基于静电传感器气/固两相流参数测量方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气/固两相流广泛存在于工业生产和生活中,准确测量其流体参数是非常重要的。固体颗粒在被传送过程中由于碰撞与摩擦等原因,其表面会产生电荷。基于静电感应原理,采用静电传感器对气/固两相流参数进行测量(如电荷量、速度参数等)。静电传感器具有结构简单,价格低廉等优点,在测量气/固两相流参数中有很好的应用前景。
     本文研究所涉及的静电传感器有插入式和环状两种,在前人工作的基础上,针对电极静电感应物理模型、电极特性及气/固两相流速度参数测量进行了研究,主要工作如下:
     (1).根据静电感应原理,建立了插入式静电传感器点电荷数学模型、绳流数学模型和均匀弥散流数学模型;相应地,也获得了环状静电传感器的三种数学模型:中心轴线上连续质点的数学模型、均匀弥散流数学模型和绳流数学模型;并讨论了插入式电极和环状电极的灵敏度特性,所得结论可在设计电极时作为参考。
     (2).根据测量系统传递函数的不变性,结合插入式静电传感器的点电荷数学模型,推导得到了插入式静电传感器空间滤波特性。并结合实验,进而得到了插入式电极空间滤波法测速的“3dB”原则。
     (3).采用自由下落的细沙(粒径为0.1mm)作为测量对象,在2-7m/s的速度范围内完成互相关法速度测量。当细沙下落高度不变时,互相关测量结果偏离平均值的重复性误差在±2%之内;由于互相关法测量速度是一种绝对测量方法,利用环状电极互相关法速度测量结果对插入式电极空间滤波法速度测量结果进行了调整。
     (4).利用所建实验装置,细线速度在1-25m/s的速度范围内,进行了气/固两相流速度参数模拟测量实验。结合实验探讨了影响插入式电极测量信号的一些因素:改变细线在管道截面上的位置,得到了电极灵敏度的分布图;在管道同一截面位置上改变细线速度,验证了电极的空间滤波特性。在完成互相关法和空间滤波法速度测量的同时,利用霍尔元件得到的细线速度,校正了环状电极互相关法测量速度,再用校正后的环状电极互相关法测量速度对插入式电极的空间滤波法测量速度进行了校正调整。
The accurate and on-line measurement of flow parameters is of great importance to gas-solid two phase flow widespread existing in lives and industries. Due to collision and friction of solid phase particles during being conveyed into the pipe, they will create charge on their superficies, and so electrostatic sensor may measure and obtain flow parameters of gas-solid two phase flow by electrostatic induction principle, such as solid phase charge quantity and velocity. Electrostatic sensors have better application prospect to measure flow parameters of gas-solid two phase flow with its simple structure and low cost.
     There lie two types of studied electrostatic sensors that include the inserted and ring probe, and based on the predecessor work this thesis mainly studies the physical model of electrostatic induction, electrostatic sensor characteristic and the measurement method of gas-solid two phase flow parameters. The main work is as following:
     (1). The mathematical models of the inserted electrostatic sensor are debated which include the mathematical model of the single particle and the mathematical model of the homogenous flow dispersed by electrostatic induction principle in this paper; With the same idea, three mathematical models of ring electrostatic sensor are obtained:the mathematical model of continuous mass point at the pipe central axial, the mathematical model of the homogeneous flow dispersed and the mathematical model of the roping flow; The sensitivity characteristics of ring and inserted probe researched have better actions guide electrostatic sensor design.
     (2). The velocity measuring method of the inserted electrostatic sensor using spatial filtering effects is obtained with the point charge mathematical model established in this paper and transfer function inalterability of measurement system. With experiments it is obtained that "3dB" method of the inserted probe spatial filter velocity measures particles velocity of gas-solid two phase flow.
     (3). When velocity of thin sand(0.1mm) seemed as measured object is within2-7m/s, the velocity is measured with cross correlation principle. With stationary velocity of thin sand, the repeatability error that measured velocity result deviates the mean value of cross correlation velocity sample is in range of±2%; Because cross correlation measurement method belongs to an absolutely measuring velocity method, adopting cross-correlation velocity of ring electrostatic sensor adjusts spatial filter velocity of electrostatic sensor inserted into pipe.
     (4). Measurement experiments about velocity parameter of gas-solid two phase flow are realized with made-up experiment equipment, and the velocity value may be adjusted from1m/s to25m/s. Some influent factors of inserted probe are debated with made-up experiment equipment:With the change of thin line position on cross section of pipe the sensitivity plot of inserted probe is obtained; With the change of thin line velocity on the same position of pipe cross section, experiments proof the spatial filter characteristic of the inserted probe. When measurement system obtains cross correlation velocity and spatial filter velocity, employing hall element obtains the true velocity of thin line, and with the'true'thin line velocity cross correlation velocity of ring probe is corrected, with which the spatial filter velocity of inserted probe is adjusted.
引文
1. Yan Y., Byrne B. and Coulthard J., Sensing field homogeneity in mass flow rate measurement of pneumatically conveyed solids [J], Flow Measurement Instrument,1995,6:115-119.
    2. Yan Y, Mass flow measurement of bulk solids in pneumatic pipelines [J], Measurement Science and Technology,1996,7:1687-1706.
    3. Xie C. G and Stott A. L., Paskowski A. and Beck M. S., Design of capacitance electrodes for concentration measurement of two phase flow [J], Measurement Science and Technology,1990,1: 65-78.
    4. Yang W. Q. and Liu S., Role of Tomography in Gas/solids Flow Measurement [J]. Flow Measurement and Instrumentation,2000,11:237-244.
    5. 李海青等编著,两相流参数检测及应用[M],杭州:浙江大学出版社,1991.
    6. Yan Y., Bvrne B. and Coulthard J., Radiological measurement of dilute inhomogeneous solids loading in pneumatic conveying systems, Measurement Science and Technology [J],1994:110-119.
    7. Yan Y and Barratt I. R., Software for on-line mass flow measurement of particles in pneumatic suspension [J], The Institution of Electrical Engineers,1996,5:1-3.
    8. Barratt I. R., Yan Y, Byrne B. and Bradley M. S. A., Mass flow measurement of pneumatically conveyed solids using radiometric sensors [J], Flow Measurement and Instrumentation,2000,11: 223-235.
    9. McLaughlin D. K. and Tiedermann W. G., Bias correction for individual realization laser Doppler measurements in turbulent flows [J], Phys of Fluids,1973,16:2082-2088.
    10. Carter R. M. and Yan Y, An Instrumentation System Using Combined Sensing Strategies for Online Mass Flow Rate Measurement [J], IEEE Transactions on Instrument and Measurement,2005,54(4): 1433-1437.
    11. Pan R., Material properties and flow modes in pneumatic conveying [J], Powder Technology,1999, 104:157-163.
    12. Lech M., Mass flow rate measurement in vertical pneumatic conveying of solid [J], Powder Technology,114:55-58.
    13.赵鑫,金宁德,王化祥,相关流量测量技术发展[J],化工自动化及仪表,2005,32(1):1-5.
    14. Armour-Chelu D. I. and Woodhead S. R., Comparison of the electric charging properties of particulate materials in gas-solids flows in pipelines [J], Journal of Electrostatics,2002,56:87-101.
    15. Woodhead S. R. and Armour-Chelu D. I., The influence of humidity, temperature and other variables on the electric charging characteristics of particulate aluminium hydroxide in gas-solid pipeline flows [J], Journal of Electrostatics,2003,58:171-183.
    16.李海青,黄志尧等编著,软测量技术原理及应用[M],杭州:浙江大学出版社,2000.
    17. Fisher M. J. and Krause F. R., The cross-beam correlation technique [J], Journal Fluid Mech,1967, 28(4):705-717.
    18. Beck M. S., Drane J., Plaskowski A. and Wainwright N., Particle velocity and mass flow mesurement in pneumatic conveyors [J], Powder Technology,1968,9(2):269-277.
    19. Mesch F. and Kipphan H., Solid flow measurement by correlation method [J], Opto-electronics,1972, 4:451-462.
    20. Coulthard J., The priciple of ultrasonic cross-correlation flowmetering [J], Measurement and Control, 1973,8:65-70.
    21. Ong K. H. and Beck M. S., Slurry flow velocity, concentration and particle size measurement using flow noise and correlation techniques [J], Measurement and Control,1974,8:453-463.
    22. Green R. G, Kwan H. K., John R. and Beck M. S., A low-cost solids flowmeter for industrial use [J], J. Phys. E:Science and Instrument,1978,11:1005-1010.
    23. Beck M. S., Correlation in instruments:cross correlation flowmeters [J], J. Phys. E:Science Instrument,1981,14:7-19.
    24. Hammer E. A. and Green R. G., The spatial filter effect of capacitance transducer electrodes [J], J. Phys. E:Science and Instrument,1983,16:438-443.
    25. Huang S. M., Plaskowski A., et al., Tomographic imaging of industrial process equipment techniques and applications [J], J. Phys. E:Science and Instrument,1989,22(3):173-177.
    26. Kobyashi S. and Miyahara S., Development of microwave powder flow meter [J], Instrumentation, 1984,27(9):68-73.
    27. Gajewski J. B., Continuous non-contact measurement of electric charges of solid particles in pipes of pneumatic transport, Part I:Physical and mathematical models of a method [J], IEEE/ISA Annual Meeting,1989:1958-1963.
    28. Irons G. A. and Chang J. S., Particle fraction and velocity measurement in gas-power streams by capacitance transducers [J], Multiphase Flow,1985,9:289-297.
    29. Huang S. M., et al., A capacitance-based solids concentration transducer with high immunity to interference from the electrostatic charge generated in solids/air two-component flows [J], Transaction Instrument measurement and control,1988,10(2):98-102.
    30. Coulthard J., Bvrne B. and Yan Y., Non-restrictive measurement of solids mass flow rate in pneumatic conveying systems [J], Measurement and Control,1991,24(4):113-120.
    31. Yan Y., Byrne B., Woodhead S. R. and Coulthard J., Velocity measurement of pneumatically conveyed solids using electrodynamic sensors [J], Measurement Science & Technology,1995,6:515-537.
    32. Yan Y. and Byrne B., Measurement of solid deposition [J], Powder Technology,1997,91:131-139.
    33. Green R, G., et al., Concentration profiles in a gravity chute conveyor by optical tomography measurement [J], Powder Technology,1998,95:49-54.
    34. Gajewski J. B., Non-intrusive solids charge and mass flow measurements with an electrostatic flow probe [J], Journal of Electrostatics,1999,46:261-276.
    35. Bene s P. and Zehnula K., New design of the two-phase flow meters [J], Sensors and Actuators,2000, 86:220-225.
    36. O'Sullivan I. J. and Wright W. M. D., Ultrasonic measurement of gas flow using electrostatic transducer [J], Ultrasonic,2002,40:407-411.
    37. Xu L. J., Robert Carter and Yan Y., Mass Flow Measurement of Fine Particles in a Pneumatic Suspension Using Electrostatic Sensing and Neural Network Techniques [J], Instrumentation and Measurement Technology Conference,2005,3:17-19.
    38. Marc D., Olivier R., Yann L. T. and Jean P. T., Study of water tension differences in heterogeneous sandy soils using surface ERT [J], Journal of Applied Geophysics,2008,64:83-98.
    39. James N. K., Peter B. R., et al., Prediction of antidepressant response in both threshold RUL and fixed high dose RUL ECT [J], Journal of Affective Disorders,2009,112:85-91.
    40.许传龙,气固两相流颗粒荷电及流动参数检测方法研究[D],南京东南大学,2007.
    41. Xu C. L. Wang S. M., et al., Velocity measurement of pneumatically conveyed solid particles using an electrostatic [J], Measurement Science and Technology,2008,19:1-9.
    42. Zhou L. X., Li Y., Chen T. and Xu Y, Study on the effect of swirl numbers on strongly swirling turbulent gas-particle flows using a phase-Doppler particle anemometer [J], Power Technology,2000, 112:79-86.
    43. Wu K., Simultaneous measurement of flow velocity and Dopple rangle by the use of Doppler optical coherence tomography [J], Optics and Lasers in Engineering,2004,42:303-313.
    44. Bruno G and Sylvain P., Measurement of acoustic particle velocities in enclosed sound field: Assessment of two Laser Doppler Velocimetry measuring systems [J], Applied Acoustics,2005,66: 15-44.
    45.徐苓安编著,相关测量技术[M],天津:天津大学出版社,1988.
    46. Carter R. M. and Yan Y., On-line measurement of particle size distribution and mass flow rate of particles in pneumatic suspension using combined imaging and electrostatic sensors [J], Flow Measurement and Instrumentation,2005,16:309-314.
    47. Ator J. T., Image-Velocity Sensing with Parallel-Slit Reticles [J], J. Opt. Soc. Amer.,1963,53: 1416-1422.
    48.吴新杰,王师,基于电容式传感器空间滤波效应测速原理分析[J],传感器技术,1999,18(4):27-28,37.
    49.孙渝生,激光多普勒测量技术及其应用[M],上海:上海科学技术文献出版社,1995.
    50. Yeh H. and Cummins H. Z., Application Letter [J],1964,4:178
    51.孙渝生,赵建新,范丽娟,激光多普勒测量技术的最新发展[J],传感器世界,1998,8:20-26.
    52. Yan Y. and Byrne B., Measurement of solids deposition in pneumatic conceying [J], Powder technology,1997,91:131-139.
    53. Mennell J., Byrne B. and Yan Y., Appraisal of radiometric techniques to determine absolute solids fraction in pneumatic suspensions of particulate solids [J], Flow measurement and instrumentation, 2000,11:213-221.
    54.王式民,等,光散射粒度测量中Mie理论两种改进的数值计算方法[J],计量学报,1999,20(4):279-285.
    55. Xie C. G, Plaskowski A. and Beck M. S., Eight-electrode capacitance system for two-component flow identification [J], IEE Proc.,1989,4:173-190.
    56. Yan Y. and Reed A. R., Experimental evaluation of capacitance transducer for volumetric concentration measurement of particulate solids [J], Flow Measurement and Instrumentation,1999,10: 45-49.
    57. Xu L. J., Weber A. P. and Kasper G., Capacitance-based concentration measurement for gas-particle system with low particles loading [J], Flow Measurement and Instrumentation,2000,11:185-194.
    58. Hu H. L., Xu T. M., Hui S. E. and Zhou Q. L., A novel capacitive system for the concentration measurement of pneumatically conveyed pulverized fuel at power stations [J], Flow Measurement and Instrumentation,2006,17:87-92.
    59.邵富群,等,气固二相流电容式固相浓度传感器[J].传感器技术,1999,1:5-6,16.
    60.金锋,等,一种新型结构的电容式相浓度传感器[J],东北大学学报,1998,19(6):610-613.
    61. Matousek V., Pressure drops and Flow patterns in sand-mixture pipes [J], Experimental Thermal and Fluid Science,2002,26:693-702.
    62. Menachem E. and Subir B., A novel approach for modeling concentration polarization in crossflow membrane filtration based on the equivalence of osmotic prressure model and filtration theory [J], Journal of Membrane Science,1998,45:223-241.
    63. Kaushal D. R., et al., Effect of particle size distribution on pressure drop and concentration profile in pipeline flow of highly concentrated slurry [J], International Journal of Multiphase Flow,2005,31: 809-823.
    64.金锋,等,差压-浓度法测量气/固两相流质量流量[J],东北大学学报,1999,20(5):461-463.
    65. Schlaberg H. I., Yang M. and Hoyle B. S., Ultrasound reflection tomography for industrial processes [J], Ultrasonics,1998,36:297-303.
    66. West R. M., Jia X. and Williams R. A., Parametric modelling in industrial process tomography [J], Chemical Engineering Journal,2000,77:31-36.
    67. Qiu C., Hoyle B. S. and Podd F. J. W., Engineering and application of a dual-modality process tomography system [J], Flow Measurement and Instrumentation,2007,18:247-254.
    68. Ricard F., et al., Monitoring of Multiphase Pharmaceutical Processes Using Electrical Resistance Tomography [J], Chemical Engineering Research and Design,2005,83(A7):794-805.
    69.叶茂,王式民,等,光散射法测量微粒粒径分布的一种反演遗传算法[J],工程热物理学报,1999,20(5):632-636.
    70.金锋,等,电容式传感器在高炉喷吹煤粉质量流量中的测量[J],钢铁,1999,34(10):56-59.
    71.颜华,电容层析成象技术及在高炉块状区物料可视化监测中应用的基础研究[D],沈阳东北大学,1999.
    72. Gajewski J. B., Monitoring electrostatic flow noise for mass flow and mean velocity measurement in pneumatic transport [J], Journal of Electrostatic,1996,37:261-276.
    73. Yang W. Q. and Beck M. S., A Combined Capacitance Electrodynamics Transducer for Oil Pipeline Flow Velocity Measurement [J],1ST, nchester,2001:13-25.
    74.吴建军,邵富群,工业烟道固体颗粒物排放量自动监测方法[J],仪表技术与传感器,2004,1: 46-47.
    75. Zhang J. Q. and Yan Y., On-line Continuous Measurement of Particle Size Using Electrostatic Sensors [C], Instrumentation and Measurement Technology Conference,2003, USA:877-880.
    76. Ma J. and Yan Y, Design and evaluation of electrostatic sensors for the measurement of velocity of pneumatically conveyed solids [J], Flow Measurement and Instrumentation,2000,11:195-204.
    77. Woodhead S. R. and Amadi-Echendu J. E., Solid Phase Velocity Measurements Utilising Electrostatic Sensors and Cross Correlation Signal Processing [C], IEEE Instrumentation and Measurement Technology Conference,1995.
    78. Gajewski J. B., Continuous non-contact measurement of electric charges of solid particles in pipes of pneumatic transport, Part Ⅱ:Physical and mathematical models of a method [J], IEEE/ISA Annual Meeting,1989:1964-1969.
    79. Gajewski J. B., Electrostatic, inductive ring probe bandwidth [J], Journal of Electrostatics,1996,7: 1766-1775.
    80. Gajewski J. B., Electric charge measurement in pneumatic installations [J], Journal of Electrostatics, 1997,40&41:231-236.
    81. Gajewski J. B., Dynamic effect of charged particles on the measuring the probe potential [J], Journal of Electrostatics,1997,40&41:437-442.
    82. Gajewski J. B., Static characteristics of an electrostatic flow probe [J], Journal of Electrostatic,1999, 48:49-64.
    83. Gajewski J. B., Electrostatic, Inductive ring probe bandwidth [J], Measurement Science and Technology,2002:66-75.
    84. Gajewski J. B., Non-contact electrostatic flow probe for measuring the flow rate and charge in the two-phase gas-solid flows [J], Journal of Electrostatics,2006,61:2262-2270.
    85. Gajewski J. B., Electrostatic flow probe and measuring system calibration for solids mass flow rate measurement [J], Journal of Electrostatic,1999,45:255-264.
    86. Coulthard J. and Cheng R. X., Online pulverised-fuel monitoring at Methil power station [J], Power Engineering,1997,2:27-30.
    87. Coulthard J., Cheng R. X. and R. Keech, Developments in pulverized fuel metering for coal-fired power stations [J], Power Engineering,2000,6:100-104.
    88. Yan Y, Continuous Measurement of Particulate Emissions [J], IEEE Instrumentation and Measurement,2005,10:35-39.
    89. Carter R. M. and Yan Y., An Instrumentation System Using Combined Sensing Strategies for On-Line Mass Flow Rate Measurement and Particle Sizing [J], Instrumentation and Measurement Technology Conference,2004, Italy:864-867.
    90.王芳,气固流化床静电分布的理论及实验研究[D],杭州浙江大学,2008.
    91. Park A. and Fan L. S., Electrostatic charging phenomenon in gas-liquid-solid flow systems [J], Chemical Engineering Science,2007,62(2):371-386.
    92.张宝铭,林文荻编著,静电防护技术手册[M],北京:电子工业出版社,2000.
    93.陈全,等,分体气力输送过程中的静电问题研究[J],中国安全科学学报,1996,6:170-174.
    94. Zhang P., Li K., Liu W. Z. and Cheng L. M., Characteristics of Ring Probes for Measuring Pneumatically Conveyed Solids [C], Proceedings of the 5th World Congress on Intelligent Control and Automation,2004,15:3718-3722.
    95.稿攸刚编著,屏蔽与接地[M],北京:北京邮电大学出版社,2004.
    96.洪志勇,气固两相流参数测量方法的研究[D],沈阳东北大学,2008.
    97. Machida M., et al., Mathematical Model for Charged Particle Measurement [J], J. Aerosol Science, 1996,27:205-6.
    98. Murnane S. N., Barnes R. N., Woodhead S. R. and Amadi-Echendu J. E., Electrostatic Modelling and Measurement of Airborne Particle Concentration [J], IEEE Transactions on Instrumentation and Measurement,45(2):1996.
    99. Zhang J. Y. and Coulthard J., Theoretical and experimental studies of the spatial sensitivity of an electrostatic pulverized fuel meter [J], Journal of Electrostatics,2005,63:1133-1149.
    100. Peng L. H., Zhang Y. and Yan Y., Characterization of electrostatic sensors for flow measurement of particulate solids in square-shaped pneumatic conveying pipelines [J], Sensors and Actuators A,2008, 141:59-67.
    101.徐秉铮,欧阳景,信号分析与相关技术[M],北京:科学出版社,1981.
    102. Matsumoto S., et al, Solids particle velocity in vertical gaseous suspension flows [J], Multiphase Flow, 1986,12:445-458.
    103.邵富群,相关测速中测量精度与记录长度间的关系[J],控制与决策,1988:54-56.
    104. Jin N. D., et al., Flow pattern identification of oil/water two phase flow based on kinematic wave theory [J], Flow Measurement and Instrumentation,2003,14:177-182.
    105.黄卫星,陈文梅主编,工程流体力学[M],北京:化工工业出版社,2001.
    106.姜胜耀和吴莘馨编著,漂移模型参数对两相流分析的影响[J],清华大学学报,1997,5:19-21.
    107.吴大正等编著,信号与线性系统分析[M],北京:高等教育出版社,2001.
    108.孙鑫,余安萍编著,VC++深入详解[M],北京:电子工业出版社,2006.
    109.薛年喜主编,MATLAB在数字信号处理中的应用[M],北京:清华大学出版社,2003.
    110.贝达特编,凌福根译,随机数据分析方法[M],长沙:国防工业出版社,1971.
    111. Yan Y, Xu L. J. and Peter L., Mass flow measurement Fine Particles in a Pneumatic Suspension Using Electrostatic Sensing and Neural Network Techniques [J], IEEE Transaction on Instrumentation and Measurement,2006,6(55):2330-2334.
    112.马银亮,高浓度气固两相流的数值模拟研究[D],杭州浙江大学,2001.
    113.岑可法等编著,气固分离技术与理论[M],杭州:浙江大学出版社,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700