Flow and Packing of Bulk Materials[C]. International Mechanical Engineering Congress,1994.
    [44]Chan L C Y, Page N W. Particle Fractal and Load Effects on Internal Friction in Powders[J]. Powder Technology,1997,90 (3):259-266.
    [45]Ting J M, Meachum L, Rowell J D. Effect of Particle Shape on the Strength and Deformation Mechanisms of Ellipseshaped Granular Assemblages[J]. Engineering Computations,1995,12:99-108.
    [46]卢寿慈,翁达.界面分选原理及应用[M].北京:冶金工业出版社,1992.
    [47]Stachowiak G W. Numerical Characterization of Wear Particles Morphology and Angularity of Particles and Surfaces[J]. Tribology International,1998,31 (1-3):139-157.
    [48]Kaye B H. Specification of the Ruggedness and/or Texture of a Fine Particle Profile by Its Fractal Dimension [J]. Powder Technology,1978,21 (1):1-16.
    [49]Berube D, Jebrak M. High Precision Boundary Fractal Analysis for Shape Characterization[J]. Computers & Geosciences,1999,25 (9):1059-1071.
    [50]Kaye B H. The Description of Two-Dimensional Rugged Boundaries in Fineparticle Science by Means of Fractal Dimensions[J]. Powder Technology,1986,46 (2-3):245-254.
    [51]Chan L C Y, Page N W. Boundary Fractal Dimensions from Sections of a Particle Profile[M]. Weinheim, ALLEMAGNE:Wiley-VCH,1997:50.
    [52]Clark M. Quantitative Shape Analysis:A Review[J]. Mathematical Geology,1981,13 (4): 303-320.
    [53]Mandelbrot B B分形对象:形、机遇和维数[M].北京:世界图书出版公司,1999.
    [54]Falconer K J. Fractal Geometry:Mathematical Foundations and Applications[M]. New York:Wiley,1990.
    [55]Lovejoy S. Area-Perimeter Relation for Rain and Cloud Areas[J]. Science,1982,216: 185-187.
    [56]孙霞,吴自勤,黄畇.分形原理及应用[M].合肥:中国科学技术大学出版社,2003.
    [57]蒋阳,陶珍东.粉体工程[M].武汉:武汉理工大学出版社,2008.
    [58]Astrom J. Statistical Models of Brittle Fragmentation[J]. Advances in physics,2006,55 (3-4):247-278.
    [59]Herrmann H, Roux S. Statistical Models for the Fracture of Disordered Media[M]. Amsterdam:North-Holland,1990.
    [60]Kantor Y, Webman I. Elastic Properties of Random Percolating Systems[J]. Physical Review Letters,1984,52 (21):1891-1894.
    [61]Astrom J, Kellomaki M, Timonen J. Dynamic Fragmentation of a Two-Dimensional Brittle Material with Quenched Disorder[J]. Physical Review E,1997,55 (4):4757-4761.
    [62]Bruchmuller J, Van Wachem B G M, Gu S, et al. Modelling Discrete Fragmentation of Brittle Particles[J]. Powder Technology,2011,208 (3):731-739.
    [63]Kun F, Herrmann H J. Transition from Damage to Fragmentation in Collision of Solids[J]. Physical Review E,1999,59 (3):2623-2632.
    [64]Kolmogorov A N. On the Log-Normal Distribution of Particles Sizes During Breakup Process[J].Dokl.Akad.Nauk,1941, SSSR ⅩⅩⅩⅠ (2):99-101.
    [65]Lefebvre A H. Atomization and Sprays[M]. New York:Hemisphere Publishing Corporation,1989.
    [66]Cheng Z, Redner S. Scaling Theory of Fragmentation[J]. Physical Review Letters,1988, 60 (24):2450-2453.
    [67]Ben-Naim E, Krapivsky P L. Fragmentation with a Steady Source[J]. Physics Letters A, 2000,275 (1-2):48-53.
    [68]Ernst M H, Szamel G. Fragmentation Kinetics[J]. Journal of Physics A:Mathematical and General,1993,26 (22):6085-6091.
    [69]Treat R P. On the Similarity Solution of the Fragmentation Equation[J]. Journal of Physics A:Mathematical and General,1997,30 (7):2519-2543.
    [70]Huang J, Et Al. Cut-Off Model and Exact General Solutions for Fragmentation with Mass Loss[J]. Journal of Physics A:Mathematical and General,1996,29 (23):7377-7388.
    [71]Gorokhovski M A, Saveliev V L. Analyses of Kolmogorov's Model of Breakup and Its Application into Lagrangian Computation of Liquid Sprays under Air-Blast Atomization[J]. Physics of Fluids,2003,15 (01):184-192.
    [72]Apte S V, Gorokhovski M, Moin P. Les of Atomizing Spray with Stochastic Modeling of Secondary Breakup[J]. International Journal of Multiphase Flow,2003,29 (9):1503-1522.
    [73]Zhou W, Zhao T, Wu T, et al. Application of Fractal Geometry to Atomization Process[J]. Chemical Engineering Journal,2000,78 (2-3):193-197.
    [74]龚欣,刘海峰,李伟锋等.气流式雾化过程的有限随机分裂模型[J].化工学报,2005, 56(5):786-790.
    [75]Liu H, Gong X, Li W, et al. Prediction of Droplet Size Distribution in Sprays of Prefilming Air-Blast Atomizers[J]. Chemical Engineering Science,2006,61 (6): 1741-1747.
    [76]Horv, Aacute, Th V K, et al. Anomalous Density Dependence of Static Friction in Sand[J]. Physical Review E,1996,54 (2):2005-2009.
    [77]Umbanhowar P B, Melo F, Swinney H L. Localized Excitations in a Vertically Vibrated Granular Layer[J]. Nature,1996,382 (6594):793-796.
    [78]Behringer B. Granular Materials:Taking the Temperature[J]. Nature,2002,415 (6872): 594-595.
    [79]Caulkin R, Jia X, Fairweather M, et al. Geometric Aspects of Particle Segregation[J]. Physical Review E,2010,81 (5):051302.
    [80]Otto M, Bouchaud J P, Claudin P, et al. Anisotropy in Granular Media: Classical Elasticity and Directed-Force Chain Network[J]. Physical Review E,2003,67 (3): 031302.
    [81]Coulomb C. Memoires De Mathematiques Et De Physique Presentes a L'academie Royale Des Sciences Par Divers Savans Et Lus Dans Les Assemblees [M]. Paris: L'imprimerie Royale,1773.
    [82]谢洪勇,刘志军.粉体力学与工程[M].北京:化学工业出版社,2007.
    [83]Geldart D. Types of Gas Fluidization[J]. Powder Technology,1973,7 (5):285-292.
    [84]李洪钟,郭慕孙.气固流态化的散式化[M].北京:化学工业出版社,2002.
    [85]Marzocchella A, Salatino P. Fluidization of Solids with CO2 at Pressures from Ambient to Supercritical[J]. AIChE Journal,2000,46 (5):901-910.
    [86]Poletto M, Salatino P, Massimilla L. Fluidization of Solids with Co2 at Pressures and Temperatures Ranging from Ambient to Nearly Critical Conditions[J]. Chemical Engineering Science,1993,48 (3):617-621.
    [87]Liu D, Kwauk M, Li H. Aggregative and Particulate Fluidization—The Two Extremes of a Continuous Spectrum[J]. Chemical Engineering Science,1996,51 (17):4045-4063.
    [88]Vogt C, Schreiber R, Brunner G, et al. Fluid Dynamics of the Supercritical Fluidized Bed[J]. Powder Technology,2005,158 (1-3):102-114.
    [89]Grace J R. Contacting Modes and Behaviour Classification of Gas—Solid and Other Two-Phase Suspensions[J]. The Canadian Journal of Chemical Engineering,1986,64 (3): 353-363.
    [90]Goossens W R A. Classification of Fluidized Particles by Archimedes Number[J]. Powder Technology,1998,98 (1):48-53.
    [91]Yang W C. Modification and Re-Interpretation of Geldart's Classification of Powders[J]. Powder Technology,2007,171 (2):69-74.
    [92]陆厚根.粉体工程导论[M].上海:同济大学出版社,1993.
    [93]Ouchiyama N, Tanaka T. Estimation of the Average Number of Contacts between Randomly Mixed Solid Particles[J]. Industrial & Engineering Chemistry Fundamentals, 1980,19 (4):338-340.
    [94]Yu A B, Standish N. An Analytical—Parametric Theory of the Random Packing of Particles[J]. Powder Technology,1988,55 (3):171-186.
    [95]Stovall T, De Larrard F, Buil M. Linear Packing Density Model of Grain Mixtures[J]. Powder Technology,1986,48 (1):1-12.
    [96]Yu A B, Zou R P, Standish N. Modifying the Linear Packing Model for Predicting the Porosity of Nonspherical Particle Mixtures[J]. Industrial & Engineering Chemistry Research,1996,35 (10):3730-3741.
    [97]Yu A B, Standish N. Estimation of the Porosity of Particle Mixtures by a Linear-Mixture Packing Model[J]. Industrial & Engineering Chemistry Research,1991,30 (6): 1372-1385.
    [98]Westman A E R. The Packing of Particles:Empirical Equations for Intermediate Diameter Ratios[J]. Journal of the American Ceramic Society,1936,19 (1-12):127-129.
    [99]Abreu C R A, Tavares F W, Castier M. Influence of Particle Shape on the Packing and on the Segregation of Spherocylinders Via Monte Carlo Simulations[J]. Powder Technology, 2003,134(1-2):167-180.
    [100]Williams S R, Philipse A P. Random Packings of Spheres and Spherocylinders Simulated by Mechanical Contraction[J]. Physical Review E,2003,67 (5):051301.
    [101]陆鹏,李水乡,赵健等.球和球柱体的二元随机填充研究[J].中国科学:物理学力学天文学,2010,40(11):1422-1430.
    [102]Williams J C. The Segregation of Particulate Materials. A Review[J]. Powder Technology,1976,15 (2):245-251.
    [103]Bridgwater J. Fundamental Powder Mixing Mechanisms[J]. Powder Technology,1976, 15 (2):215-236.
    [104]Parsons D S. Particle Segregation in Fine Powders by Tapping as Simulation of Jostling During Transportation [J]. Powder Technology,1976,13 (2):269-277.
    [105]Mobius M E, Lauderdale B E, Nagel S R, et al. Brazil-Nut Effect: Size Separation of Granular Particles[J]. Nature,2001,414 (6861):270-270.
    [106]Rosato A, Strandburg K J, Prinz F, et al. Why the Brazil Nuts Are on Top:Size Segregation of Particulate Matter by Shaking[J]. Physical Review Letters,1987,58 (10): 1038-1040.
    [107]Jullien R, Meakin P. A Mechanism for Particle Size Segregation in Three Dimensions[J]. Nature,1990,344 (6265):425-427.
    [108]Jullien R, Meakin P, Pavlovitch A. Three-Dimensional Model for Particle-Size Segregation by Shaking[J]. Physical Review Letters,1992,69 (4):640-643.
    [109]Duran J, Rajchenbach J, Cl, et al. Arching Effect Model for Particle Size Segregation[J]. Physical Review Letters,1993,70 (16):2431-2434.
    [110]Knight J B, Jaeger H M, Nagel S R. Vibration-Induced Size Separation in Granular Media: The Convection Connection[J]. Physical Review Letters,1993,70 (24): 3728-3731.
    [111]Cooke W, Warr S, Huntley J M, et al. Particle Size Segregation in a Two-Dimensional Bed Undergoing Vertical Vibration[J]. Physical Review E,1996,53 (3):2812-2822.
    [112]Knight J B, Ehrichs E E, Kuperman V Y, et al. Experimental Study of Granular Convection[J]. Physical Review E,1996,54 (5):5726-5738.
    [113]Krantz M, Zhang H, Zhu J. Characterization of Powder Flow: Static and Dynamic Testing[J]. Powder Technology,2009,194 (3):239-245.
    [114]Wang W, Zhang J, Yang S, et al. Experimental Study on the Angle of Repose of Pulverized Coal[J]. Particuology,2010,8 (5):482-485.
    [115]Fitzpatrick J J, Barringer S A, Iqbal T. Flow Property Measurement of Food Powders and Sensitivity of Jenike's Hopper Design Methodology to the Measured Values[J]. Journal of Food Engineering,2004,61:399-405.
    [116]Ganesan V, Muthukumarappan K, Rosentrater K A. Flow Properties of Ddgs with Varying Soluble and Moisture Contents Using Jenike Shear Testing[J]. Powder Technology,2008,187(2):130-137.
    [117]Juliano P, Muhunthan B, Barbosa-Canovas G V. Flow and Shear Descriptors of Preconsolidated Food Powders[J]. Journal of Food Engineering,2006,72 (2):157-166.
    [118]Eckhoff R K, Leversen P G. A Further Contribution to the Evaluation of the Jenike Method for Design of Mass Flow Hoppers[J]. Powder Technology,1974,10 (1-2):51-58.
    [119]Kumar V, De La Luz Reus-Medina M, Yang D. Preparation, Characterization, and Tabletting Properties of a New Cellulose-Based Pharmaceutical Aid[J]. International Journal of Pharmaceutics,2002,235 (1-2):129-140.
    [120]Abdullah E C, Geldart D. The Use of Bulk Density Measurements as Flowability Indicators[J]. Powder Technology,1999,102(2):151-165.
    [121]Harnby N, Hawkins A E, Vandame D. The Use of Bulk Density Determination as a Means of Typifying the Flow Characteristics of Loosely Compacted Powders under Conditions of Variable Relative Humidity[J]. Chemical Engineering Science,1987,42 (4): 879-888.
    [122]Schussele A, Bauer-Brandl A. Note on the Measurement of Flowability According to the European Pharmacopoeia[J]. International Journal of Pharmaceutics,2003,257 (1): 301-304.
    [123]张鹏.卡尔指数法在评价煤粉粉体特性中的应用[J].中国粉体技术,2000,6(5):33-36.
    [124]奚新国,张耀金.粉体流动性能的测试研究[J].盐城工学院学报(自然科学版),2003,16(1):4-7.
    [125]Dong Chen X. Mathematical Analysis of Powder Discharge through Longitudinal Slits in a Slowly Rotating Drum:Objective Measurements of Powder Flowability[J]. Journal of Food Engineering,1994,21 (4):421-437.
    [126]Ahn H. Computer Simulation of Rapid Granular Flow through an Orifice[J]. Journal of Applied Mechanics,2007,74 (1):111-118.
    [127]Ahn H, Basaranoglu Z, Yilmaz M, et al. Experimental Investigation of Granular Flow through an Orifice[J]. Powder Technology,2008,186 (1):65-71.
    [128]Hann D, Strazisar J. Influence of Particle Size Distribution, Moisture Content, and Particle Shape on the Flow Properties of Bulk Solids[J]. Instrumentation Science & Technology,2007,35 (5):571-584.
    [129]Teunou E, Fitzpatrick J J. Effect of Relative Humidity and Temperature on Food Powder Flowability[J]. Journal of Food Engineering,1999,42 (2):109-116.
    [130]Podczeck F, Mia Y. The Influence of Particle Size and Shape on the Angle of Internal Friction and the Flow Factor of Unlubricated and Lubricated Powders[J]. International Journal of Pharmaceutics,1996,144 (2):187-194.
    [131]Podczeck F, Sharma M. The Influence of Particle Size and Shape of Components of Binary Powder Mixtures on the Maximum Volume Reduction Due to Packing[J]. International Journal of Pharmaceutics,1996,137 (1):41-47.
    [132]Beverloo W A, Leniger H A, Van De Velde J. The Flow of Granular Solids through Orifices[J]. Chemical Engineering Science,1961,15 (3-4):260-269.
    [133]Brown C L, Richards J C. Principle of Powder Mechanics[M]. Oxford:Pergamon Press, 1970.
    [134]Humby S, Tuzun U, Yu A B. Prediction of Hopper Discharge Rates of Binary Granular Mixtures[J]. Chemical Engineering Science,1998,53 (3):483-494.
    [135]Spink C D, Nedderman R M. Gravity Discharge Rate of Fine Particles from Hoppers[J]. Powder Technology,1978,21 (2):245-261.
    [136]Altenkirch R A, Eichhorn R. Effect of Fluid Drag on Low Reynolds Number Discharge of Solids from a Circular Orifice[J]. AIChE Journal,1981,27 (4):593-598.
    [137]李志义,王淑兰,丁信伟.粉体物料和料斗材料对料仓流型的影响[J].化学工业与工程技术,2000,21(1):12-14.
    [138]Cates M E, Wittmer J P, Bouchaud J P, et al. Jamming, Force Chains, and Fragile Matter[J]. Physical Review Letters,1998,81 (9):1841-1844.
    [139]Peters J F, Muthuswamy M, Wibowo J, et al. Characterization of Force Chains in Granular Material[J]. Physical Review E,2005,72 (4):041307.
    [140]Leung L S, Jones P J. Flow of Gas-Solid Mixtures in Standpipes. A Review[J]. Powder Technology,1978,20 (2):145-160.
    [141]Li H, Kwauk M. Vertical Pneumatic Moving-Bed Transport—Ⅱ. Experimental Findings[J]. Chemical Engineering Science,1989,44 (2):261-271.
    [142]Chaouki J, Chavarie C, Klvana D, et al. Effect of Interparticle Forces on the Hydrodynamic Behaviour of Fluidized Aerogels[J]. Powder Technology,1985,43 (2): 117-125.
    [143]Pacek A W, Nienow A W. Fluidisation of Fine and Very Dense Hardmetal Powders[J]. Powder Technology,1990,60(2):145-158.
    [144]Geldart D, Abrahamsen A R. Homogeneous Fluidization of Fine Powders Using Various Gases and Pressures[J]. Powder Technology,1978,19 (1):133-136.
    [145]Yates J G. Effects of Temperature and Pressure on Gas-Solid Fluidization[J]. Chemical Engineering Science,1996,51 (2):167-205.
    [146]Lin C-L, Wey M-Y, You S-D. The Effect of Particle Size Distribution on Minimum Fluidization Velocity at High Temperature[J]. Powder Technology,2002,126 (3): 297-301.
    [147]Barletta D, Donsi G, Ferrari G, et al. Solid Flow Rate Prediction in Silo Discharge of Aerated Cohesive Powders[J]. AIChE Journal,2007,53 (9):2240-2253.
    [148]Huang W, Gong X, Guo X, et al. Discharge Characteristics of Cohesive Fine Coal from Aerated Hopper[J]. Powder Technology,2009,194 (1-2):126-131.
    [149]Ferrari G, Bell T A. Effect of Aeration on the Discharge Behaviour of Powders[J]. Powder Handling and Processing,1998,10:269-274.
    [150]Ouwerkerk C E D, Molenaar H J, Frank M J W. Aerated Bunker Discharge of Fine Dilating Powders[J]. Powder Technology,1992,72 (3):241-253.
    [151]郑利娇,郭晓镭,代正华等.粉煤在流化料仓中的下料特性[J].化工学报,2007,58(9):2375-2381.
    [152]Lu H, Guo X, Gong X, et al. Experimental Study on Aerated Discharge of Pulverized Coal[J]. Chemical Engineering Science,2012,71:438-448.
    [153]Lu H, Ip E, Scott J, et al. Effects of Particle Shape and Size on Devolatilization of Biomass Particle[J]. Fuel,2010,89 (5):1156-1168.
    [154]Liliedahl T, Sjostrom K. Heat Transfer Controlled Pyrolysis Kinetics of a Biomass Slab, Rod or Sphere[J]. Biomass and Bioenergy,1998,15 (6):503-509.
    [155]Horbaj P. Model of the Kinetics of Biomass Pyrolysis[J]. Drev Vysk,1997,42:15-23.
    [156]Saastamoinen J J. Simplified Model for Calculation of Devolatilization in Fluidized Beds[J]. Fuel,2006,85 (17-18):2388-2395.
    [157]涂新斌,王思敬.图像分析的颗粒形状参数描述[J].岩土工程学报,2004,26(5):659-662.
    [158]Heywood H. Numerical Definitions of Particle Size and Shape[J]. Journal of the Society of Chemical Industry,1937,56 (7):149-154.
    [159]周云龙.植物生物学[M].北京:高等教育出版社,2004.
    [160]陈江峰,王振芬,闫纯忠.碎屑颗粒圆度的分形描述[J].煤田地质与勘探,2002,30(4):16-17.
    [161]曾凡桂,王祖讷.煤粉碎过程中颗粒形状的分形特征[J].煤炭转化,1999,22(1):27-30.
    [162]Brace W F, Paulding B W, Jr., Scholz C. Dilatancy in the Fracture of Crystalline Rocks[J]. J. Geophys. Res.,1966,71 (16):3939-3953.
    [163]Germanovich L N, Salganik R L, Dyskin A V, et al. Mechanisms of Brittle Fracture of Rock with Pre-Existing Cracks in Compression [J]. Pure and Applied Geophysics,1994, 143(1):117-149.
    [164]Womac A R, Yu M, Lgathinathane C, et al. Shearing Characteristics of Biomass for Size Seduction[C]. ASAE Annual International Meeting,2005.
    [165]Kollmann F F, Cote W A木材学与木材工艺学原理-实体木材[M].北京:中国林业出版社,1991.
    [166]Geldart D, Abdullah E C, Hassanpour A, et al. Characterization of Powder Flowability Using Measurement of Angle of Repose[J]. China Particuology,2006,4 (3-4):104-107.
    [167]Jenike A W. Storage and Flow of Solids[M]. Salt Lake City University of Utah,1964.
    [168]Iqbal T, Fitzpatrick J J. Effect of Storage Conditions on the Wall Friction Characteristics of Three Food Powders[J]. Journal of Food Engineering,2006,72 (3):273-280.
    [169]Guerin E, Tchoreloff P, Leclerc B, et al. Rheological Characterization of Pharmaceutical Powders Using Tap Testing, Shear Cell and Mercury Porosimeter[J]. International Journal of Pharmaceutics,1999,189 (1):91-103.
    [170]Johansson B, Alderborn G. The Effect of Shape and Porosity on the Compression Behaviour and Tablet Forming Ability of Granular Materials Formed from Microcrystalline Cellulose[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2001,52 (3):347-357.
    [171]龚欣,郭晓镭,代正华等.高固气比状态下的粉煤气力输送[J].化工学报,2006,57(3):640-644.
    [172]肖为国.大管径高浓度粉煤气力输送特性研究[D].上海:华东理工大学,2007.
    [173]封金花.水平管高浓度气固两相流流动特征研究[D].上海:华东理工大学,2003.
    [174]郭晓镭,龚欣,代正华等.竖直上升管中密相气力输送压降特性[J].化工学报,2007,58(3):602-607.
    [175]程慧星,龚欣,郭晓镭等.料仓中粉体流动数学模型分析[J].化学工程,2005,33(3):33-35.
    [176]周金豪.生物质颗粒与粉煤共混流动性及共气化特性研究[D].上海:华东理工大学,2010.
    [177]Lu H, Guo X, Gong X, et al. Study of the Flowability of Pulverized Coals[J]. Energy & Fuels,2009,23 (11):5529-5535.
    [178]王川红,郭晓镭,龚欣等.粒度、湿含量对神府烟煤煤粉流动性参数的影响[J].华东理工大学学报(自然科学版),2008,34(3):377-382.
    [179]Sandler N, Reiche K, Heinamaki J, et al. Effect of Moisture on Powder Flow Properties of Theophylline[J]. Pharmaceutics,2010,2 (3):275-290.
    [180]卢珊珊,陆海峰,郭晓镭等.激光粒度仪测定煤粉粒度及分布的方法研究[J].中国粉体技术,2010,16(4):5-8.
    [181]GB/T 211-1996.煤中全水分的测定方法[Z].1996:89-92.
    [182]GB/T 217-1996.煤的真相对密度测定方法[Z].1996:136-139.
    [183]ASTM D6128-00. Standard Test Method for Shear Testing of Bulk Solids Using the Jenike Shear Cell[Z].
    [184]Haunser H H. Friction Conditions in a Mass of Metal Powder[J]. Int J Powder Metall, 1967,3:7-13.
    [185]Rosato A, Prinz F, Standburg K J, et al. Monte Carlo Simulation of Particulate Matter Segregation[J]. Powder Technology,1986,49 (1):59-69.
    [186]Blair D, Aranson I S, Crabtree G W, et al. Patterns in Thin Vibrated Granular Layers: Interfaces, Hexagons, and Superoscillons[J]. Physical Review E,2000,61 (5):5600-5610.
    [187]Duran J, Rajchenbach J, Clement E. Arching Effect Model for Particle Size Segregation[J]. Physical Review Letters,1993,70 (16):2431-2434.
    [188]Hong D C, Quinn P V, Luding S. Reverse Brazil Nut Problem:Competition between Percolation and Condensation[J]. Physical Review Letters,2001,86 (15):3423-3426.
    [189]蒋阳,程继贵.粉体工程[M].合肥:合肥工业大学出版社,2005.
    [190]Darelius A, Lennartsson E, Rasmuson A, et al. Measurement of the Velocity Field and Frictional Properties of Wet Masses in a High Shear Mixer[J]. Chemical Engineering Science,2007,62 (9):2366-2374.
    [191]Carr R L. Evaluating Flow Properties of Solids[J]. Chem Eng,1965,72:163-167.
    [192]Carr R L. Particle Behaviour Storage and Flow[J]. Br Chem Eng,1970,15:1541-1549.
    [193]Nedderman R M. Statics and Kinematics of Granular Materials[M]. London: Cambridge University Press,1992.
    [194]肖林京,李振华,肖洪彬.煤仓结拱现象的原因分析和解决方法[J].煤矿机电,2007(5):16-18.
    [195]卢寿慈.粉体加工技术[M].北京:中国轻工业出版社,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700