热辐射与高速流耦合换热的数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在许多涉及热传递与流动的工程技术中,热辐射与对流换热往往同时存在、相互影响,形成辐射与对流耦合换热,对过程的进程与特性产生重要影响。辐射与高速流耦合换热不仅涉及热辐射、对流换热两种基本传热方式的相互作用,而且涉及传热、流动、传质等几种物理过程的复杂耦合关系。目前,对辐射与高速流耦合换热的过程机制、特性规律与影响因素还缺乏足够的研究认识。随着航空航天技术的发展,热辐射与高速流的耦合换热研究正变得越来越重要。
     本文在研究复杂形体及介质内热辐射传输求解方法的基础上,建立了高速流场与复杂结构的传热耦合模型;采用数值模拟的方法,研究了复杂结构表面高速流、通道内高速两相燃气流、通道内超临界流三类不同的辐射与高速流耦合换热问题。主要研究内容包括以下四个方面:
     (1)热辐射传输求解的蒙特卡罗方法研究。针对蒙特卡罗法适应性强,但计算与存贮量大的特点,从提高计算效率、解决大光学厚度计算存贮需求两方面开展了蒙特卡罗法改进研究。发展完善了吸收、散射性介质中辐射传输的双向蒙特卡罗法(BDMC);提出了求解大光学厚度介质中热辐射传输的移动区域蒙特卡罗法(MCMD);编制了计算程序。对双向蒙特卡罗法,将纯随机抽样(SPS)、比率抽样(PPS)与热辐射传输的特点相结合,导出了均匀及非均匀介质的辐射传递系数,从误差分析与性能参数两方面,研究了该方法计算性能。对移动区域蒙特卡罗法,建立了该方法的实施模型,分析了计算域与人工边界对计算精度的影响。为复杂条件与大光学厚介质内的耦合换热研究提供了热辐射传递数值求解手段。
     (2)复杂形体的高速流与表面辐射耦合传热研究。对于热边界条件随热交换过程动态变化的耦合传热过程,通过建立边界面热流函数库,实现了流场和结构传热的解耦计算;采用区域分解思想结合边界面热流函数库,建立了大型复杂形体的高速对流与表面辐射耦合传热模型。采用商用CFD软件结合蒙特卡罗法与热网络法,对高速飞行器整体瞬态热分析进行了数值模拟研究,考察了耦合换热中各种参数的作用特性与影响程度。
     (3)通道内非均匀参与性介质的热辐射与高速流耦合换热研究。建立了组分热物性、液滴蒸发与辐射换热的计算模型,编制了计算模块。通过与商用软件FLUENT结合,数值模拟了通道内两相燃气流中的热辐射与高速流耦合传热。通过对温度场、液相浓度和壁面热流分析,分析了壁面及介质热辐射特性的影响;比较了不同壁面热边界条件对通道内热环境的影响;结合超音速燃烧室的热设计,建立了热边界非均匀温度分布模型,探讨了影响热环境的主要因素及其作用特性。
     (4)高温冷却通道内耦合传热研究。针对高温燃烧室的热防护,采用有限体积法结合蒙特卡罗法及对流换热实验关联式,数值模拟了高温冷却通道内超临界燃料液体的辐射与对流耦合换热,分析了热辐射的作用及影响因素。基于高温燃烧室的非均匀热流条件与冷却结构材料特性,提出了以壁面温度控制为约束的高温冷却面板热设计方法,分析了该方法的可靠性。
     通过本文研究,建立了热辐射与高速流耦合换热的数值模拟方法,对热辐射与高速流的三类耦合换热过程形成了比较深入细致的认识,得出了一些对工程应用有价值的结论与解决方案。
In many engineering fields related to high temperature heat transfer and flow, thermal radiation and convection usually take place simultaneously and to form coupled heat transfer of radiation and convection. This coupled thermal behavior will cause an important impact on the process characteristics. In a coupled radiation and high-speed flow heat transfer process, not only the interaction of thermal radiation and convection heat transfer but also the combination of heat transfer, fluid flow and mass transfer are involved. So far, our knowledge on mechanism, characteristics and influencing factors of coupled radiation and high-speed flow heat transfer is far from the requirement of developing new technologies in aviation and aerospace engineering fields. The research on coupled thermal radiation and high-speed flow heat transfer is becoming important.
     On the basis of investigating numerical methods of thermal radiation transfer in participating medium with complex geometry, the analytical model for coupled heat transfer of high-speed flow field with complex structures is established. Three kinds of coupled heat transfer problems of high-speed flow with thermal radiation have been investigated by numerical simulation, which are that on complex structure surface, that in high-speed two-phase channel flow and that in supercritical channel flow
     The main work of in this dissertation includes the following four aspects.
     (1) Investigation on the Monte Carlo method for solving thermal radiation transfer problems. The Monte Carlo method is flexible to complex problems, but it costs large amount of memory space and computational time. Aiming at those characteristics, investigations on elevating the computational efficiency and on diminishing memory request are conducted. As a results, the Bidirectional Monte Carlo method (BDMC) for solving radiative heat transfer in absorbent and scattering medium is improved and a Monte Carlo method with mobile domain (MCMD) is put forward to solve the thermal radiation in medium with large optical thickness, and the computational programs for those two kinds of Monte Carlo methods are developed.
     For the Bidirectional Monte Carlo method, the characteristics of thermal radiation transfer is combined with the simple random sampling (SPS) and the probability sampling proportionate to size (PPS) respectively to derive the radiative transfer coefficients, which are used for the homogeneous medium and inhomogeneous medium, respectively. The computational performance of the method is evaluated by error analysis and comparison of performance parameters.
     For the Monte Carlo method with mobile domain, the numerical model and implementation scheme is established and the influences of computational domain and artificial boundary on calculation accuracy are analyzed numerically. All of that provided a powerful method of solving thermal radiation transfer, which is needed for analyzing coupled heat transfer in large optical thickness media.
     (2) Investigation on the coupled heat transfer of surface radiation with high–speed flow across complex shape of bodies. For the heat transfer process with transient coupled thermal boundary conditions, the concept of wall heat flux function is introduced to decouple the calculation of heat transfer in solid structure from that of the flow field. By employing the domain decomposition calculation and resorting to the heat flux functions database of bounding surface, the analysis model for the coupled heat transfer of surface radiation with high–speed flow across complex shape of bodies is developed. A commercial CFD software is combined with the Monte Carlo method and thermal network method to simulate the transient coupled heat transfer of a high-speed aircraft numerically, and the effects of various parameters are analyzed.
     (3) Investigation on the coupled heat transfer of thermal radiation with high-speed flow of non-uniform participating medium in channels. By combining FLUENT software with programs for calculating thermal properties, droplet evaporation and radiation heat transfer, numerical simulation of the coupled heat transfer of thermal radiation with high-speed flow of non-uniform participating medium in channels was carried out. By analyzing the temperature field, the liquid phase concentration and the wall heat flux, the influences of thermal radiation properties were investigated. For the thermal design of supersonic combustion chamber, the influence of wall boundary condition was analyzed to give the thermal boundary model with non-uniform temperature distribution. The flexibility of this model for supersonic combustion chamber and the main factors affecting the thermal environment in supersonic combustion chamber were discussed.
     (4) Investigation on coupled heat transfer in high-temperature cooling channel. For the thermal protection of high-temperature combustion chamber, the Monte Carlo method and the experimental correlations for convection heat transfer were used to numerically simulate the coupled radiation and convection heat transfer of supercritical fuel liquid in a high-temperature cooling channel. The effects of thermal radiation were analyzed and the thermal design method for cooling panel was presented based on the allowed temperature of materials and the non-uniform distribution of heating flux. The reliability of the design method is examined numerically.
     By the investigations in this thesis, the numerical methods have been developed to analyze the coupled heat transfer of thermal radiation with high-speed flow. The detailed knowledge on the three kinds of coupled heat transfer was obtained, which can give some valuable conclusions and design references.
引文
1陶文铨.传热与流动问题的多尺度数值模拟:方法与应用.北京:科学出版社, 2008:715~788
    2 C. T. John, A. A. Dale, H. P. Bichard. Computational Fluid Mechanics and Heat Transfer (Second Edition).London:Taylor & Francis Press. 1997:1~10
    3 R. Siegel, J. R Howell. Thermal Radiation Heat Transfer, 4th ed.New York, London:Taylor&Francis. 2002:85
    4 M. F. Modest. Radiative Heat Transfer.2nd Edition.Academic Press. 2003:1~5
    5 C. Caliot, S. Abanades, A. Soufian, G. Flamant. Effects of Non-gray Thermal Radiation on the Heating of a Methane Laminar Flow at High Temperature. Int. J. of Fuel. 2009, 88(4):617~624
    6 R. Z. Mofreh. Emissivity and Radiative Cooling of Weakly Non-ideal High-Temperature Flibe Gas. J. of Fusion Engineering and Design. 2008, 83 (1):123~131
    7 T. M. Abdel, S. N. Tiwari, T.O. Mohieldin. Study of Supersonic Combustion Characteristics in a Scramjet Combustor. AIAA 2003~3550. 2003
    8 H. F. Nouanégué, E.Bilgen. Heat Transfer by Convection, Conduction and Radiation in Solar Chimney Systems for Ventilation of Dwellings. J. of Heat and Fluid Flow. 2009,30(1):150~157
    9 H. Wolfgang, T. Helmut. Optical Solar Energy Adaptations and Radiative Temperature Control of Green Leaves and Tree Barks. J. of Solar Energy Materials and Solar Cells. 2009,93(1):98~107
    10 H. S. Zhen, C. W. Leung, C. S. Cheung.Heat Transfer from a Turbulent Swirling Inverse Diffusion Flame to a Flat Surface.J. of Heat and Mass Transfer. 2009,52 (11~12):2740~2748
    11 S. Ingmar, L. E. Janet.Superadiabatic Combustion in Conducting Tubes and Heat Exchangers of Finite Length.J. of Combustion and Flame. 2007, 151(1~2): 142~159
    12侯晓春,季鹤鸣,刘庆国等.高性能航空燃气轮机燃烧技术.国防工业出版社.2002:198~252
    13 W. P. Jones, M. C. Paul. Combination Nod DOM with LES in a Gas Turbine Combustor.J. of Engineering Science. 2005, 43(5~6):379~397
    14 C. D. Rakopoulos, G. C. Mavropoulos.Experimental Evaluation of Local Instantaneous Heat Transfer Characteristics in the Combustion Chamber of Air-cooled Direct Injection Diesel Engine.J. of Energy. 2008, 33(7):1084~1099
    15 T. Hammer, J. Keyser, O. Bolland. Natural Gas Oxy-fuel Cycles—Part 2:Heat Transfer Analysis of a Gas Turbine. J. of Energy Procedia. 2009, 1(1):557~564
    16 E. P. Keramidaa, H. H. Liakosa, M. A. Fountib. Radiative Heat Transfer in Natural Gas-fired Furnaces. Int. J. of Heat and Mass Transfer. 2000, 43:1801~1809
    17 B. Zheng, C.X. Lin, M. A.Ebadian. Combined Turbulent Forced Convection and Thermal Radiation in a Curved Pipe with Uniform Wall Temperature.J. of Numerical Heat Transfer, Part A. 2003,44(2):149~167
    18 A. Habibia, B. Mercia, G. J. Heynderickxc. Impact of Radiation Models in CFD Simulations of Steam Cracking Furnaces.J. of Computers and Chemical Engineering. 2007,31(11):1389~1406
    19 B. Doyoung, W. B. Seung. Numerical Investigation of Combustion with Non-gray Thermal Radiation and Soot Formation Effect in a Liquid Rocket Engine.J. of Heat and Mass Transfer. 2007, 50(3~4):412~422
    20 A . Bouchair.Steady State Theoretical Model of Fired Clay Hollow Bricks for Enhanced External Wall Thermal Insulation.J. of Building and Environment. 2008, 43(10):1603~1618
    21 P. Sujoy, R. Biswanath, N. Subhasis.Heat Transfer Modelling on Windows and Glazing under the Exposure of Solar Radiation. J. of Energy and Buildings. 2009, 41(6):654~661
    22 R. Karada.New Approach Relevant to Total Heat Transfer Coefficient including the Effect of Radiation and Convection at the Ceiling in a Cooled Ceiling Room.J. of Applied Thermal Engineering. 2009, 29(8~9):1561~1565
    23王智勇.飞行器气动加热环境与结构响应耦合的结构试验方法.强度与环境. 2006, 33(4):59~63
    24郭印诚,林文漪.马蹄形火焰玻璃熔窑燃烧空间流动与传热的数值模拟.燃烧科学与技术. 2000, 6(3):244~248
    25 R. Viskanta.Overview of Convection and Radiation in High Temperature Gas Flows. Int. J. of Engineering Science. 1998, 36:1677~1699
    26张文普,丰镇平.级间分离的流场及热流分析研究.推进技术. 2003, 24(3):240~243
    27 P. J. Coelho. Detailed Numerical Simulation of Radiative Transfer in a Non-luminous Turbulent Jet Diffusion Flame. Combustion and Flame. 2004, 136:481~492
    28刘大响,程荣辉.世界航空动力技术的现状及发展动向.北京航空航天大学学报. 2002, 28(5):490~496
    29王捷.高温气冷堆技术背景和发展潜力的初步研究.核科学与工程. 2002, 22(4):325~330
    30伍贻兆,程克明.高超声速研究状况及未来若干设想.2005年高超声速技术发展研讨会论文集. 2005:364~370
    31 S. P. Mahulikar, S. K. Sane, U. N. Gaitonde, et al.Numerical Studies of Infrared Signature Levels of Complete Aircraft. J. of Aeronautical. 2001, 105(1046):185~192.
    32翟泉慧,王强,额日其太.高速飞机红外成像特性数值模拟研究.激光与红外. 2002, 32(3):146~148
    33翟泉慧. Su-27飞机红外特性数值模拟研究.北京航空航天大学硕士论文. 2002
    34 S. P. Mahulikar, H. R. Sonawance, G. A. Rao. Infrared Signature Studies of Aerospace Vehicles. J. of Progress in Aerospace Sciences. 2007, 43(7/8):218~245
    35 J. Marlene,D. Mats. Calculation of IR Signatures from Airborne Vehicles.Proc. of SPIE. 2006, 6228: 1301~1312
    36吕建伟,王强.飞行器表面温度和发射率分布对红外辐射特征的影响.光电工程. 2009, 36(2):50~54
    37 M. Deepu, S. S. Gokhale, S. Jayaraj.Numerical Modelling of Scramjet Combustor. J. of Defence Science. 2007, 57(4):367~379
    38 F. O. Timothy, Brien,P. S. Ryan, J. L . Mark. Quasi-One-Dimensional High-Speed Engine Model with Finite-Rate Chemistry.J. of Propulsion and Power. 2001,17(6):1366~1374
    39魏鑫,孙冰,郑力铭,张杰.超燃冲压发动机进气道表面热结构设计与分析.航空动力学报. 2008, 23(11):1961~1965
    40 S. Lahsasni, M. Kouhila, and M. Mahrouz et al.Thin Layer Convective Solar Drying and Mathematical Modeling of Prickly Pear Peel. Energy, 2004, 29:211~224
    41 A. I. Kudish, E. G. Evseev, and G. Walter et al.Simulation Study of a Solar Collector with A Selectively Coated Polymeric Double Walled Absorber Plate.Energy Conversion and Management. 2002, 43(5):651~671
    42林国星,吴兰梅.辐射对流传热对不可逆太阳能Braysson热机性能的影响.工程热物理学报. 2008, 29(8):1277~1279
    43 K. S. Reddy, N. S Kumar. Combined laminar natural convection and surface radiation heat transfer in a modified cavity receiver of solar parabolic dish. Int. J. of Thermal Sciences. 2008, 47:1647~1657
    44 Y. S. Sim, S. O. Kim, H. W. Myung, E. K. Kim,Heikal.Heat Transfer Enhancement by Radiation Structures for an Air Channel of LMR Decay Heat Removal. Nuclear Engineering and Design. 2000, 199:67~186
    45 S. Anghaie, G. Chen.A Computational Fluid Dynamics and Heat Transfer Model for Gaseous Core and Very High Temperature Gas-Cooled Reactors.Nuclear Science and Engineering. 1998, 130:361~373
    46 J. X. Wen, L. Huang, Y. J. Roberts. The Effect of Microscopic and Global Radiative Heat Exchange on the Field Predictions of Compartment Fires. Fire Safety Journal, 2001
    47朱雷波,童树庭,郭卫等.辐射-对流技术在玻璃钢化炉中的应用.建筑材料学报. 2001, 4(2):174~179
    48 H. Y. Tian, J. Choi, and K. No et al. Effect of Compositionally Graded Configuration on The Optical Properties of BaxSr1. TiO3 Thin Films Derived From a Solution Deposition Route.Materials Chemistry and Physics. 2002, 78:138~143
    49 W. H. Sutton, X. L. Chen.A General Integration Method for Radiative Transfer in 3-D Non-homogeneous Cylindrical Media with Anisotropic Scattering. J. of Quantitative Spectroscopy and Radiative Transfer. 2004, 84:65~103
    50 P. R. Parida, R. Raj, A. Prasad, S. C. Mishra. Solidification of a Semitransparent Planar LayerSubjected to Radiative and Convective Cooling. J. of Quantitative Spectroscopy and Radiative Transfer. 2007, 107:226~235
    51 L. Pierrot, A. Soufiani, J. Taine. Accuracy of Narrow-band and Global Models for Radiative Transfer in H2O, CO2, and H2O–CO2 Mixtures at High Temperature. J. of Quantitative Spectroscopy and Radiative Transfer. 1999, 62:523~548
    52 M. F. Modest. Narrow-band and full-spectrum k-distributions for radiative heat transfer-correlated-k vs. scaling approximation. J. of Quantitative Spectroscopy and Radiative Transfer. 2003, 76:69~83
    53 L. Liu, I. M. Michael. Scattering and Radiative Properties of Complex Soot and Soot-containing Aggregate Particles. J. of Quantitative Spectroscopy and Radiative Transfer. 2007, 106(1/3):262~273
    54 A. Frédéric, V. Rodolphe. The k-moment Method for the Narrow Band Modeling of Radiative Properties of Non-uniform Gaseous Media. J. of Quantitative Spectroscopy and Radiative Transfer. 2008, 109(2):258~268
    55 L. Liu, I. M. Michael, W. P. Arnottc. A Study of Radiative Properties of Fractal Soot Aggregates Using the Superposition T-matrix Method. J. of Quantitative Spectroscopy and Radiative Transfer. 2008, 109(15):2656~2663
    56 A. R. I. Kamal, S. S. Carlos. Non-gray Radiative Convective Conductive Modeling of a Double Glass Window with a Cavity Filled with a Mixture of Absorbing Gases. Int J. of Heat and Mass Transfer. 2006, 49(17~18):2972~2983
    57 R. G. Santos, M. Lecanu, S. Ducruix, O. Gicquel, E. Iacona, D. Veynante. Coupled Large Eddy Simulations of Turbulent Combustion and Radiative Heat Transfer. Combustion and Flame. 2008, 152:387~400
    58 M. Kassemi, B. T. F. Chung.Two-Dimensional Convection and Radiation with Scattering from a Poiseuille Flow. J. of Thermophysics and Heat Transfer. 1990, 4:98~105
    59黄勇,夏新林,谈和平.热辐射对圆管内层流半透明流体换热的影响.中国电机工程学报. 2001, 21(11):29~33
    60 M. Bidi, R. Hosseini, M. R. H. Nobari. Numerical Analysis of Methane-air Combustion Considering Radiation Effect. Energy Conversion and Management. 2008, 49(12):3634~3647
    61 B. Moshfegh, M. Sandberg. Flow and Heat Transfer in the Air Gap Behind Photovoltaic Panels. Renewable and Sustainable Energy Reviews. 1998, 2(3):287~301
    62 A. Ibrahim, D. Lemonnier. Numerical Study of Coupled Double-diffusive Natural Convection and Radiation in a Square Cavity Filled with A N2–CO2 Mixture.International Communications in Heat and Mass Transfer. 2009, 36:197~202
    63 C. G. Toita, P. G.. Rousseaua, G. P. Greyvensteina, W. A. Landmanb. A Systems CFD Model of a Packed Bed High Temperature Gas-cooled Nuclear Reactor.Int J. of Thermal Sciences. 2006, 45(1):70~85
    64 S. Becker, E. Laurien. Three-dimensional Numerical Simulation of Flow and Heat Transport in High-temperature Nuclear Reactors. Nuclear Engineering and Design. 2003, 222(2/3):189~201
    65 K. Kamiuto. Combined Laminar Forced Convection and Nongray-Radiation Heat Transfer to Carbon Dioxide Flowing in a Non-black, Plane-Parallel Duct. Numerical Heat Transfer, Part A. 1995, (28):575~587
    66 W. M. Yan, H. Y. Li. Radiation Effects on Laminar Mixed Convection in an Inclined Square Duct. J. of Heat Transfer– Transactions of The ASME. 1999, 121:194~200
    67 S. W. Baek, M. J. Yu, T. Y. Kim. Thermally Developing Poiseuille Flow Affected by Radiation. Numerical Heat Transfer, Part A. 1999, 35:681~694
    68夏新林,黄勇,刘顺隆等.高温下加热/冷却管内参与性介质的辐射与对流耦合换热研究.航空动力学报. 2001, 16(4):370~375
    69 X. L. Xia, H. C. Zhang, H. P. Tan et al. Numerical Simulation of Coupled Radiation-Convection Heat Transfer of High-Temperature Developing Flow In Tube. Heat Transfer -Asian Research. 2004, 33(1):53~63
    70 L. Tesse, F. Dupoirieux, J. Taine.Monte Carlo Modeling of Radiative Transfer in a Turbulent Sooty Flame. Int. J. of Heat and Mass Transfer. 2004, 47(3):555~572
    71 A. R. Martin, C. Saltiel, J. Chai et al. Convective and Radiative Internal Heat Transfer Augmentation with Fiber Arrays. Int. J. of Heat and Mass Transfer. 1998, 41(22):3431~3440
    72夏刚,刘建新,程文科,秦子增.钝体高超声速气动加热与结构热传递耦合的数值计算.国防科技大学学报. 2003, 25(1):35~39
    73范绪箕,董葳.飞行器突起物周围气动加热的计算方法.宇航学报. 1998, 19(1):98~102
    74黄春生,吴杰,范绪箕.飞行器流场与结构温度场耦合数值分析.力学与实践. 2004, 26:24~26
    75耿湘人,张涵信,沈清,高树椿.高速飞行器流场和固体结构温度场一体化计算新方法的初步研究.空气动力学学报. 2002, 20(4):422~427
    76程克明,吕英伟.飞行器持续气动加热的耦合性分析.南京航空航天大学学报. 2000, 32(2):150~155
    77魏玺章,黎湘,庄钊文,付耀文.红外目标温度场及辐射通量的计算.系统工程与电子技术. 1999, 21(9):13~14
    78程养民. TY~3探空火箭突起物气动加热计算.固体火箭技术. 2003, 26(2):1~3
    79高振声.机载武器的气动加热.飞机设计. 2001, 9(3):46~54
    80杨威,邵晓鹏,刘劲松,张建奇.飞行弹丸表面温度场的理论计算.西安电子科技大学学报. 2001, 28(5):651~654
    81夏丰领,陈国光.高速火箭弹的气动加热计算.华北工学院学报. 2003, 24(6):468~470
    82范绪箕,董葳.飞行器突起物周围气动加热的计算方法.宇航学报. 1998, 19(1):98~102
    83 Y. K. Chen, W. D. Henline, M. E. Tauber. Mars Pathfinder Trajectory Based Heating and Ablation Calculations. J.of Spacecraft and rockets. 1995, 32(2):225~230
    84 P. Dechaumphai, E. A. Thornton, Wietingar. Flow Thermal-structural Study of AerodynamicallyHeated Leading Edges[R]. AIAA PAPER 88~2245
    85 A. R. WIETING. Experimental Study of Shock Wave Interference Heating on a Cylindrical Leading Edge[R]. NASA TM 100484, 1987
    86 A. R. Wieting.Experimental Study of Shock Wave Interference Heating on a Cylindrical Leading Edge [R]. N87~27154, 1987
    87 H. Zhang, X. Zhang, S. Ji, Y. Guo, G. Ledezma, N. Elabbasi, H. Cougny. Recent Development of Fluid–Structure Interaction Capabilities in the ADINA System. Computers & Structures. 2003, 81(8-11):1071-1085
    88 B.C. Ai, G.L. Mao, B.G.Tong, G.Q. Jiang. Coupled Aeroheating/Structure Analysis with CFD Methods. 54th International Astronautical Congress of the International Astronautical Federation. 2003, Bremen, Germany, IAC-03-I.P.08
    89 T. YAMANE. Conjugate Analysis of Flow and Heat Conduction by UPACS. JAXA Special Publication. 2005, 4(12):121-126
    90成楚之.国内外导弹热结构分析研究综述.现代防御技术. 1998, 11(6):15~2
    91张志诚等.高超声速气动热和热防护.国防工业出版社, 2003
    92 A. K. Sharma, K. Velusamy, C. Balaji, S. P. Venkateshan. Conjugate Turbulent Natural Convection with Surface Radiation in Air Filled Rectangular Enclosures. International Journal of Heat and Mass Transfer. 2007,50:625–639
    93 H. Nouaneguea, A. Muftuoglua, E. Bilgen. Conjugate Heat Transfer by Natural Convection,Conduction and Radiation in Open Cavities. International Journal of Heat and Mass Transfer. 2008, 51(25/26):6054~6062
    94 J. Xamán, G.álvarez, J. Hinojosa, J. Flores. Conjugate Turbulent Heat Transfer in a Square Cavity with a Solar Control Coating Deposited to a Vertical Semitransparent Wall. International Journal of Heat and Fluid Flow. 2009, 30:237–248
    95姜培学,余磊,任泽霈.变物性与热辐射对发汗冷却过程的影响规律研究.航空动力学报. 2004, 19(2):184~190
    96程惠尔,肖大方.电热增强段复合传热的数学模型及数值分析.宇航学报. 1996, 17(1):51~56
    97 R. Mohammed, B. Hicham, M. Ahmed. Radiation-natural Convection Heat Transfer in Inclined Rectangular Enclosures with Multiple Partitions.Energy Conversion and Management. 2008,49(5):1228~1236
    98邢玉明,袁修干.高温流动系统内置辐射板强化传热的研究.北京航空航天大学学报. 1997, 23(5):643~64
    99 B. Zheng, C. X. Lin, M. A.Ebadian. Combined Laminar Forced Convection and Thermal Radiation in a Helical Pipe. Int. J. of Heat and Mass Transfer. 2000, 43(6):1067~1078
    100 T. Seo, D. A. Kaminski, M. K. Jensen. Combined Convection and Radiation in Simultaneously Developing Flow and Heat Transfer with Non-gray Gas Mixtures.Numerical Heat Transfer,Part A. 1994, 26:49~66
    101 C. Messenger, B. Farouk. Convection Non-Gray Radiation Interactions in a Channel Flow. National Heat Transfer Conference, ASME, 1996, 3:103-113
    102 E. Sediki, A. Soufiani, M.S. Sifaoui. Spectrally Correlated Radiation and Laminar Forced Convection in the Entrance Region of a Circular Duct. Int. J. of Heat and Mass Transfer. 2002, 45:5069-5081
    103 M. K. Savur, A Numerical Study Of Combined Convective And Radiative Heat Transfer In A Rocket Engine Combustion Chamber, Master’s thesis, Naval Postgraduate School, Monterey, California, December 2002
    104 B. Chérif, M. S. Sifaoui. Numerical Study of Heat Transfer in an Optically Thick Semi-transparent Spherical Porous Medium. Journal of Quantitative Spectroscopy and Radiative Transfer. 2005, 91(3):363-372
    105 B. E. Pearce, A. F. Emery. Heat Transfer by Thermal Radiation and Laminar Forced Convection to an Absorbing Fluid in the Entry Region of a Pipe. J. of Heat Transfer– Transactions of The ASME, 1970, 92(5):221-230
    106 T. Prabal, C. M. Subhash, D. Trimis, D. Franz. Combined Radiation and Convection Heat Transfer in a Porous Channel Bounded by Isothermal Parallel Plates. International Journal of Heat and Mass Transfer. 2004, 47(5):1001-1013
    107 V. Glisienko, G. K. Malikov, and Y. K. Malikov. Zone-Node Method for Calculation Radiant Gas Flows in Complex Geometry Ducts. Numerical Heat Transfer, Part B. 1992,22:1-24
    108 J. Stasiek, M. W. Collins. Radiant and Convective Heat Transfer for Flow of a Radiation Gas in a Heated/Cooled Tube with a Grey Wall. Int. J. of Heat and Mass Transfer. 1993, 36(14):3633-3645
    109 T. Y. Kim, S. W. Baek. Thermal Development of Radiation Active Pipe Flow with Non -axisymmetric Circumferential Convective Heat Loss. Int. J. of Heat and Mass Transfer. 1996, 39(14):2969-2976
    110 G. Colomera, R. Cònsula, A. Oliva. Coupled Radiation and Natural Convection: Different Approaches of the Slow Model for a Non-gray Gas Mixture. Journal of Quantitative Spectroscopy and Radiative Transfer. 2007, 107(1):30-46
    111 P. von Zedtwitza, W. Lipi′nskia, A. Steinfelda. Numerical and Experimental Study of Gas–particle Radiative Heat Exchange in a Fluidized-bed Reactor for Steam-gasification of Coal. Chemical Engineering Science. 2007, 62:599-607
    112 Mohamed Naceur Borjini, Kamel Guedrib, Rachid Sa?¨d. Modeling of Radiative Heat Transfer in 3D Complex Boiler with Non-gray Sooting Media. J. Quantitative Spectroscopy and Radiative Transfer. 2007, 105:167-179
    113 M. Y. Kim. A Heat Transfer Model for the Analysis of Transient Heating of the Slab in a Direct-fired Walking Beam Type Reheating Furnace. Int J. Heat and Mass Transfer. 2007, 2:2-23
    114刘林华,谈和平.梯度折射率介质内热辐射传递的数值模拟.北京,科学出版社, 2006
    115刘林华,赵军明,谈和平.辐射传递方程数值模拟的有限元和谱元法.北京,科学出版社, 2008
    116 W. A. Fiveland. Finite Element Formulation of the Discrete Ordinates Method for MultidimensionalGeometries. J. of Thermophysics and Heat Transfer. 1994, 8(3):426-433
    117 X. Cui, B. Q. Li. A Discontinuous Finite Element Formulation for Internal Radiation Problem. Numerical Heat Transfer, Part A. 2004, 46(3):223-242
    118 W. An, L. M. Ruan, H. Qi, L. H. Liu. Finite Element Method for Radiative Heat Transfer in Abrobing and Anisotropic Scattering Media. J. of Quantitative Spectroscopy and Radiative Transfer. 2005, 96(3-4):409-422
    119 L. M. Ruan, W. An, H. P. Tan, H. Qi. Least-Squares Finite Element Method for Multidimensional Radiative Heat Transfer in Absorbing and Scattering Media. Numerical Heat Transfer, Part A. 2007, 51(7):657-677
    120 J. M. Zhao, L. H. Liu. Discontinuous Spectral Element Method for Solving Radiative Heat Transfer in Multidimensional Semitransparent Media. J. of Quantitative Spectroscopy and Radiative Transfer. 2007, 107(1):1-16
    121 L. H. Liu. Meshless Local Petrov-Galerkin Method for Solving Raditive Transfer Equation. J. of Thermophysics and Heat Transfer. 2006, 20(1):150-154
    122 J. Y. Tan, L. H. Liu, B. X. Li. Least-Squares Radial Point Interpolation Collocation Meshless Method for Radiative Heat Transfer. J. of Heat Transfer-Transactions of the ASME. 2007, 129(5):669-673
    123 M. P. Mengue, R. Viskanta. Radiative Transfer in Three-Dimensional Rectangular Enclosures Containing Inhomogeneous, Anisotropically Scattering Media. J. of Quantitative Spectroscopy and Radiative Transfer. 1985, 33(6):533-549
    124 M. F. Modest. The Improved Differential Approximation for Radiative Transfer in Multi-Dimensional Media. J. of Heat Transfer -Transactions of The ASME. 1990, 112(2):819-821
    125 S. Chandrasekhar. Radiative Transfer. New York, Dover Publications, 1960
    126 K. D. Lathrop. Use of Discrete-Ordinate Methods for Solution of Photon Transport Problems. Nuclear Science and Engineering. 1966, 24:381-388
    127 T. J. Love, R. J. Grosh. Radiative Heat Transfer in Absorbing,Emitting and Scattering Media. J. of Heat Transfer– Transactions of The ASME. 1965, 87:161-166
    128 B. W. Li, Q. Yao, and X. Y. Cao et al. A New Angular Quadrature Set for Discrete Ordinate Method. J. of Heat Transfer– Transactions of The ASME. 1998,120(2):514-518
    129李本文,姚强,曹新玉等.一种新的辐射换热离散坐标算法.化工学报. 1998, 49(3):288-293
    130刘林华,余其铮,阮立明等.求解辐射传递方程的离散坐标解法.计算物理. 1998, 15(3):337-343
    131 B. W. Li, R. X. Liu, W. Q. Tao. Ray Effect in Ray Tracing Method for Radiative Heat Transfer. Int. J. of Heat and Mass Transfer. 1997, 40(14):3419-3426
    132 M. A. Ramankutty, A. L. Crosbie. Modified Discrete Ordinates Method of Radiative Transfer In Two-Dimensional Rectangular Enclosures. J. of Quantitative Spectroscopy and Radiative Transfer. 1997, 57(1):107-140
    133 M.Y.Kim, S.W.Baek. Radiative Heat Transfer in a Body-Fitted Axisymmetric Cylindrical Enclosure.J. of Thermophysics and Heat Transfer. 1998, 12(4):596-599
    134 M. Sakami, A. Charette. Application of a Modified Discrete Ordinates Method to Two-Dimensional Enclosures of Irregular Geometry. J. of Quantitative Spectroscopy and Radiative Transfer. 2000, 64(3):275-298
    135 A. Jameson, W. Schmidt. Numerical Solution of the Euler Equations by Finite Volume Method Using Runge-Kutta Time-stepping Schemes. 1981, AIAA-81-1259
    136 S. V. Patankar. Numerical Heat Transfer and Fluid Flow. New York, McGraw-Hill, 1980
    137 G. D. Raithby, E. H. Chui. A Finite–Volume Method for Predicting a Radiant Heat Transfer in Enclosures with Participating Media. J. of Heat Transfer-Transactions of the ASME. 1990, 112(5):415-423
    138 E. H. Chui, G.. D. Raithby. Implicit Solution Scheme to Improve Convergence Rate in Radiative Transfer Problems. Numerical Heat Transfer, Part B. 1992, 22(3):251-272
    139 H. C. Hottel, E. S. Cohen. Radiant Heat Exchange in a Gas-Filled Enclosure Allowance for Nonuniformity of Gas Temperature. AICHE journal. 1958,4(3):3-14
    140 F. C. Lockwood, N. G.. Shah. A New Radiation Solution Method for Incorporation in General Combustion Prediction Procedures. 18th Symposium (int.) on Combustion, Pittsburgh USA, 1981:1403-1414
    141 X. L. Xia, H. P. Tan, Q. Z. Yu, L. Li, Y. L. Bao. Three Dimensional Transient Coupled Radiative-Conductive Heat Transfer in Cylinders Filled with Semi-Transparent Media with Complicated Surface Characteristics. J. of Thermal Science. 1995, 4(4):241-249
    142 J. R. Howell, M. Perlmutter. Monte Carlo Solution of Thermal Transfer through Radiant Media between Gray Walls. J. of Heat Transfer– Transactions of The ASME. 1964, 86(1):116-122
    143 L. M. Ruan, H. P. Tan, Y. Y. Yan. A Monte-Carlo (M-C) Method Applied to the Medium with Non-Gray Absorbing-Emitting-Anisotropic Scattering Particles and Gray Approximation. Numerical Heat Transfer, Part A. 2002, 42(3):253-268
    144 S. W. Baek, D. Byun,, S. J. Kang. The Combined Monte-Carlo and Finite-Volume Method for Radiation in a Two-Dimensional Irregular Geometry. Int. J. of Heat and Mass Transfer. 2000, 43(13):2337-2344
    145 J.T. Farmer, J.R. Howell. Monte Carlo Strategies for Radiative Transfer in Participating Media. Advances in Heat Transfer. 1998, 31:1-97
    146 L. H. Liu, H. P. Tan, Q. Z. Yu. Inverse Radiation Problem of Sources and Emissivities in One-Dimensional Semitransparent Media. Int. J. of Heat and Mass Transfer. 2001, 44(1):63-72
    147 N. A. Gentile. Implicit Monte Carlo Diffusion-An Acceleration Method for Monte Carlo Time-Dependent Radiative Transfer Simulations. J. of Computational Physics. 2001, 172:543-571
    148 V. Eymet, R. Fournier, S. Blanco et al. A boundary-based Net-exchange Monte Carlo Method for Absorbing and Scattering Thick Media. J. of Quantitative Spectroscopy and Radiative Transfer. 2005, 91:27-46
    149 L.M. Ruan, H. Qi, L.H. Liu, H.P. Tan. The Radiative Transfer in Cylindrical Medium and Partition Allocation Method by Overlap Regions. Journal of Quantitative Spectroscopy & Radiative Transfer.2004, 86:343–352
    150 F. Wang. D. Liu, K. F. Cen, J. H. Yan, Q. X. Huang, Y. Chi. Efficient Inverse Radiation Analysis of Temperature Distribution in Absorbing and Scattering Medium Based on Backward Monte Carlo Method. J. Quantitative Spectroscopy and Radiative Transfer. 2008, 109(12/13):2171-2181
    151陶文铨.数值传热学(第二版).西安交通大学出版社, 2002
    152陶文铨.计算传热学的近代进展.科学出版社, 2000
    153 R. Karada. New Approach Relevant to Total Heat Transfer Coefficient Including the Effect of Radiation and Convection at the Ceiling in a Cooled Ceiling Room. Applied Thermal Engineering. 2009, 29(8-9):1561-1565
    154徐枫,欧进萍,肖仪清.不同截面形状柱体流致振动的CFD数值模拟.工程力学. 2009, 26(4):7-15
    155刘上,孙得川.固液发动机实验燃烧器的气固耦合传热计算.推进技术. 2008, 29(3):257-261
    156张艳慧,徐惊雷,张堃元.超燃冲压发动机非对称喷管设计点性能.推进技术. 2007, 28(3):282-286
    157李莉,齐乐华,杨方,罗俊,蒋小珊.液滴喷射过程流场和温度场的数值模拟.航空学报. 2007, 28(3):719-723
    158 S. Sebastian, W. Bernhard. CFD Heat Transfer Predictions of a Single Circular Jet Impinging with Crossflow. 2006, AIAA-2006-3589
    159 P. L. Stephen, A. S. Bamidele. Aerodynamic Analysis of Oscillating Aerofoils Including Dynamic Stall Using Commercial CFD Software. 2007, AIAA-2007-7872
    160文杰,梁木子,张会武,程先华.含有不可凝结气体的蒸汽壁面冷凝的数值模拟.上海交通大学学报. 2009, 43(2):299-303
    161刘捷,安柏涛,蒋洪德,刘建军.静叶前缘气膜冷却特性的数值模拟及改进设计.航空动力学报. 2009, 24(2):331-339
    162张元辉,王强.发动机短舱内外流场与结构温度场耦合计算.飞机设计. 2009, 29(1):30-36
    163曾军,张剑,黄康才.预旋进气转-静盘腔中的流动和传热数值研究.航空动力学报. 2008, 23(7):1168-1173
    164 I. Gianluca. Predictions of a Turbulent Separated Flow Using Commercial CFD Codes. Journal of Fluids Engineering. 2001, 123:819-828
    165 O. Triesch, M. Bohnet. Measurement and CFD Prediction of Velocity and Concentration Profiles in a Decelerated Gas-Solids Flow. Powder Technology. 2001, 115(2):101-113
    166 J. M. Stephen, H. F. Steven. Numerical Modeling of Supersonic Combustion:Validation and Vitiation Studies Using FLUENT. 2005, AIAA-2005-4287
    167 A. S. Bamidele, P. L. Stephen. Commercial CFD Software Application to Unsteady Aerodynamics of Oscillating Airfoils. 2006, AIAA-2006-3851
    168 P. L. Stephen, A. S. Bamidele. Aerodynamic Analysis of Oscillating Aerofoils Including DynamicStall Using Commercial CFD Software. 2007, AIAA-2007-7872
    169 S. J. P. Romkes, F.M. Dautzenberg, C. M. Bleek, H. P. A. Calis. CFD Modelling and Experimental Validation of Particle-to-fluid Mass and Heat Transfer in a Packed Bed at Very Low Channel to Particle Diameter Ratio. Chemical Engineering Journal. 2003, 96:3-13
    170 J. Abanto, P. Dominique, A. Garonz, J. Y. Trepanier, R. Marcelo. Verification of Some Commercial CFD Codes on Atypical CFD Problems. 2005, AIAA-2005-682
    171陈矛章.粘性流体动力学基础.高等教育出版社, 1993
    172 G. Datta, J. S. Shang. Performance of Eddy-viscosity-based Turbulence Models in Three-dimensional Interaction. AIAA Journal. 1996, 34(4):844-847
    173 R. Paciorri, W. Dieudonne, G. Degrez, etal. Validation of the Spalart-Allmaras Turbulence Model for Application in Hypersonic Flows[R]. AIAA -1997-2323
    174 Gianluca, Iaccarino. Prediction of the Turbulent Flow in a Diffuser with Commercial CFD Codes. Center for Turbulence Research Annual Research Briefs 2000, 2000
    175王福军.计算流体动力学分析.清华大学出版社, 2004
    176闵桂荣,郭舜.航天器热控制.科学出版社, 1998
    177张赛金,张常国.北约空中目标红外辐射模型.现代防御技术. 1994,5
    178高振声.机载武器的气动加热.飞机设计. 2001, 9(3):46-54
    179张树道.双燃式超燃冲压发动机冷态内流现象研究.博士学位论文,中国科学技术大学, 1999
    180赵坚行.燃烧的数值模拟.科学出版社, 2002
    181刘陵,刘敬华,张榛,唐明.超音速燃烧与超音速燃烧冲压发动机.西安,西北工业大学出版社, 1993
    182 W. E. Ranz, W. R. Marshall. Evaporation from Drops. Chemical Engineer Program. 1952, 48(3):173-180
    183 S. S. Sazhin, W. A. Abdelghaffar, E. M. Sazhina, M. R. Heikal. Models for Droplet Transient Heating: Effects on Droplet Evaporation, Ignition, and Break-up. Int. J. of Thermal Sciences. 2005, 44:610-622
    184 K. Y. Kuo. Principles of Combustion. New York, John Wiley and Sons, 1986
    185 FLUENT Version 6.3 User’s Guide. FLUENT Inc, 2006
    186 A. Coppalle, P. Vervisch. The Total Emissivities of High-Temperature Flames. Combustion and Flame. 1983, 49:101-108
    187 T. F. Smith, Z. F. Shen, J. N. Friedman. Evaluation of Coefficients for the Weighted Sum of Gray Gases Model. J. Heat Transfer. 1982, 104:602-608
    188 D. K.. Edwards, R. Matavosian. Scaling Rules for Total Absorptivity and Emissivity of Gases. J. Heat Transfer. 1984, 106:684-689
    189 S. S. Sazhin. An Approximation for the Absorption Coefficient of Soot in a Radiating Gas.Manuscript, Fluent Europe, Ltd, 1994
    190 B. Abramzon, S. S. Sazhin. Droplet Vaporization Model in the Presence of Thermal Radiation, Internat. J. Heat Mass Transfer. 2005, 48:1868-1873
    191孙冰,郑力铭.超燃冲压发动机支板热环境及热防护方案.航空动力学报. 2006, 21(2):336-341
    192刘国球等.液体火箭发动机原理.北京,宇航出版社, 1993
    193万俊华,刘顺隆.流体分子理论及性质.哈尔滨工程大学出版社, 1994:139-142
    194蒋劲.超燃冲压发动机燃烧室再生冷却研究.西北工业大学硕士论文, 2006:7-9
    195 L. A. Dombrovsky, S. S. Sazhin. Spectral Properties of Diesel Fuel Droplets. Fuel. 2003, (82):15-22
    196余其铮.辐射换热原理.哈尔滨工业大学出版社, 2000:139-130
    197 B. S. Petukhov, L. G.. Genin, S. A. Kovalev. Heat Transfer in Nuclear Power Equipment [M]. Energoatom izdat Press, 1986:342-367
    198 W. M.罗森诺等.传热学基础手册.齐欣译.科学出版社, 1992:478-49
    199陈卓如,金朝铭,王洪杰等.工程流体力学.高等教育出版社, 1992:275-280
    200余勇.超燃冲压发动机燃烧室工作过程理论和试验研究.国防科学技术大学博士论文, 2004
    201 K. William, C. Michael, W. Bernhard.对流传热与传质.赵镇南译.第四版.高等教育出版社. 2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700