新型旋气吹弧式SF_6断路器喷口及开断能力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在高压SF6断路器的现代设计研究中,合理控制吹弧气流的运动,形成动静触头区域有利于电弧熄灭的‘环境’成为重点研究问题之一。喷口是实现吹弧气体由亚音速到超音速的转变关键部件。目前,关于喷口结构的各类研究,主要着眼于改变喷口喉部及下游的型面结构和尺寸,达到对气流的控制目的。本论文从改变喷口喉部上游结构出发,提出旋气吹弧新方法。
     该方法的主要思想是:通过改变喷口上游的结构,使吹弧气流从压气缸到动静触头区域的运动过程中,气流运动方式得到改变。到达电弧区域时,形成轴向吹弧+旋转吹弧运动方式。旋转分量通过‘缠绕’运动,增加了冷气流与电弧的作用;轴向分量保证吹弧气体将电弧能量向下游的逸散,从而实现断路器开断能力的提升。本论文针对旋气吹弧开展的研究工作主要为:
     1.研究改变喷口上游结构,实现主动式控制气流吹弧的设计理念。开发了两种类型的旋气式喷口上游结构:叶片式旋气结构和槽式旋气结构;
     2.建立了描述灭弧室内旋转气流运动的三维气流场数学模型。在三维气流场的数学模型研究中,为了更准确地反映电弧运动,提出了三维能量源电弧动态数学模型;为了提高激波扑捉和离散控制方程的守恒性,采用了有限体积法+TVD格式进行方程的离散求解;
     3.完成了叶片式旋气喷口的设计和研究。进行了不同叶片结构下在断路器的开断过程中气流运动、灭弧室内各物理参数变化规律的研究;在综合灭弧室内速度、气体密度、压力分布等规律的基础上,证明该喷口结构具有最佳叶片数量和角度匹配。
     4.完成了槽式喷口结构的设计和研究。研究了具有不同槽型、槽数及旋气槽倾角对旋气吹弧气体密度、流速的影响。完成了上述情况下各物理参数随开断行程改变中的变化规律研究;通过空载和短路开断下数值仿真实验的研究,证明该结构喷口存在最佳槽型、槽数和最佳槽倾角的匹配关系;
     5.针对252 kV高压SF6断路器具体结构,完成了槽式喷口结构的优化设计,实现了样机的试制和开断性能的试验验证,通过了T100S(b)短路开断试验。试验结果表明新型旋气式SF6断路器设计原理正确、可行。本文研究为新型旋气喷口的进一步完善和深入研究提供了理论基础。
For studying on modern design for the high-voltage SF6 circuit breaker, it becomes one of key research subjects to control the movement of gas blow reasonably in order to form the advantageous arc-quenching'environment'in stationary and moving contacts region. The nozzle is an important component to realize gas flow from the subsonic speed to the supersonic transformation. At present, for nozzle structure in each kind of research, mainly emphasis is to change nozzle throat and the downstream profile structure and the size in order to achieve the goal of gas flow control. In this dissertation, a new method for rotary-gas arc-blowing is presented according to the change upstream structure of nozzle throat.
     The main thought of this method is:The mode of gas flow movement is changed in process of arc-blowing gas flow from the gas cylinder to stationary and moving contacts region by the changing upstream structure of nozzle. It forms the movement mode of axial arc-blowing+rotary-gas arc-blowing when gas flow arrives at the arc region. The function between cooling gas flow and arc is enhanced by the'twistable'movement of rotary component. The axial component guaranteed the arc-blowing gas making arc energy escape to the downstream, thus realizes the promotion of interrupting capability for circuit breaker. The study contents for rotary-gas are as follow.
     1. Research the upstream structure of nozzle to achieve the design idea for actively controlling gas flow arc-blowing. Two kinds of upstream rotary-gas nozzle structures have been developed.
     2. Three-dimensional gas flow field mathematical model for the description of rotary gas flow movement has been established. In study on three dimensional gas flow field mathematical model, in order to reflected accurately arc movement, the three-dimensional energy source dynamic arc mathematical model are proposed; The finite volume method +TVD form to carry on the equation the separated solution is used to enhance the shock wave to be seized and the conservation properties of discrete governing equation.
     3. Design and research on rotary-gas blades structure nozzle are completed. Gas flow movement under different blade structure and various physical parameter change rule in the interrupter are studied. Based on velocity, density of gas, pressure and Mach distribution in the interrupter, the reasonable numbers of blade and the best angle match are obtained.
     4. Design and research on rotary-gas grooves structure nozzle are completed. The influence on velocity of gas flow and the density of arc-blowing gas are studied for rotary-gas nozzle with different groove shapes, the number of grooves and the inclination angle of rotary-gas grooves. The change rule studies for various physical parameters along with to stroke are finished. Numeric simulation experiment study under no-load state and short-circuit interrupting has proved that this new type structure nozzle exists the match relations among best groove shape, the number of grooves and inclination angle of grooves.
     5. In view of 252 kV high-voltage SF6 circuit breaker structure, rotary-gas nozzle structure optimized design has completed. The prototypical product has been trial-manufacture and experimental verify for short-circuit interruption, and it passed T100S(b) short-circuit experiment. The test results have shown that the principle for new type of SF6 circuit breaker design with rotary-gas nozzle is correct and feasible. All of research work has provided theoretical basis and further improvement for new type of SF6 circuit breaker nozzle.
引文
[1]陈家斌.SF6断路器实用技术.北京:中国水利水电出版社,2004.
    [2]徐国政,张节容,钱家骊等.高压断路器原理和应用.北京:清华大学出版社,2000.
    [3]李建基.高中压开关设备实用技术.北京:机械工业出版社,2001.
    [4]陈家斌.SF6断路器实用技术.北京:中国水利水电出版社,2004.
    [5]施卫华,阮宁晖,王进.高压开关电器的发展及应用.昆明冶金高等专科学校学报,2005,21(5):45-51.
    [6]郑军. 国内外高压电器水平差距.中国机电工业,2004,3:32-33.
    [7]李建基,董小强.特高压打造中国电网新格局.电气技术,2005,11:6-8.
    [8]Buret, F. SF6 dielectric behaviour in a high voltage circuit breaker at low temperature under lightning impulses. IEEE Transactions on Power Delivery,11(1):267-273.
    [9]马爱清,郑勇,江秀臣等MPCG算法在GIS三相共罐式SF6高压断路器电场计算中的应用.中国电机工程学报,2007,27(24):6-10.
    [10]林莘,刘志刚ICCG算法在SF6灌式高压断路器三维电场有限元计算中的应用.中国电机工程学报,2001,21(2):21-24.
    [11]Wang Jinming, Xie Dexin, Yao Yingying et al. A modified solution for large sparse symmetric linear systems in electromagnetic field analysis.IEEE Trans on Mag.,2001,37(5):3494-3497.
    [12]廖敏夫,段雄英,邹积岩等.基于JPCG算法的真空灭弧室三维电场有限元计算.中国电机工程学报,2004,24(4):108-111.
    [13]韩雪岩,林莘,王雷.252kV自能式SF6断路器灭弧室电场计算.沈阳工业大学学报,2003,25(5):398-400.
    [14]李亚莎,王泽忠.基于圆环坐标系的三维静电场曲边三角形边界元方法.电工技术学报,2006,9(21):122-126.
    [15]和彦淼,张俊民,袁海文.高压SF6断路器灭弧室电场优化与分析.高压电器,2006,42(6):442-449.
    [16]Courant R, Isaacson E, Reeves M. On the solution of nonlinear hyperbolic differential equations by finite differences. Communications Pure and Applied Mathematics,1952,5:246-255.
    [17]Chompusri Yotaka, Kleesuwan Srawut, Charbkaew Noppadol et al. High voltage SF6 circuit breaker modeling for capacitor bank controlled switching simulation. International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, 2010:464-467.
    [18]Y Sakai. Database in low temperature plasma modeling. Applied Surface Science,2002,192 (1-4): 327-338.
    [19]Jan S, Zdenek V. Optimization of high-voltage self-blast interrupters by gas flow and electric field computations. IEEE Transactions on Power Delivery,2003,18 (4):1228-1235.
    [20]Kim H K, Park K Y. Optimal design of gas circuit-breaker for increasing the small current interruption capacity. IEEE Transaction on Magnetics,2003,39 (3):1749-1752.
    [21]Lee J C, Kmi Y J. Calculation of the interruption process of a self-blast circuit breaker. IEEE Transactions on Magnetics,2005,41(5):1592-1595.
    [22]Bulundell R E, Fang M T. A simplified turbulent arc model for the current-zero period of a SF6 gas-blast circuit breaker. J. Phys. D. Appl. Phys,1998,31:561-568.
    [23]Verite J C, Boucher T, Comte A et al. Arc modeling in circuit breaker, coupling between electromagnetics and fluid mechanics. IEEE Transactions on Magnetics,1995,31(3):1843-1848.
    [24]Rose Alex. Review of MV interrupting technology through the prism of a contemporary SF6 circuit breaker. IEEE Cement Industry Technical Conference,1998:65-71.
    [25]Smeets R, Kertesz V, Dufournet D et al. Interaction of a vacuum arc with an SF6 arc in a hybrid circuit breaker during high-current interruption. Proceedings-International Symposium on Discharges and Electrical Insulation in Vacuum, ISDEIV,2006:220-223.
    [26]Musa Y I, Keri A J F, Halladay J A et al. Application of 800-kV SF6 dead tank circuit breaker with transmission line surge arrester to control switching transient over voltages. IEEE Transactions on Power Delivery.2002,17(4):957-962.
    [27]Jabiri Zahra N, Sharafi Dean. Reducing SF6 emission from HV circuit breakers-A life cycle approach.2010 Asia-Pacific Power and Energy Engineering Conference,2010:856-861.
    [28]Hiptmair R, Hugueniot P, Jeltsch R et al. Numerical simulation of compressible magneto hydrodynamic plasma flow in a circuit breaker. AIP Conference Proceedings,2008,1048:21-2.
    [29]Uchii T, Kawano H, Nishiwaki S. Investigation of hot gas flow in a dead-tank-type gas circuit breaker. IEEE/PES Transmission and Distribution Conference and Exhibition,2002:1461-1468.
    [30]Miri A M, Thrum T, Klink H W et al. Numerical modeling and computer-aided visualization of high-current SF6 arcs in interrupter chambers. Ninth International Symposium on High Voltage Engineering,1995,8:8341/1-4.
    [31]Aubin J, Fletcher D F, Xuereb C. Modeling turbulent flow in stirred tanks with CFD:the influence of the modeling approach, Turbulence Model and Numerical Scheme. Experimental Thermal and Fluid Science,2004,28(5):431-445.
    [32]Troudi L, Gazzah M H, Jemni A et al. Numerical modeling of an arc plasma of SF6 circuit breaker in presence of copper vapor. International Journal of Heat and Technology,2004,22(4):75-80.
    [33]Okubo H, Yasuoka T, Kato Tet al. Electrode conditioning mechanism based on pre break down current under non-uniform electric field in vacuum. Proceedings of XXIIIrd International Symposium on Discharges and Electrical Insulation in Vacuum,2008,:13-16.
    [34]Odaka H, Yamada M, Sakuma Ret al. DC interruption characteristic of vacuum circuit breaker. Electrical Engineering in Japan,2007,161 (1):17-25.
    [35]Lee J C, Kim Y J. Effects of nozzle shape on the interruption performance of thermal puffer-type gas circuit breaker. Vacuum,2006,80 (6):599-603.
    [36]王尔智,赵中原,曹云东.SF6断路器灭弧室内粘性流场求解的一种新方法.中国电机工程学报,2000,20(9):9-12.
    [37]曹云东,王尔智,姜毅.高压SF6断路器总变差减小方法流场求解研究.中国电机工程学报,2001,21(11):19-23.
    [38]曹云东,王尔智,刘晓明Tabu算法的改进及其在压气式SF6断路器中的应用.电工技术学 报,2000,15(4):32-35.
    [39]曹云东,王尔智.高压断路器气流场有限体积及TVD格式法的研究.电工技术学报,2002,17(1):68-73.
    [40]陶瑞民.SF6高压断路器灭弧室电场与气流场数值计算的边界元方法的研究:(博士学位论文).沈阳:沈阳工业大学,2004.
    [41]赵露泽.高压断路器气流场与电场并行求解技术的研究(硕士论文).沈阳:沈阳工业大学,2005.
    [42]Zhang J L, Yan J D, Fang M T C et al. The effect of nozzle ablation on arc behaviour of gas blast circuit breakers. Proceedings of the 7th International Conference on Optimization of Electrical and Electronic Equipments,2000,1:193-6.
    [43]Ki Dong Song, Byeong Yoon Lee, Kyong Yop Park et al. Analysis of thermal recovery characteristics for SF6 gas-blast arc within Laval nozzle. Transactions of the Korean Institute of Electrical Engineers,2002,.51(9):522-9.
    [44]Ki Dong Song, Byeong Yoon Lee, Kyeong Yop Park et al. Analysis of dielectric recovery for SF6 gas-blast arc. Japanese Journal of Applied Physics, Part 1,2002,41(11):6541-9.
    [45]Kim Y J, Jong Chu Lee. SF6 arc plasmas modeling for compact and environmental-friendly gas circuit breakers. Surface & Coatings Technology,2007,201(2):5641-5.
    [46]王仁甫.电弧现象模型的发展.高压电器,1991,4:39-46.
    [47]熊翔葆.麦也尔电弧数学模型参数的数值计算及麦氏模型的校正.华东交通大学学报,1989,2:75-80.
    [48]尚振球.麦也尔电弧数学模型的表达式及其参数的确定方法.高压电器,1985,6:59-64.
    [49]吴美潮.电弧数学模型的研究情况简述.高压电器,1985,5:40-45.
    [50]Fang M T C, Zhuang Q, Guo X J. Current-zero behavior of an SF6 gas-blast arc. part Ⅱ:Turbulent flow. J. Phys. D. Appl. Phys,1994, (27):74-83.
    [51]Pitchford G J M, Pitchford L C. Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models. Plasma Sources Science and Technology,2005, 14 (4):722-733.
    [52]Costin C, Marques L. Two-dimensional fluid approach to the DC magnetron discharge. Plasma Sources Science and Technology,2005,14 (1):168-176.
    [53]Bae C Y, Jung H K, Choi K. Calculation of small current breaking performance of gas circuit breaker considering the real gas propertiesof SF6. IEEE Trans.on Magnetic,2005,41 (5):1908-1911.
    [54]胡万平,王其平.SF6/N2混合气体灭弧室中电弧阻塞效应的分析研究.高压电器,1993,6:19-22.
    [55]张俊民,王其平,荣命哲.高压SF6自能膨胀式断路器开断小容性电流的数值模拟与介质恢复强度分析.电工技术学报,2001,16(1):26-30.
    [56]曹云东,刘晓明,王尔智.能量流电弧模型及SF6断路器在短路开断下的应用研究.中国电机工程学报,2005,25(2):93-97.
    [57]刘晓明.高压SF6断路器电弧动态数学模型及喷口结构优化设计:(博士学位论文).沈阳:沈阳工业大学,2003.
    [58]刘晓明,曹云东,王尔智.高压SF6断路器电弧与气流相互作用研究.中国电机工程学报, 2005,25(7):152-155.
    [59]吴翊,荣命哲,杨茜等.低压空气电弧动态特性仿真及分析. 中国电机工程学报,2005,21(25):143-148.
    [60]吴翊,荣命哲,杨茜等.基于FLUENT的低压分断电弧仿真.低压电器,2005,5:7-9.
    [61]M.T.C.Fang, S.Kwan, and W.Hall. Arc-Shock Interaction Inside a Supersonic Nozzle. IEEE Transactions on plasma science,1996,1(24):85-86.
    [62]K. D. Song, B. Y. Lee, and K. Y. Park. Calculation of Post-Arc Current in a Laval Nozzle. IEEE Transactions on magnetics,2003,3(6):804-809.
    [63]Jin Ling Zhang, Jin Dun Yan, and Michael T.C.Fang. Electrode Evaporation and Its Effects on Thermal Arc Behavior.IEEE Transactions on Plasma Science,2004,32(3):1352-1361.
    [64]Farina M, Sykulski J K. Comparitive study of evolution strategies combined with approximation techniques for practical electromagnetic optimization problems. IEEE Trans.on Magnetics,2001, 37 (5):3216-3220.
    [65]Kim D H, Sykulski J K, Lowther D. A novel scheme for material updating in source distribution optimization of magnetic devices using sensitivity analysis. IEEE Trans.on Magnetics,2005,41 (5):1752-1755.
    [66]Tong L Z, Nanbu K. Numerical study of dual-frequency capacitively-coupled discharges in electronegative SF6. Europhysics Letters,2006,75 (1):63-69.
    [67]王璞.国外SF6断路器灭弧室小型化中采用的新技术和几种灭弧室结构.高压电器,1997,4:55-60.
    [68]曹云东.高压SF6断路器介质恢复特性的计算与分析:(博士学位论文).沈阳:沈阳工业大学,2001
    [69]刘阳.高压断路器喷口结构优化设计的研究(硕士论文).沈阳:沈阳工业大学,2009.
    [70]罗晓园.灭弧室结构参数对SF6断路器开断性能影响的研究(硕士论文).沈阳:沈阳工业大学,2009.
    [71]刘砚菊,曹云东,刘晓明.旋气吹弧式SF6断路器及其三维气流场特性的仿真.高压电器,2008,44(2):100-103
    [72]Martin Stynes.Finite Volume Methods for Convection-Diffusion Problems. Journal of Computational and Applied Mathematics,1995,63:83-90.
    [73]李凤蔚,鄂秦.有限体积法的分析与改进.空气动力学学报,1994,12(4):465-469.
    [74]张海波,白春华,丁敬等.三维有限体积TVD方法与冲击波的多级扩散研究.爆破与冲击,2000,20(1):19-24.
    [75]谢锦睿,吴颂平.TVD格式与高超音速气动加热数值模拟.北京航空航天大学学报,2007,33(4):393-396.
    [76]高二,宋松和.一种TVD方法在三维非结构网格中的应用.航空计算技术,2008,38(5):14-17.
    [77]Wang Jia-song, Huang Zhen.A TVD Scheme for incompressible flow coupled with different turbulence modles on a grond-mounted square-rib flow. Journal of Hydrodynamics Ser.B,2007, 19(6):743-750.
    [78]朱华君,宋松和.二维浅水波方程的非结构网格TVD型有限体积法.系统仿真学报,2009,21(6):1575-1578.
    [79]M D Cowley. Integral method of arc analysis. Appl. Phys.1974,7(34):2218-2222.
    [80]陈义良.湍流计算模型.北京:中国科学技术大学出版社,1991.
    [81]Margio Piller, Enrico Nobile, J. Thomas. DNS study of turbulent transport at low prandtl numbers in a channel flow. Journal of Fluid Machines,2002,45(8):419-441.
    [82]Harten A, Hyman J M, Lax P D. On finite difference approximations and entropy conditions for shocks. Communications Pure and Applied Mathematics,1976,29:297-322.
    [83]Harten A. High Resolution Schemes for Hyperbolic Conservation Laws. Comp Phys.,1983,49: 357-393.
    [84]Yee H C, Sweby P K. Aspects of Numerical Uncertainties in Time Marching to Sweby-State Numerical Solutions. AIAA Journal,1998,36(5).
    [85]Yee H C, Klopfer G H, Montagne J L. High-Resolution Schock-Capturing Schemes for Inviscid and Viscous Hypersonic Flows. Journal of Computation Physics,1990,88:31-61.
    [86]Yee H C. A Class of High-Resolution Explicit and Implicit Schock-Capturing Methods. Von Karman Institute for Fluid Dynamics:Lecture Series,1989,04.
    [87]Harten A., Osher S., Engquist B., etc. Some results on uniformly high order accurate essentially non-oscillatory schemes[A]. ICASE Report[C]. New York:1986,18-86.
    [88]Harten A., Osher S. Uniformly high-order accurate essentially non-oscillatory schemes. Numer. Anal.,1987,24(3):666-678.
    [89].Liu X D, Osher S, Chan T. Weighted Essentially Non-Oscillatory Schemes. Journal of Computational Physics,1994,115:217-237.
    [90]Tadashi Mori, Hiromichi Kawano, Katsuharu Iwamoto. Gas-Flow Simulation with Contact Moving in GCB Considering High-Pressure and High-Temperature Transport Properties of SF6 Gas. IEEE Transactions on Power Delivery.2005.20(4):2466-2472.
    [91]Young Kil CHOI, Chong Soo KIM. Study on the Arc Quenching Process in Gas Circuit Breakers. IEEE,2006,5(6):408-412.
    [92]Si Fu, Yundong Cao, Biao Wang, Xiaoming Liu, Yang Liu. Three Dimensional Electric Field in a Novel Rotary-Gas Nozzle Structure of SF6 Circuit Breaker. APPEEC 2010, Chengdu, P.R.China, March 28-31,2010.
    [93]Lu HaoYu, Lee ChunHian, Simulation of three-dimensional nonideal MHD flow at high magnetic Reynolds number. Science China Technological Science,2010,53(1):206-212.
    [94]Betz T, Koenig D. Fundamental studies on vacuum circuit breaker arc quenching limits using a synthetic test circuit.17th International Symposium on Discharges and Electrical Insulation in Vacuum,1996,1:376-80.
    [95]Jeffery P A, Sykulski J K, McBride J W.3D finite element analysis modeling of the arc chamber of a current limiting miniature circuit breaker. The International Journal for Computation and Mathematics in Electrical and Electronic Engineering,1998,17, (1-3):244-251.
    [96]Basse Nils P, Abrahamsson Margarita M, Seeger Martin et al. Quantitative analysis of gas circuit breaker physics through direct comparison of 3-D simulations to experiment. IEEE Transactions on Plasma Science,2008,36(5)PART 3:2566-2571.
    [97]Gonzalez J J, Lago F, Freton P et al. Numerical modeling of an electric arc and its interaction with the anode:Part Ⅱ. The three-dimensional model-influence of external forces on the arc column. Journal of Physics D:Applied Physics,2005,38(2):306-318.
    [98]L. S. Frost, R. W. Liebermann. Composition and transport properties of SF6 and their use in a simplified enthalpy flow arc model. Proceedings of the IEEE,1971,59(4):474-485.
    [99]V.Aubrecht, B.Gross. Net emission coefficient of radiation in SF6arc plasmas. J.Phys.D:Appl.Phys, 1994, (27):95-100.
    [100]赵承庆,姜毅.气体射流动力学,北京:北京理工大学出版社,1998.
    [101]Wang R F.Calculation and adjustment limitations of four-parametre TRV in high power testing circuits and their applications. IEEE Trans, on Power Delivery,1987,2(3):758-764.
    [102]江文泉,李宏群,贾申利等.一种电流畸变小的合成回路.高压电器,1995,31(4):16-22.
    [103]薛晔.适用于合成试验的数字化测试系统.高压电器,1997,33(3):26-30.
    [104]方春恩,丛吉远,邹积岩等.基于80C196KC型单片机的合成回路控制和信号测量系统.高压电器,2002,38(4):33-36.
    [105]黄涛,王汝文,修士新.基于PLC的高压合成回路控制系统设计.低压电器,2003,6:26-29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700