高超声速飞行器热防护系统主动冷却机制与效能评估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高超声速飞行器是现代飞行器发展的主要趋势。然而,高超声速飞行器要实现跨大气层以及在大气层内长时间、超高速、机动飞行,将遭遇特殊和严酷的热环境,这对防热结构灾气动和耐高温性能方面提出了严苛的要求。选择适合高超声速飞行器不同部位的热防护系统,并测试其各自的防-隔热能力和冷却能力成为亟待解决的问题。其中,主动冷却热防护系统以其冷却能力强、可以抵抗高热流密度的长时间加热、实现温度和热流的开环或者闭环控制、实现防热、隔热和热控制的一体化设计,具有可重复使用性等特点成为解决高超声速飞行器防热问题的有效方法,是研究的热点和关键技术。本文以高超声速飞行器的防热结构为研究对象,基于在高热流密度下长时间飞行的要求,对适应于高超声速飞行器的主动冷却金属热防护系统进行了多方面的研究,主要研究内容包括以下几个方面:
     基于高超声速飞行器热防护的特征及需求,提出采用冷却流密度和冷却模式相结合作为表征和评估主动冷却热防护系统参数的方法,在此基础上采用有限差分法建立了被动-主动热防护一体化分析评价模型,并采用这一模型对高超声速飞行器的被动冷却热防护系统和主动冷却热防护系统的冷却特性和冷却效能进行了定量的分析比较;结果表明,对于被动冷却热防护系统,增加隔热层材料的厚度可以降低内部结构的温度,但是随着隔热层厚度的增加,隔热层对内部结构温度的影响减少,增加隔热层厚度对于短时间加热的热防护系统有效,而对长时间加热的热防护系统防热效率很低。要满足高超声速飞行器的工况要求,隔热层材料的厚度至少增加2-3倍。对于长时间加热热防护系统,主动冷却具有很高的冷却效率和防热效率,可以满足内部结构温度的要求。该方法和模型在论文第四章的发汗冷却金属热防护系统的设计和冷却能力评估中得到应用,验证了其有效性和工程实践价值。
     针对主动冷却热防护系统的多孔隔热材料,基于热传导,热辐射和多孔隔热材料内部微观结构,采用光学厚近似法,建立了高温隔热毡和金属泡沫材料的有效热导率的理论模型,对高温隔热毡和金属泡沫的有效热导率进行了实验测量,其结果与理论计算结果吻合,验证了模型的有效性和适用性,为主动冷却热防护系统的设计提供基础和前提。
     针对高超声速飞行器大面积防热区域的高热流密度部位,基于采用冷却流密度作为表征和评估主动冷却热防护系统参数的思想,采用防热-热控制一体化的设计方法,设计并制造了发汗冷却金属热防护系统,搭建了采用底部辐射加热的高温辐射加热平台,加热温度可以高达1500K,并持续加热2小时,实验测试了发汗冷却热防护系统的冷却效能。根据发汗冷却自身的冷却特点和第二章的被动-主动热防护一体化分析评价模型,分析计算了发汗冷却金属热防护系统的冷却能力,实验结果验证了该模型的有效性。结果表明,发汗冷却热防护系统整体结构热载荷排散能力至少提高70%,冷却功率为170-500kW/m2(耐高温合金),内部结构温度低于水的沸点温度(发汗冷却作用情况下)。
     针对高超声速飞行器头锥、翼前缘部位,提出将喷雾冷却应用于金属热防护系统的新方法,基于采用冷却流密度作为表征和评估主动冷却热防护系统参数的思想,采用防热-热控制一体化的设计方法,设计并制造了一种新型采用喷雾冷却的金属热防护样件,搭建了氧乙炔实验平台,实验测试了喷雾冷却金属热防护系统样件的冷却效能。
Hypersonic vehicle is the developmental direction of modern vehicles. The extreme severe aerodynamic heating and special surrounding encountered by hypersonic vehicle due to the long time mission between and in aerosphere with high speed, which makes traditional thermal protection system exposed to more possible failure modes on dynamic and high temperature performance. The knowledge of active cooling thermal protection system with suitable active cooling capacity is crucial to solve the question for thermal protection of hypersonic vehicle. Active cooling thermal protection system with high cooling capacity, resistance of high heat flux in long time, realization the open loop or close loop control on temperature and heat flux, integration design of thermal protection-insulation and thermal management, which makes active cooling TPS to be a hot spot of research and key technology in research of hypersonic vehicle. In present paper, thermal protection of hypersonic vehicle subjected to severe aerodynamic heating in long time is investigated. The active cooling metallic thermal protection systems which have potential to apply to hypersonic vehicle is studied on. The main research contents of the papers are as follows:
     An integrated thermal protection-thermal insulation-thermal management design method and numerical model was developed base on the character and requirement of thermal protection system on hypersonic vehicle in order to quantitatively compare the cooling characteristic and cooling capacity of passive and active cooling thermal protection systems. The results indicate that the temperature of inner structure decreased when the insulation thickness increased, but the effect on the temperature decrease when the insulation thickness increased, meanwhile, this method is effective for thermal protection system which encountered short time heating load, not for long time heating load. The thickness of insulation would increase at least 2-3 double if the method of increasing the insulation thickness was employed. Active cooling has high cooling capacity and cooling efficiency for thermal protection system which encountered long time heating load and keep the temperature of inner structure within the operational temperature limit. The method and model are applied on the design and evaluation the cooling capacity of the transpiration thermal protection systems. The validity and engineering practice value are proofed.
     A theoretical model was developed to predict the effective thermal conductivities of the porous material base on the conduction and radiation as well as microstructure inside the porous material. The experiment on the effective thermal conductivities was conducted. The experimental results according to the predicted results indicate the model is availability and applicability, which is the basement for the design of active cooling thermal protection systems.
     Transpiration cooling thermal protection system was design and developed using the method of integrated thermal protection-thermal insulation-thermal management design method for area protection region under high heat flux of hypersonic vehicle. A high temperature experimental apparatus which was heating on the basement of the sample and with maximum temperature of 1500K(for 2 hour) was fabricated to test the active cooling capacity and efficiency. The cooling capacity of transpiration cooling thermal protection system was tested. The results indicate that the heat load eject capacity improved at last 70%, cooling capacity is 170-500kW/m2(for high temperature alloy) and the temperature of inner strucrure below boiling temperature of water(with traspiration cooling).
     A new method of appling spray cooling to metallic thermal protection was proposed for nose and leading edge of hypersonic vehicle. A novel spray cooling thermal protection system was design and fabricated using the method of integrated thermal protection-thermal insulation-thermal management design method. An oxyacetylene experiment platform was design and fabricated and the experiment of cooling capacity of spray cooling thermal protection system was conducted.
引文
1 R. P. Hallion. The Hypersonic Revolution I:From Max Valier to Project PRIME (1924-1967), Air Force History and Museums Program. Bolling AFB,1998
    2 J. R. Henry, G. Y. Anderson. Design Considerations for the Airframe-Integrated Scramjet.1973:NASA/TM X-2895
    3 M. O. Thompson. At the Edge of Space:The X-15 Flight Program. Smithsonian Institution Press.1992
    4 C. Andrew, W. Chivey, M. Maj, etc. Development of an Airframe-Propulsion Integrated Generic Hypersonic Vehicle Model.44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada,2006:AIAA 2006-218:9-12
    5 R. P. Hallion. The Hypersonic Revolution II:From Scramjet to National Aero-Space Plane (1964-1986). Bolling AFB, DC,1998
    6 G. B. Northam, G. Y. Anderson. Supersonic Combustion Research at Langley. 1986:AIAA 86-0159
    7 J. P. Weidner, W. J. Small, J. A. Penland. Scramjet Integration on Hypersonic Airplane Concepts. AIAA Journal of Aircraft.1977,14(5):460~466
    8 L. Schweikart. The Hypersonic Revolution Ⅲ:The Quest for the Orbital Jet: The National Aero-Space Plane Program (1983-1995). Bolling AFB,1998
    9 R. C. Rogers, D. P. Capriotti, R. W. Guy. Experimental Supersonic Combustion Research at NASA Langley.1998:AIAA 98-2506
    10 D. Johnson, S.Louis. Beyond the X-30:Incorporating Mission Capability.1991: AIAA91-5078
    11 D. Johnson, C. Hill, S. Brown. Natural Environment Applications for NASP/ X30 Design and Mission Planning.1993:AIAA 93-0851
    12 J. Davidson, F.J. Lallman, J. D. McMinn.etc. Flight Control Laws for NASA's Hyper Research Vehicle.1999:AIAA 99-4124
    13 K. E. Rock, R. T. Voland, R. C. Rogers, etc. NASA's Hyper-X Scramjet Engine Ground Test Program.1999:ISABE 99-7214
    14 V. L. Rausch, C. R. McClinton, J. L. Crawford. Flight Validation of Hypersonic Air-breathing Technology XIII.1997:ISABE 97-7024
    15 D. C. Freeman, D. E. Reubush, C. R. McClinton, etc.48th International Astronautical Congress. The NASA Hyper X Program,1997
    16 C. R. McClinton, V. L. Rausch, J. Sitz, etc. Hyper-X program Status.2001: AIAA 2001-1910
    17 U. Hueter, C. R. McClinton. Nasa's Advanced Space Transportation Hypersonic Program.11th AIAA/AAAF International Conference.2002:AIAA 2002-5175
    18 A. JPetros, M. Maj. Flight Dynamics And Control Of Air-Breathing Hypersonic Vehicles:Review and New Directions.12th AIAA International Space Planes and Hypersonic Systems and Technologies, Norfolk, Virginia.2003:AIAA 2003-7081:15-19
    19 K. E. Rock, R. T. Voland, R. C. Rogers, etc. NASA's Hyper-X Scramjet Engine Ground Test Program.1999:ISABE 99-7214
    20 H. S. Walker, R. F. Falcon Hypersonic Technology Overview 13th International Space Planes and Hypersonics Systems and Technologies AIAA/CIRA. 2005:AIAA 2005-3253
    21 T. Thompson, D. J. Weeks, etc. The DARPA/USAF Falcon Program Update and the SpaceX Maiden Launch.2007:AIAA 2007-9912
    22 R. W. Powell, M. K. Lockwood, etc. The Road from the NASA Access-to-Space Study to a Reusable Launch Vehicle. IAF 98-V4.02
    23 J. H. Robinson. Orbital Debris Impact Damage to Reusable Launch Vehicles. International Journal of Impact Engineering.1999,(23)
    24 J. Williamsen, K. Mahrer, W. Bohl.Meteoroid/Orbital Debris Risk Assessment for Resuseable Lunch Vehicles Using Metallic TPS.2003:AIAA2003-1553
    25 D. R. Jenkins. Space Shuttle:the History of the National Space Transportation System,3rd ed. Midland Publishing,2000
    26 J. T. Dorsey, C. C. Poteer, K. E. Wurster etc. Metallic Thermal Protection System Requirements, Environments, and Integrated Concepts. Journal of Spacecraft and Rockets.2004,41(2):162-172
    27 姚草根,吕宏军,贾新潮等.金属热防护系统材料与结构研究进展.宇航材料工艺.2005,(2):10~13
    28 D. E. Myers, C. J. Martin, M. L. Blosser. Development of Metallic Thermal Protection Systems for the Reusable Launch Vehicle.2000:NASA/TM 2000-210289
    29 J. B. Davis, D. B.Marshall, K.S.Oka, R.M.Housley, etc. Ceramic Composites for Thermal Protection Systems. Composites:Part A.1999,30:483-488
    30 G. Mastrangelo, A. Ortona. Development and Preliminary Testing of Uniform and Gradient High Temperature CMC Materials.1998:ESA WPP-141
    31 P. A. Cooper, R. R. Heldenfels. Nasa Structures and Materials Research Progrem for Supersonic Cruise Aircraft. Astronautics and Aeronautics. 1976,14(5):26-37
    32 R. Leholm, B. Norris, A. Gurney. High Temperature Alloys for Areospace Structure. Advanced Material and Processes.2001,159(5):27~31
    33 K. Daryabeigi. Effective Thermal Conductivity of High Temperature Insulations for Reusable Launch Vehicles.1999:NASA/TM-1999-208972
    34 S. J. Scotti, C. Clay, M. Rezin. Structures and Materials Technologies for Extreme Environments Applied to Reusable Launch Vehicles.2003:AIAA 2003-2697
    35 U. Trabandtl, W. F. Guelhan, B. Esser, etc. Improvement of Lifetime Performance of Removable TPS and Hot Structure.2006:AIAA 2006-2949
    36 M. Yamaguchi, H. Inui, K. Ito. High-temperature Structural Intermetallics. Acta Materiala.2000,48(2):307
    37 M. L. Blosser, W. Brewer. Development of Metallic Thermal Protection System. 1998 National Space and Missile Materials Symposium U.S.Air Force Academy, Colorado Springs, CO,1998
    38 Watillon, Berthe, C. Chavagnac. Flight Test Demonstrators-Experimental Vehicles History.2003:AIAA 2003-2913
    39 Miller, Jay. The X-Planes:X-1 to X-29 Specialty Press. Marine on St. Croix. 1983
    40 H. L. Bohon, J. L. Shideler, D. R. Rummler. Radiative Metallic Thermal Protection Systems:A Status Report. Journal of Spacecraft and Rockets.1977, 14(10):626~631
    41 M. L. Blosser. Development of Metallic Thermal Protection Systems for the Reuseable Launch Vehicles Using Metallic TPS.2003:AIAA2003-1553
    42 L. R. Jackson, J. G. Davis, G. R. Wichorek. Structural Concepts for Hydrogen Fueled Hypersonic Airplanes.1966:NASA TN-D 3162
    43 W. Blair, J. E. Meaney, H. A. Rosenthal. Re-Design and Fabrication of Titanium Multi-Wall Thermal Protection System (TPS) Test Panels.1984:NASA CR 172247
    44 W. Blair, J. E. Meaney, H. A. Rosenthal. Fabrication of Prepackaged Superalloy Honeycomb Thermal Protection System (TPS) Panels.1985:NASA CR 3755.
    45 F. Johnson, H. Kevin. Termal Structures Technology Development for Reusable Launch Vehicle. Langley Research Center.
    46 M. L. Blosser, C. J. Martin, K. Daryabeigi, etc. Reusable Metallic Workshop on Thermal Protection Systems. The 3rd European Workshop on Thermal Protection Systems.1998:ESTEC:165~176
    47 L. B. Max. Advanced Metallic Thermal Protection System Development.40th Aerospace Sciences Meeting & Exhibit.2002:AIAA2002-0504
    48 马玉娥,孙秦,蔺国民.可重复使用运载器金属热防护系统的历史与发展动 态分析.机械设计与制造.2005,(2):108~110
    49 夏德顺.重复运载器金属热防护系统的述评.导弹与航天运载技术.2002,(2):21~26
    50 刘双,张博明,解维华.可重复使用航天器金属热防护系统的结构优化进展.航天制造技术.2007(3):43~47
    51 L.B. Max. Investigation of Fundamental Modeling and Thermal Performance Issues for a Metallic Thermal Protection System Design.2002:AIAA 2002-0503
    52 D. H. Derek, B. Durga. Reflective Coating on Fibrous Insulation for Reduced Heat Transfer. NASA Contractor Report,1997:201733
    53 曹义,程海峰,肖加余等.美国金属热防护系统研究进展.宇航材料工艺.2003,(3):9~12
    54 闫长海,孟松鹤,陈贵清等.金属热防护系统隔热材料的发展与现状.导弹与航天运载技术.2006,(4):48~52
    55 M. L. Blosser, R. R. Chen. Development of Advanced Metallic Thermal Protection System Prototype Hardware. Journal of Spacecraft and Rockets. 2004,41(2) 183-190
    56 L. B. Max. Development of Metallic Thermal Protection Systems for the Reusable Launch Vehicle. NASA Technical Memorandum.1996
    57 史丽萍,李圭,赫晓东.金属热防护系统的研究进展.宇航材料工艺.2005,(3):21~23
    58 任青梅,成竹.金属热防护系统的发展.结构强度研究.2006(1):39~47
    59 任青梅.一种先进金属热防护系统ARMOR TPS的设计与分析.结构强度研究.2008,(2):36~45
    60 刘萝威.用于RLV的金属热防护系统研究进展.飞航导弹.2004,(11):44~48
    61 吕兆华.泡沫型多孔介质等效导热系数的计算.南京理工大学学报.2001,25(3):257~261
    62 闫长海,孟松鹤,杜善义.金属热防护系统隔热材料的隔热分析.吉林大学学报.2006,36(4):472~475
    63 解维华,张博明,杜善义等.高温隔热毡有效热导率的理论分析与研究.材料研究学报.2006,20(6):571~575
    64 姜贵庆,俞继军.长时间气动加热飞行器的隔热机理.宇航材料工艺.2006,(1):27~29
    65 俞继军,艾邦成,姜贵庆.复合材料在长时间加热条件下的隔热机理.宇航材料工艺.2007,29(1):1~8
    66 马忠辉,孙秦,王小军,杨勇.TPS多层隔热结构数值分析方法研究.导弹与航天运载技术.2003,(6):14-18
    67 马忠辉,孙秦,王小军等.热防护系统多层隔热结构传热分析及性能研究.宇航学报.2004,24(5):543-545
    68 马玉娥,可重复使用运载器热防护系统热/力耦合数值计算研究.西北工业大学博士论文.2005
    69 沈玲玲.空天飞行器再入过程中关键热结构的热分析.西北工业大学硕士论文.2004
    70 熊焕.可重复使用运载器低温储箱防热结构分析.国防科学技术大学硕士论文.2004
    71 范绪萁,白丹.热防护系统的硅纤维隔热层复合传热数值计算.宇航学报.2006,27(3):452-457
    72 解维华,张博明,杜善义.重复使用飞行器金属热防护系统的有限元分析与设计.航空学报.2006,27(4):650-656
    73 M. L. Blosser. Advanced metallic thermal protection systems for reusable launch vehicles. Ph.D. Dissertation, University of Virginia,2000
    74 洪长青,张幸红,韩杰才等.热防护用发汗冷却技术的研究进展.宇航材料工艺.2005,6:7~11
    75 H. H. Hoadley. Surface Cooling Means for Aircraft. US Paten.1959
    76 C. N. Scully, J. Castelfranco. Air Vehicle Surface Cooling Means.US Patent. 1961
    77 J. F. Alvis, J. V. Young. Protective Means.US Patent.1963
    78 D. W. Fox, R. M. Rivello. Airborne Evaporative Cooling System. US Patent. 1960
    79 R. A. Anderson, R. T. Swann. Sandwich Panel Construction. US Patent.1963
    80 D. A. Ellis, L. L. Pagel, D.M. Schaeffer. Design and Fabrication of a Rediative Actively Cooled Honeycomb Sandwich Structural Panel for Hypersonic Aircraft. Technical Report CR-2957, NASA,1978
    81 R. Godwin. Dynasoar Hypersonic Strategic Weapons System. Apogee Books, Canada,2003
    82 P. K. Ackerman, A. L. Baker, C.W.Newquist. Thermal Protection System. US Patent.1994
    83 P. K. Ackerman. Thermal Protection System Means. US Patent.1995
    84 R. L. Touche. Thermal Protection Device Using the Vaporization and Superheating of a Rechargeable Liquid. US Patent.1994
    85 D. A. Ellis. Overview:the Design of an Efficient Lightweight Airframe Structure for the National Aerospace Plane.1989:AIAA-89-1406
    86 G. Lozinsky, V. Timoshenko. Lessons Learned from the BOR Flight Campaign. 1998:ESA SP-426
    87 J. F. Rakow, A. M. Waas. Thermomechanical Response of Activity Cooled Metal Foam Sandwich Panels for Thermal Protection System.2005:AIAA 2005-1953
    88 J. F. Rakow, A. M. Waas. Response of Actively Cooled Metal Foam Sandwich Panels Exposed to Thermal Loading. AIAA Jouranl,45(2):329~336
    89 K. I Salas, A. M. Waas. Convective Heat Transfer in Open-cell Metal Foams. 2006:AIAA 2006-1669
    90 J. F. Rakow, A. M. Waas. Thermal Buckling of Metal Foam Sandwich Panels for Convective Thermal Protection Systems. Journal of Spacecraft and Rockets. 2006,42(5):832~843
    91 J. F. Rakow, A. M. Waas. Size Effects and the Shear Response of Aluminum Foam.Mechanics of Materials.2005,(37):69~82
    92 J. Buursink.On the Development of a Cooled Metallic Thermal Protection System for Spacecraft.Ph.D Dissertation, TU Delft.2005
    93 J. Buursink, K.J.Sudmeijer. Experimental Studies of an Enhanced Radiation Cooling System.2004:AIAA 2004-5827
    94 J. Buursink, K. J. Sudmeijer. Experiments on Large Enclosed Model of Enhanced Radiation Cooling System for Metallic TPS.2005:AIAA 2005-3369
    95 J. Buursink, T.J.van Baten, E.Mooij, etc. DART:the Delft Aerospace Reentry Test vehicle.2000:IAF 00-V4.07
    96 A. A. Ahamdi. Experimental Study on the Spray Cooling of High Temperature Metal Using High Mass Flux Industrial Nozzles. Ph.D Dissertation, Carnegie Mellon University.2002
    97 洪长青,张幸红,韩杰才等.热防护用发汗冷却技术的研究进展:冷却方式分类、发汗冷却材料及其基本理论模型.宇航材料工艺.2005,(6):7~12
    98 王浚,王佩广.高超声速飞行器一体化防热与热控设计方法.北京航空航天大学学报.2006,32(10):1129~1134
    99 袁家军.卫星结构设计与分析.中国宇航出版社.2004
    100 B. R. Hollis, S. A. Berry, T. J. Horvath. X-33 Turbulent Aeroheating Measurements and Predictions.2002:AIAA 2002-4700
    101 R. Jits. Trajectory Analysis for Thermal Protection System Design of Mars Aerocapture Vehicles.2002:AIAA 2002-0818
    102 C. P. Leonard, R. M. Amundsen, W. E.Bruce.Hyper-X Hot Structure Design and Comparison with Flight Data.2005:AIAA2005-3438
    103 M. A. Bolender, D. B. Doman. Modeling Unsteady Heating Effects on the Structural Dynamics of a Hypersonic Vehicle.2006:AIAA 2006-6646
    104 陈文革,张强.泡沫金属的特点应用制备与发展.粉末冶金工业2005,15(4):37~42
    105 Sosnik. A. US Patent.1948
    106 J. D. verschoor, P. greebler, N. J. Manville.Heat Transfer by Gas Conduction and Radiation in Fibrous Insulation. Jouranl of Heat Transfer,1952, (74): 467~472
    107 L. J. Gibson, M. F. Ashby. Cellular Solids, Structures and Properties-Second Edition. Cambridge University Press Ltd.1997
    108 S.D. Williams, D. M. Curry. Predictions of Rigid Silica Based Insulation Conductivity Using Morphological Data. Presented at the 29th National Heat Transfer Conference, GA,1993
    109 C. Yasumasa, M. Mamoru. Processing and Mechanical Properties of a Porous Low Carbon Steel with a Controlled Porous Structure by Imposition of a Static Magnetic Field. Materials Science and Engineering A.2006, (417): 281~286
    110 H. D. Zhu, B. V. Sankar, R. T. Haftka. Optimization of a Functionally Graded Metallic Foam Insulation under Transient Heat Transfer Conditions.2003: AIAA 2003-1531
    111 曹立宏,马颖.多孔泡沫金属材料的性能及其应用.甘肃科技.2006,22(6):117~121
    112 J. Banhart. Manufacture, Characterization and Application of Cellular Metals and Metal Foams. Progress in Materials Science.2001,(46):559~632
    113 J. F. Rakow. Thermomechanical Response of Metal Foam Sandwich Panels for Structural Thermal Protection Systems in Hypersonic Vehicles. Ph.D Dissertation, University of Michigan,2005
    114 H. D. Zhu. Design of Metallic Foams as Insulation in Thermal Protection System. PhD Dissertation, University of Florida,2004
    115 E. Nilsson, A. C. Nilsson. Prediction and Measurement of Some Dynamic Properties of Sandwich Structures with Honeycomb and Foam Cores. Journal of Sound and Vibration.2002,251(3):409~430
    116 H. D. Zhu, B. V. Sankar. Evaluation of Integrated Sandwich TPS Design with Metal Foam Core for Launch Vehicles.2005:AIAA 2005-2181
    117 H. D. Zhu, B. V. Sankar, R. T. Haftka. Optimization of a Functionally Graded Metallic foam insulation under transient heat transfer conditions.2003:AIAA 2003-1531
    118 T. M. McCormack, R. Miller, O. Kesler, etc. Failure of Sandwich Beams with Metallic Foam Cores. International Journal of Solids and Structures. 2001,(38):4901~4920
    119 吉布森,阿什比著,刘培生译.多孔固体结构与性能.清华大学出版社,2003
    120 S. Venkataraman, B. V. Snakar. Analysis of Sandwich Beams with Functionally Graded Core. Proceedings of the 42nd AIAA Structure, Structural Dynamics and matericals Conference, Seattle,2001
    121 C. Y. Zhao, T. J. Lu. H. P. Hodson. Natural Convection in Metal Foams with Open Cells. Heat and Mass Transfer.2005,48:2452~2463
    122 C. Y. Zhao, T. J. Lu, H. P. Hodson. Thermal Radiation in Ultralight Metal Foams with Open Cells. Heat and Mass Transfer.2004,47:2927~2939
    123 A. D. Sullins. Effective Thermal Conductivity of High Porosity Open Cell Nickel Foam.35th AIAA Thermophysics Conference, Anaheim, CA.2001
    124 闫长海,孟松鹤,陈贵清等.开孔金属泡沫的传热分析.功能材料.2006,37(8):1292~1296
    125 L. J. Gibson, M. F.Ashby. Cellular Solids. Cambridge University Press.1997: 20~49
    126 K. Daryabeigi. Design of High Temperature Multilayer Insulation for Reusable Launch Vehicles. Ph.D Dissertation, University of Virginia,2000
    127 M. Kaviany. Priciples of Heat Transfer in Porous Media.2nd ed. Springer-Verlag New York,1995
    128 A. D. Sullins, K. Daryabeigi. Effective Thermal Conductivity of High Porosity Open Cell Nickel Foam. AIAA 2001-2819
    129 K. Daryabeigi. Analysis and Testing of High Temperature Fibrous Insulation for Reusable Launch Vehicles.37th AIAA Aerospace Sciences Meeting and Exhibit.1999:AIAA 99-1044
    130 R. E. Pawel, D. L. McElroy, F. J. Weaver. High Temperature Thermal Conductivity of a Fibrous Alumina Ceramic. Thermal Conductivity.1985
    131 Bhattacharya, V. V. Calmidi, R. L. Mahajan. An Analytical-Experimental Study for the Determination of the Effective Thermal Conductivity of High Porosity Fibrous Foams. Application of Porous Media Methods for Engineered Materials.1999
    132 C. Y. Zhao, T. J. Lu, H. P. Hodson. Natural Convection in Metal Foams with Open Cells. International Journal of Heat and Mass Transfer.2005, (48): 2452~2463
    133 E. M. Sparrow, R. D. Cess. Radiation Heat Transfer, Augmented Edition. McGraw-Hill.1978
    134 K. Daryaveigi. Design of High Temperature Multi-layer Insulation for Reusable Launch Vehicles. PhD.Dissertation, University of Virginia.
    135 T. Stauffer, M. Jog, P. Ayyaswamy. The Effective Thermal Conductivity of Multi Foil Insulation as a Function of Temperature and Pressure. AIAA paper. 1992
    136 M. N. Ozisik. Radiative Transfer and Interactions with Conduction and Convection.1973
    137 R. E. Pawel, D. L. McElroy, F. J. Weaver. High Temperature Thermal Conductivity of a Fibrous Alumina Ceramic. Thermal Conductivity. New York, 1985
    138 工程材料实用手册.中国标准出版社.2002
    139 韩杰才,陈贵清,孟松鹤.新型ARMOR热防护系统.宇航学报.2004,25(3):350~353
    140 L. B. Max. Investigation of Fundamental Modeling and Thermal Performance Issues for a Metallic Thermal Protection System Design.40th Aerospace Sciences Meeting & Exhibit, Reno, NV,2002:AIAA 2002-0503
    141 金韶山,姜培学,孙纪国.液体火箭发动机喷管发汗冷却研究.航空动力学报.2008,23(7):1334~1340
    142 B. S. Glassman. Spray Cooling for Land, Sea, Air and Space Based Applications, a Fluid Management System for Multiple Nozzle Spray Cooling and a Guide to High Heat Flux Heater Design. Ph.D Dissertation, University of Central Florida.2005
    143 王亚青,刘明侯,刘东等.喷雾冷却中散热面温度对无沸腾区换热特性的影响.中国激光.2010,37(1):115~120
    144 梅国晖,孟红记,武荣阳等.高温表面喷雾冷却传热系数的理论分析.冶金能源.2004,23(6):18~22
    145 I. Mudawar, K. A. Estes. Optimizing and Predicting CHF in Spray Cooling of a Square Surface. International Journal of Heat Transfer,1996,111:672-679
    146 L. Lin, R. Ponnappan. Heat Transfer Characteristics of Spray Cooling in a Closed Loop. International Journal of Heat and Mass Transfer.2003, 46:3737~3746
    147 K. A. Estes, I. Mudawar. Correlation of Sauter Mean Diameter and Critical Heat Flux for Spray Cooling of Small Surface. Heat Mass Transfer. 1995,38(16):2987~2990
    148 R. H. Chen, L.C.Chow, J. E, etc. Effects of Spray Characteristics on Critical Heat Flux in Subcooled Water Spray Cooling. International Journal of Heat and Mass Transfer.2002,45(19):4033~4043
    149 谢宁宁,陈东芳,胡学功等.压力与流量对喷雾冷却换热特性的影响.工程热物理学报.2009,30(12):2059~2061
    150 朱冬生,孙纪远,宋印玺等.喷雾冷却技术综述及纳米流体喷雾应用前景.化工进展.2009,28(3):368~373

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700