宽范围马赫数超燃冲压发动机燃烧组织技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以掌握飞行马赫数4-7条件下超燃冲压发动机燃烧组织技术为研究目标,采用试验与数值计算相结合的方法,对多个典型来流状态下的点火方式以及燃烧性能进行了研究。
     试验在脉冲燃烧风洞完成,该风洞利用氢气和富氧空气燃烧产生试验来流,模拟参数为总温、总压、马赫数。在飞行马赫数4-7范围内选择了3个典型的设计点进行直连式试验,即:4、5.5和6.5,分别对应隔离段入口马赫数2、2.6和3。根据风洞设备的需要,设计了一套多油位多时序高精度燃料供应系统,实现了模型燃料、点火器气源和节流气源的精确供应。
     在Ma2状态下实现了乙烯燃料的可靠点火和稳定燃烧。共试验了7种点火方式,分别是:乙烯自燃点火、氢氧火炬点火、空气节流点火、氢氧火炬加空气节流点火、氢氧火炬加引导氢点火、空气节流加引导氢点火以及单独使用引导氢点火。试验表明,后3种点火方式能够可靠地点燃常温气态乙烯。
     开展了单油位注油特性试验以及多油位燃烧性能试验。利用光学显示手段,揭示了火焰发展历程,得到了不同油位的贫油极限和富油极限,建立了燃烧压力和燃料当量比之间关系的数学模型。以隔离段段未扰动区域长度、燃烧室推力以及燃料比冲为指标,进行了多种注油方式的燃烧性能试验。
     试验表明,在Ma2.6状态下引导氢仍能可靠点燃常温乙烯,但引导氢关闭后,乙烯能否自持稳定燃烧则取决于乙烯的流量大小。上壁面单独注油时,火焰主要位于上壁面附近区域,不能充分利用流道内的氧气。上下壁面同时注油时,下壁面注入的乙烯能够被上壁面火焰引燃,待下壁面发生燃烧后,其火焰又能对上壁面的燃料提供正向激励,上下壁面的火焰之间存在耦合作用。
     试验中,在Ma3状态下采用空气节流方法实现了乙烯燃料的可靠点火。定量考察了多个节流参数,包括:节流流量、燃料当量比以及节流时间,以点火时间的长短来评判各参数对点火性能的影响,绘制了点火时间与各参数之间的分布曲线,利用多元回归分析方法,建立起了空气节流点火的数学模型。
     基于上述3个典型来流状态的试验研究成果,提出了宽范围马赫数条件下固定几何形状超燃冲压发动机的燃烧组织方案的设计思路,可为工程应用提供了一定的参考。
The object of this research is to obtain the combustion organizing technology for scramjet working at flight Ma4-7conditions. Both experimental and numerical methods are employed to investigate the ignition and combustion performances at three typical inflow conditions.
     All the experiments are conducted in pulse combustion wind tunnel. The wind tunnel produces test inflow with hydrogen and oxygen-rich air combusting. The simulating parameters include total temperature, total pressure and Mach number. Three typical inflow conditions at scramjet isolator entry are chosen to represent the flow conditions in the range of flight Ma4-7, which are Ma2,2.6and3respectively. A high precision fuel supply system with multi scheduling for multi fuel supply pipelines is designed to meet the need of wind tunnel. Functions of the system include fuel supplying to scramjet model, air and hydrogen supplying to torch igniter and air supplying for throttling. All these functions are achieved very well.
     Room temperature ethylene is ignited reliably at Ma2condition. Seven igniting methods are investigated under this condition, including ethylene auto-igniting, torch igniting, air-throttling igniting, torch plus air-throttling igniting, torch plus pilot hydrogen igniting, air-throttling plus pilot hydrogen igniting, pilot hydrogen igniting. The experiments show that the last three methods can ignite ethylene reliably.
     Combustion characters with fueling at single injector and performances with fueling at multi injectors are investigated. Flame development processes of different injector are explored by high speed photograph. Lean and rich limits of ethylene equivalence ratio (ER) for these injectors are gained. A mathematic model is employed to analysis the relationship between ER and combustion pressure. Three indexes are used to evaluate combustion performance, including isolator undisturbed length, combustor thrust and fuel specific impulse.
     Pilot hydrogen can ignite ethylene at Ma2.6condition yet in experiments. However, whether ethylene can combust steady or not after hydrogen turning off depends on the quantity of ethylene. When fueling at upper wall only, the main combustion area occurs near upper wall which causes oxidizer cannot be comsued completely. When fueling at upper and lower walls simultaneously, the ethylene injected from lower wall can be ignited by flame anchored at upper wall. Then the flame at lower wall can improve combustion at upper wall inversely. So there is an interactive mechanism between upper and lower wall flame.
     Ethylene is ignited reliably by air-throttling at Ma3condition. Three parameters of air-throttling are investigated quantitatively, including throttling mass flux, ethylene equivalence ratio and throttling duration. The ignition time is used to evaluate the effect of throttling parameters. The relation curves between these parameters and ignition time are ploted respectively. Multiple unlinear regression method is used to establish a mathematic model of air-throttling ignition.
     The data got in these experiments are analysed comprehensively. Detailed insight is obtained to put forward a combustion organzing draft for scramjet working at a wide range of Mach number. This draft could be a reference for the engineering application.
引文
[1]William H. Heiser and David T. Pratt. Hypersonic Airbreathing Propulsion [M]. Ameri-can Institute of Aeronautics and Astronautics, Inc.1994
    [2]Dean Andreadis. SCRAMJET ENGINES ENABLING THE SEAMLESS INTEGRA-TION OF AIR & SPACE OPERATIONS[M]. Pratt & Whitney Space Propulsion Hypersonics, West Palm Beach, FL,33410-9600
    [3]钟萍,王颖.国外高超声速技术计划回顾与展望[C].CARS 2011-2813
    [4]Steven H W, Ming Tang, Mrssue Morris, et al. Falcon HTV-3X-A reusable hypersonic test bed [R].AIAA 2008-2544
    [5]战培国,赵听.美国高超声速巡航飞行器研发进展[J].航空科学技术,2010年第1期,5-8
    [6]Steven H W, Col Jeffrey Sherk, Dale Shell, et al. The DARPA/AF falcon program:the hypersonic technology vehicle # 2 (HTV-2) flight demonstration phase [R]. AIAA 2008-2539
    [7]童雄辉.美国“猎鹰”计划及其最新进展[J].中国航天,2005(2),42-44
    [8]Charles R. McClinton. X-43-Scramjet Power Breaks the Hypersonic Barrier [R]. AIAA 2006-1
    [9]McClinton, C.R. and Rausch, V.L. Hyper-X Program Status [C].26th Air-breathing Propulsion Subcommittee (APS) Meeting, Destin, FL 8-12 April 2002
    [10]Storch, A.R.; Ferlemann, S.M; Bittner, R.D. Hyper-X Mach 7 Scramjet Preflight Predic-tions versus Flight Results[C].28th JANNAF Air-breathing Propulsion Subcommittee Meeting. Charleston, SC. June 13-17,2005.
    [11]Ferlemann, S.M., Voland, R.T., Cabell, K, Whitte, D. Hyper-X Mach 7 Scramjet Pretest Predictions and Ground to Flight Comparison [R]. AIAA 2005-3322
    [12]Ferlemann, P. Hyper-X Mach 10 Scramjet Preflight Predictions vs. Flight Data [R]. AIAA 2005-3352
    [13]Joyce, P.J., Pomroy, J.B., Grindle, L.:The Hyper-X Launch Vehicle:Challenges and De-sign Considerations for Hypersonic Flight Testing [R]. AIAA2005-3333,
    [14]Jones, T.P.; Rock, K.E.; Cabell, K. et al.:Flight Test Performance Summary of the Propulsion System Controller of the X-43 Vehicles [C].28th Air-breathing Propulsion Subcommittee Meeting. Charleston, South Carolina. June 2005
    [15]陈英硕,叶蕾,苏鑫鑫.国外吸气式高超声速飞行器发展现状[J].飞航导弹,2008 年第12期,25-32
    [16]Robert F Faulkner, James W Weber. Hydrocarbon scramjet propulsion system develop-ment, demonstration and application [R]. AIAA 1999-4922
    [17]Robert F Faulkner. The evolution of the hySET hydrocarbon fueled scramjet engine [R]. AIAA 2003-7005
    [18]Richard B Morris. Free jet test of the AFRL HySET scramjet engine model at Mach 6.5 and 4.5 [R]. AIAA 2001-3196
    [19]David P Wishart, Thomas Fortin, Dan Guinan, et al. Design, fabrication and testing of an actively cooled scramjet propulsion [R]. AIAA 2003-0015
    [20]Albert H Boudreau. Status of the US AirForce HyTech program [R]. AIAA 2003-6947
    [21]Albert H Boudreau. Hypersonic air-breathing propulsion efforts in the air force research laboratory [R]. AIAA2005-3255
    [22]Joseph M Hank, James S Murphy, Richard C Mutzman. The X-51A scramjet engine flight demonstration program [R]. AIAA 2008-2540
    [23]M.E. Roberts, M.K. Smart, M.A. Frost. HIFiRE 7:Design to Achieve Scientific Goals [R].AIAA 2012-5841
    [24]Li. F, Choudhari. M, Chang C, et al. Transition Analysis for the HIFiRE-1 Flight Experi-ment [R]. AIAA 2011-3414
    [25]Smart. M.K, Suraweera. M. V. HIFiRE 7-Development of a 3-D Scramjet for Flight Testing [R]. AIAA 2009-7259
    [26]Adamczak, D., Alesi, H., Frost, M., HIFiRE-1:Payload Design, Manufacture, Ground Test, and Lessons Learned [R], AIAA 2009-7294
    [27]Kimmel, R. L., Adamczak, D., Gaitonde, D., et al., HIFiRE-1 Boundary Layer Transi-tion Experiment Design. AIAA 2007-0534
    [28]Kei Y. Lau., Yuk Woo., John Tran., et al. The Aerothermal, Thermal and Structural De-sign Process and Criteria for the HIFiRE-4 Flight Test Vehicle [R].AIAA 2012-5842
    [29]孙强,王健,马会民.X-51A超燃冲压发动机的研制历程[J].飞航导弹,2011年第1期,67-71
    [30]刘桐林.俄罗斯高超声速技术飞行试验计划[J]飞航导弹,2000年第4期,23-29
    [31]Alexander S Roudakov, Vyacheslav L Semenov. Recent Flight Test Results of the Joint CIAM-NASA Mach 6.5 Scramjet Flight Program [R]. NASA/TP-1998-206548
    [32]Roudakov, A., V. Semenov, V. Kopchenov, et al. Comparative Flowpath Analysis and Design Assessment of a Mach 6.5 Axisymmetric Hydrogen Fueled Scramjet Flight Test Engine [R].AIAA 96-4571
    [33]Roudakov A S, Y Schickhman, V Semenov, et al. Flight Testing an Axisymmetric Scramjet:Russian Recent Advances [C]. Proceedings of 44th Congress of the Interna-tional Astronautical Federation, Oct.16-22,1993, Graz, Austria.
    [34]Laurent SERRE, Francois. FALEMPIN PROMETHEE:the French military hypersonic propulsion program status in 2002 [C].12th AIAA International Space Planes and Hypersonic Systems and Technologies Conference.15-19 December 2003
    [35]Lentsch A, Becy R, Deneu F, et al. Air-breathing launch vehicle activities in France-the last and the next 20 years [C].12th AIAA International Space Planes and Hypersonic Systems and Technologies Conference 15-19 December 2003
    [36]Thierry Pichon., Renaud Barreteau., Thermal Protections Systems:Heritage Develop-ment Status Perspectives [R]. AIAA 2012 5846
    [37]Takeshi Nishizawa, Wataru Sarae,Takao Munenaga, et al. Overview of high speed flight demonstration project [C].12th AIAA International Space Planes and Hypersonic Sys-tems and Technologies Conference.15-19 December 2003
    [38]Kenji Fujii, Shinji Ishimoto, Takashi Mugitani, et al. Present Status and Prospects of JAXA's Research on Future Space Transportation System [R]. AIAA 2012 5849
    [39]Hiroaki Kobayashi, Hideyuki Taguchi,Tetsuya Sato. Development of advanced propel-lant system for liquid hydrogen aircraft [C]. AJCPP 2012-025
    [40]Goro Masuya, Byongil Choi, Noritaka Ichikawa, et al. MIXING AND COMBUSTION OF FUEL JET IN PSEUDO-SHOCK WAVES [R]. AIAA 2002-0809
    [41]Kobayashi. T, Matsuo. A, Tomioka. S, et al. Numerical Study on Airflow/Jet Mixing Enhancement by Pseudo-Shock Wave System [C]. AIAA 2010-6961
    [42]Tomioka. S, Izumikawa. M, Sakuranaka. N, et al. Mixing Control by Wall Flush-mount Injectors in Dual-mode Combustor [C]. AIAA 2010-6959
    [43]刘陵.超音速燃烧与超音速燃烧冲压发动机[M].西北工业大学出版社,1993
    [44]刘陵,张榛.超音速冲压发动机最佳设计参数[J].推进技术,1988,9(1),73-78
    [45]刘陵,张榛,牛海华,刘敬华.超音速燃烧室燃烧效率数学模型及气流状态参数的计算[J].推进技术,1989,10(2),1-7
    [46]刘兴洲,刘敬华,王裕人等.超声速燃烧试验研究[J].推进技术,1991,12(2),1-8
    [47]张新宇.高超声速吸气式发动机的研究进展与发展趋势[J],中国力学杂志,2001:478-480.
    [48]贺伟,刘伟雄,白菡尘等.脉冲燃烧风洞及其在超燃冲压发动机试验研究中的应用[C]. 第十届全国激波与激波管会议,2001
    [49]刘小勇等.冲压发动机双模态燃烧的理论与试验研究[R].航天科工集团三院三十一所,中国国防科技报告,2000
    [50]Gang Y, Guo L J,et al.Experimental studies on h2/air supersonic combustion[R]. AIAA 96-4512
    [51]张新宇,陈立红,顾洪斌,俞刚.超燃冲压模型发动机试验设备和试验技术[J].力学进展,2003,33(4):491-498
    [52]张新宇,陈立红.高焓高超声速自由射流风洞的建设和初步试验结果[C].第十届全国激波与激波管会议,2001
    [53]刘卫东,梁剑寒等.超燃冲压模型发动机试验研究[R].国防科学技术大学,中国国防科技报告,2003
    [54]刘伟强,邹建军等.单模块超燃冲压发动机试验样机方案及试验技术方案研究[R].国防科学技术大学,中国国防科学技术报告,2003
    [55]杨顺华、王西耀、乐嘉陵.超燃发动机燃烧室内两相燃烧的数值模拟[C].第十四届全国激波与激波管学术会议,2010年
    [56]吴海燕,汪洪波,孙明波,张顺平.超声速燃烧凹腔剪切层大涡模拟仿真及NPLS实验研究[C].第十四届全国激波与激波管学术会议,2010年
    [57]黄生洪,冯美艳.超声速气流中雾化全过程模拟的一体化方法[C].第十四届全国激波与激波管学术会议,2010年
    [58]李大鹏.煤油双模态冲压发动机燃烧室工作过程研究[D].国防科学技术大学,2006年10月
    [59]潘余.超燃冲压发动机多凹腔燃烧室燃烧与流动过程研究[D].国防科学技术大学,2007年10月
    [60]王晓栋,乐嘉陵,宋文艳.冲压燃烧室内的燃料扩散性能研究[J].空气动力学学报,2004年6月第22卷第2期,147-150
    [61]孙明波,梁剑寒,王振国.Numerical Study on Self-sustained Oscillation in Cavity Flameholders of Scramjets[J].计算物理第24卷第5期2007年9月,591-597
    [62]孙明波,梁剑寒,S王振国.超声速燃烧火焰稳定凹腔质量交换特性的数值研究[J].力学学报2007年3月第39卷第2期188-195
    [63]孙明波.超声速来流稳焰凹腔的流动及火焰稳定机制研究[D].国防科学技术大学,2008年10月
    [64]金志光,张堃元.宽马赫数范围高超声速进气道伸缩唇口式变几何方案[J].宇航学报第31卷第5期2010年5月,1503-1510
    [65]骆晓臣,周长省,鞠玉涛.提高固定几何二元进气道低马赫数性能的仿真研究[J].推进技术.2010年8月第31卷第4期,390-393
    [66]马凌,朱爱平.亚燃/超燃双模冲压发动机的原理及其应用探讨[J].飞航导弹.2010年第4期,78-81
    [67]Sadatake Tominoka,Lance S.Jacobsen,Joseph A.Schetz. Angled Injection through Diamond-Shaped Orifices into a Supersonic Stream [R]. AIAA 2001-1762
    [68]Sang-Hycon Lee,Hoon-Bum Shin,Tohru Mitani. Mixing and Combustion Augmentations of Transverse in Scramjet Combustor [R]. AIAA 2001-0384
    [69]Tomioka. S, Izumikawa. M, Sakuranaka. N, et al. Mixing Control by Wall Flush-mount Injectors in Dual-mode Combustor [R]. AIAA 2010-6959
    [70]耿辉.超声速燃烧室中凹槽上游横向喷注燃料的流动、混合和燃烧特性研究[D].国防科学技术大学,2007年4月
    [71]Semenov. V. L. The Possibility Investigation of Strut Fuel Feed System Use in Scramjet Combustors on Results of Tests with Hydrocarbon Fuel [R]. AIAA.1997-332687.
    [72]Viacheslav A.Vinogradov,Yurii M.Shikhman,Ruslan V.Albegov, et al. About Possibility of Effective Methane Combustion in High Speed Subsonic Airflow [R].AIAA 2002-5206
    [73]Brandstetter. A, Denis S. Rocci, Kau H.-P, et al. Experimental Investigation on Super-sonic Combustion with Strut Injection [R], AIAA 2002-5242
    [74]Lyubar. A, Sander. T, Sattelmayer. T. Numerical Investigation of Fuel Mixing,Ignition and Flame Stablization by a Strut Injector in a Scramjet Combustor [C]. ICMAR 2002
    [75]苏义.支板超音速混合增强技术及其阻力特性研究.国防科技大学硕士学位论文[D].2006年11月
    [76]Parent. B, Sislian. J. P. Turbulent hypervelocity fuel/air mixing by cantilevered ramp injectors [R]. AIAA 2001-1888
    [77]Derrick C.Alexander, Jean P.Sislian, Bernard.Parent. Hypervelocity Fuel/Air Mixing in Mixed-Compression Inlets of Shcramjets [C]. ISABE-2005-1108
    [78]Aso. S, Yamane. Y, Umii. K, et al. A Study on Supersonic Mixing Flowfield with Swept Ramp Injectors [R]. AIAA 97-0397
    [79]Cox. S. K, Schetz. R. P, Walters. R. W. Vortical Interactions Generated by an Injector Array to Enhance Mixing in Supersonic Flow [R].AIAA 94-0708.
    [80]Fuller. R. P, Wu. P-k, Nejad, et al. Comparison of Physical and Aerodynamic Ramps as Fuel Injectors in Supersonic Flow [J]. Journal of Propulsion and Power, Vol.14, No.2,1998
    [81]Cox-Stouffer.S.K, Gruber.M.R. Effects of Spanwise Injector Spacing on Mixing Characteristics of Aerodynamic Ramp Injectors [R]. AIAA 98-3272
    [82]Cox-Stouffer.S.K, Gruber.M.R. Effects of Injector Yaw on Mixing Characteristics of Aerodynamic Ramp Injectors [R]. AIAA 99-0086
    [83]Cox-Stouffer.S.K, Gruber.M.R. Further Investigation of the Effects of "Aerodynamic Ramp" Design Upon Mixing Chracteristics [R]. AIAA 99-2238
    [84]Sato N, Imamura A, Shiba S, et al. Advanced Mixing Control in Supersonic Airstream with a Wall-Mounted Cavity [R], AIAA 96-4510
    [85]Yu K. H, Schadow K.C. Cavity-Actuated Supersonic Mixing and Combustion Control [J]. Combustion and Flame, Vol.99, pp.295-301,1994
    [86]R.Burnes, T.P.Parr, K.J.Wilson, et al. Investigation of Supersonic Mixing Control Using Cavities:Effect of Fuel Injection Location [R], AIAA 2000-3618
    [87]N.Sato, R.Imamura, S.Shiba, S.Takahashi, et al. Advanced Mixing Control in Super-sonic Airstream with a Wall-Mounted Cavity [R]. AIAA 96-4510
    [88]Tohru Mitani, Nobuo ehinzei, Takeshi Kanda. Reaction-and Mixing-Controlled Combustion in Scramjet Engines [R]. AIAA 994871
    [89]Tohru Mitani, Toshinori Kouchi. Flame structures and combustion efficiency computed for a Mach 6 scramjet engine[J].Combustion and Flame 142 (2005) 187-196
    [90]潘余,刘卫东,梁剑寒等.模型超燃发动机内着火过程分析[J].力学学报2009年7月,第41卷第4期
    [91]Lance S.Jacobsen, Campbell D.Carter, Robert A.Baurle, et al. Toward Plasma Assisted Ignition in Scramjets [R]. AIAA-2003-0871
    [92]Li Qing, Pan Yu,Tan Jan-guo,et al. Experiment Research of Ramjet with Cavity-based Flameholder [R]. AIAA 2009-5049
    [93]田野,乐嘉陵,杨顺华等.空气节流对超燃燃烧室火焰稳定影响的数值研究[J].推进技术,已录用
    [94]邓维鑫,乐嘉陵,王西耀等.空气节流对超燃发动机燃烧性能的影响[J].航空动力学报,已录用
    [95]Hsu K Y. Carter C. Gruber C J, et al. Fuel Distribution About a Cavity Flameholder in Supersonic Flow[R]. AIAA Paper 2000-3585
    [96]Kanda T, Tani K. Momentum Balance Model of Flow Field with Pseudo-Shock [R]. AIAA 2005-1045
    [97]Tomioka S. Izumikawa M, Akuranaka N, et al. Mixing Control by Wall Flush-mount Injectors in Dual-mode Combustor [R]. AIAA 2010-6959
    [98]Kobayashi T, Matsuo A, Tomioka S, et al. Numerical Study on Airflow/Jet Mixing Enhancement by Pseudo-Shock Wave System [R]. AIAA 2010-6961
    [99]Jinhyeon Noh, Jeong-Yeol Choi, Jong-Ryul Byun, et al. Numerical Simulation of Auto-Ignition of Ethylene in a Scramjet Combustor with Air Throttling [R]. AIAA 2010-7036
    [100]Jian Li, Fuhua Ma, Vigor Yang, et al. Control and Optimization of Ignition Transient in Scramjet Engine Using Air Throttling [R]. AIAA 2006-1028
    [101]Mathur T, Lin K C, Kennedy P, et al. Liquid JP-7 Combustion in a Scramjet Combustor [R]. AIAA Paper 2000-3581
    [102]Donbar J, Powell O, Gruber M, et al. Post-test Analysis of Flush-Wall Fuel Injection Experiments in a Scramjet Combustor [R], AIAA Paper 2001-3197
    [103]Yang V, Li J, Choi J Y, et al. Ignition Transient in an Ethylene Fueled Scramjet Engine with Air Throttling,Part I:Non-Reacting flow Development and Mixing [R]. AIAA Pa-per 2010-409
    [104]Yang V, Li J, Choi J Y, et al. Ignition Transient in an Ethylene Fueled Scramjet Engine with Air Throttling. Part Ⅱ:Ignition and Flame Development [R]. AIAA Paper 2010-410
    [105]Wen Bao, Jichao Hu, Youhai Zong, et al. Ignition Characteristic of a Liquid Kerosene Fueled Scramjet by Air Throttling Combined with a Gas Generator [J]. Journal of Aero-space Engineering, Jan 2.2013
    [106]Roudakov A S, Semenov V L. Rencent Flight Test Result of the Joint CIAM NASA Mach 6.5 Scramjet Flight Program [R]. AIAA 98-1634
    [107]李丽,彭晓峰.凹槽稳焰的超音速燃烧室内混合和燃烧特性分析[J].化工学报2007年6月第58卷第6期,1391-1395
    [108]Adela Ben-Yakar, Ronald K. Hanson. Cavity Flameholders For Ignition and Flame Stabilization in Scramjets:Experimental Study [R]. AIAA 98-3112
    [109]Zhang X, Edwards J.A, An Investigation of Supersonic Oscillatory Cavity Flows Driven by Thick Shear Layers [J]. Aeronautical Journal,1990, pp.355-364
    [110]Rossiter, J.E. Wind-tunnel Experiments on the Flow over Rectangular Cavity at Sub-sonic and Transonic Speeds [R]. NASA Ames Research Center, R&M3438, Oct.1964
    [111]Heller, H.H, Bliss, D.B. The Physical Mechanism of Flow Induced Pressure Fluctuation in Cavities and Concepts for Their Suppression [R]. AIAA 75-491
    [112]Vakili A. D, Gauthier C. Control of Cavity Flow by Upstream Mass-Injection [J]. Journal of Aircraft, v.31,No.1,1994, pp.169-174
    [113]Manoj Sharma, V Rishikesh, U.S.P Shet, et al. Enhancement of Fuel-Air Mixing in Supersonic Flow by Wall-Mounted Opposed Cavities [C]. ISABE-2005-1112
    [114]Kuo-Cheng Lin, Kevin Jackson, Robert Behdadnia, et al. Acoustic Characterization of an Ethylene-Fueled Scramjet Combustor with a Recessed Cavity Flameholder [R]. AIAA 2007-5382
    [115]Hsu K.Y, Goss L.P, Roquemore W.M. Characteristics of a Trapped-Vortex Combustor [J]. Journal of Propulsion and Power, Vol.14, No.1, Jan-Feb,1998, pp.57-65
    [116]Katta V.R, Roquemore W.M. Study on Trapped-Vortex Combustor:Effect of Injection on Flow Dynamics [J]. Journal of Propulsion and Power, Vol.14, No.3,1998, pp.273-281
    [117]Tishkof. J.M, Drummond.J.P, Edwards. T, et al. Future Direction of Supersonic Combus-tion Research:Air Force/NASA Workshop on Supersonic Combustion [R], AIAA 97-1017
    [118]Segal.C.Owen, M.GTehranian.S, Vinogradov V. Flameholding Configurations for Kero-sene Combustion in a Mach 1.8 Airflow [R]. AIAA 97-2888
    [119]Ben-Yakar A, Gany A. Experimental Study of a Solid Fuel Scramjet [R]. AIAA 94-2815
    [120]Yu K.H, Wilson K.J, Smith R.A, et al. Experimental Investigation on Dual-Purpose Cav-ity in Supersonic Reacting Flows [R] AIAA 98-0723
    [121]Baurle R.A, Gruber M.R. A Study of Recessed Cavity Flowfield for Supersonic Combustion Applications [R]. AIAA 98-0938
    [122]Sang Hun Kang, Yang Ji Lee, Soo Seok Yang, et al. Scramjet Engine Combustor Tests in a Supersonic Wind Tunnel with a Vitiated Air Heater [R]. AIAA 2010-7123
    [123]Mackenzie J.Collatz, Mark R.Gruber, Dell T.Olmstead, et al. Dual Cavity Scramjet Operability and Performance Study [R]. AIAA paper 2009-5030
    [124]蔡元虎,刘欧子,胡欲立等.凹槽火焰稳定器前缘结构对煤油超声速燃烧的影响[J].机械科学与技术,2007年7月,第26卷第7期,817-821
    [125]黄生洪,徐胜利,刘小勇.煤油超燃冲压发动机两相流场数值研究[J].推进技术,2005年2月,第26卷第1期,10-15
    [126]李明.超燃冲压发动机燃烧室内增强混合机理研究[D],河北工业大学,2007年12月
    [127]Kuo-Cheng Lin, Chung-Jen Tam, Kevin Jackson, et al. Fueling Study on Scramjet Operability Enhancement [R]. AIAA 2009-5116
    [128]Kuo-Cheng Lin, Chung-Jen Tam, Kevin Jackson. Study on the Operability of Cavity Flameholders inside a Scramjet Combustor [R]. AIAA 2009-5028
    [129]Kuo-Cheng Lin, Kevin Jackson, Robert Behdadnia, et al. Acoustic Characterization of an Ethylene-Fueled Scramjet Combustor with a Recessed Cavity Flameholder [R]. AIAA 2007-5382
    [130]Kuo-Cheng Lin, Chung-Jen Tam, Isaac Boxx, ea al. Flame Characteristics and Fuel Entrainment Inside a Cavity Flame Holder in a Scramjet Combustor [R]. AIAA 2007-5381
    [131]Masahiro Takahashi, Tomoyuki Komuro, Kazuo Sato, et al. Effect of combustor shape on scramjet characteristics at hypervelocity condition over mach 10 flight [R]. AIAA 2006-8024
    [132]Hongbin Gu, Lihong Chen, Xinyu Chang. Experimental investigation of cavity-based scramjet model [R]. AIAA 2006-7917
    [133]M.A.Goldfeld, A.A.Misshunin, A.V.Starov, et al. Investigation of Hydrocarbon Fuels Combustion in Supersonic Combustor [R]. AIAA 2004-3487
    [134]G. L. Pellet., C. Bruno., W. Chinitz. Review of air vitiation effects on scramjet ignition and flameholding combustion processes [R]. AIAA 2002-3880
    [135]杨样.污染组分对超燃冲压发动机性能的影响研究[D].西南交通大学,2009年5月
    [136]邢建文,杨样.H20污染对超燃冲压发动机燃烧室性能影响的三维数值模拟[J].推进技术2011年2月第32卷第1期,5-10
    [137]Pellett G L, Bruno C, Chinitz W. Review of air vitiation effects on scramjet ignition and flameholding combustion processes [R]. AIAA 2002-3880.
    [138]M.J.Zucrow, J.D.Hoffman. Gas Dynamics [M]. 国防工业出版社,1984
    [139]王辽,徐旭.超燃冲压发动机地面试验氢燃烧加热器流场数值模拟[J],航空动力学报2008年8月第23卷第8期,1397-1402
    [140]王辽,韦宝禧,章成亮等.基于凹槽火焰稳定器的煤油超声速燃烧试验[J],北京航空航天大学学报,2008年8月第34卷第8期,907-910
    [141]刘静,王辽,张佳等.超声速气流中横向射流雾化实验和数值模拟[J],航空动力学报,2008年4月第23卷第4期,724-729
    [142]林宏军,宋文艳,肖隐利.超燃冲压发动机燃烧室直连式实验研究[J].弹箭与制导学报,2008年2月第28卷第1期,161-170
    [143]Gruber M, Donbar J, Jackson K, et al. Newly Developed Direct-connect High-enthalpy Supersonic Combustion Research Facility [J]. Journal of Propulsion and Power, Vol.17, No.6,2001, pp.1296-1304.
    [144]Sun Mingbo, Geng Hui, Liang Jianhan and Wang Zhenguo. Investigation of Supersonic Combustion of Hydrogen Injection Upstream of Cavity flameholders in SCRAMJET [C],43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit 8-11 July 2007, Cincinnati, OH, AIAA 2007-5383
    [145]丁猛,吴继平,梁剑寒等.文氏管在煤油燃料超燃冲压发动机中的应用[J].推进技术,2005年2月第26卷第1期,16-19
    [146]乐嘉陵,刘伟雄,贺伟等.脉冲燃烧风洞及其在火箭和超燃发动机研究中的应用[J].实验流体力学2005年3月第191卷第1期,1-10
    [147]Corin Segal. The Scramjet Engine-Processes and Characteristics [M].Cambridge Univer-sity Press, New York,2009
    [148]Karen Cabell, Neal Hass, Andrea Storch, etc al. HIFiRE Direct-Connect Rig (HDCR) Phase I Scramjet Test Results from the NASA Langley Arc-Heated Scramjet Test Facil-ity [C].17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference 11-14 April 2011, San Francisco, California. AIAA 2011-2248
    [149]Li J, Ma F H, Yang V, et al. Control and Optimization of Ignition Transient in Scramjet Engine Using Air Throttling [R]. AIAA 2006-1028
    [150]Tomioka S. Izumikawa M, Akuranaka N, et al. Mixing Control by Wall Flush-mount Injectors in Dual-mode Combustor [R]. AIAA 2010-6959
    [151]Yang V, Li J, Choi J Y, et al. Ignition Transient in an Ethylene Fueled Scramjet Engine with Air Throttling,Part I:Non-Reacting flow Development and Mixing [R]. AIAA 2010-409
    [152]Yang V, Li J, Choi J Y, et al. Ignition Transient in an Ethylene Fueled Scramjet Engine with Air Throttling. Part II:Ignition and Flame Development [R]. AIAA 2010-410
    [153]黄成.风洞数据采集系统的设计与实现[D].南京理工大学,2008
    [154]Johns Hopkins University Applied Physics Laboratory. Ramjet technology [M].1980, 10-12.
    [155]Kennet h T M. Optimal sensor plancement for control of a supersonic mixed compres-sion inlet with variable geometry [D].,1998.
    156] Martin J E. Optimal allocation of actuators for distributed systems [J]. Journal of Dy-namic Systems Measurement and Control,1978,100:227-228.
    [157]Aidarous S E,Gevers M R, Installe M J. Optimal pointwise discrete control and controllers [J]. International Journal of Control,1976,24:493-508.
    [158]鲍文,郭林春,崔涛.超燃冲压发动机燃烧室传感器最佳位置选择.航空动力学报,2007年3月第22卷第3期,475-479
    [159]Anderson, John D. Jr. Hypersonic and high temperature gas dynamics [M]. New York, McGraw-Hill Book Company,1988.
    [160]Chul P. Nonequilibrium Hypersonic Aerothermodynamics [M]. JohnWiley&Sons, New York,1990.
    [161]Kee R J, Rupley F M, Meeks E, et al. Chemkin-III:A fortran chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics [R]. Sandia National Laboratories report SAND96-8216,1996.
    [162]Eklund D R, Baurle R A and Gruber M R. Numerical Study of a Scramjet Combustor Fueled by an Aerodynamic Ramp Injector in Dual-Mode Combustion [R]. AIAA 2001-0379
    [163]杨顺华.“碳氢燃料超燃冲压发动机数值研究”,[D].中国空气动力研究与发展中心,2006年4月
    [164]赵慧勇.“超燃冲压整体发动机并行数值研究”,[D].中国空气动力研究与发展中心,2005年7月
    [165]Yoder D.A. and Georgiadis N J. Implementation and validation of the Chien k-e turbu-lence model in the WIND Navier-Stokes code [R]. AIAA 99-0745
    [166]肖隐利,陈亮,宋文艳.超燃冲压发动机隔离段流动特性研究[J].空气动力学学报,2007年3月第25卷第1期,75-78
    [167]Stephen R. Turns. An Introduction to Combustion Concepts and Applications (Second Edition) [M]. McGraw-Hill Companies, Inc.2000
    [168]Jeffrey M. Donbar, Graham J. Linn, Sukumar Srikant, et al. High-Frequency Pressure Measurements for Unstart Detection in Scramjet Isolators [R]. AIAA 2010-6557
    [169]王西耀.超燃冲压发动机非定常流动数值研究[D].中国空气动力研究与发展中心博士论文,2012年2月
    [170]张敏霞,丁选明,陈育民.现浇X形混凝土桩竖向承载特性试验及其极限承载力预测[J].煤炭学报,2011年2月第36卷第2期,267-270
    [171]Rita Ponza, Ernesto Benini. Airfoil Data Fitting Using Multivariate Smoothing Thin Plate Splines [J]. AIAA JOURNAL Vol.49, No.2, February 2011
    [172]Spanos. J. T, Mingori. D. L, Newton Algorithm for Fitting Transfer Functions to Fre-quency Response Measurements [J]. JOURNAL OF GUIDANCE, CONTROL, AND DYNAMICS Vol.16, No.1, January-February 1993
    [173]R. Jeffrey Balla, Corey A. Miller. Signal Analysis Algorithms for Optimized Fitting of Non-resonant Laser Induced Thermal Acoustics Damped Sinusoids [R]. NASA/TM-2008-215327
    [174]周剑平.精通Origin7.0[M].北京:北京航空航天大学出版社,2004.3

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700