EB-PVD制备镍基合金薄板组织与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属热防护系统是可重复使用飞行器的关键技术之一。作为未来新一代高速飞行器的主要防热部件,与陶瓷瓦相比,金属热防护系统具有高的强度、韧性、高可靠性、良好的抗热震性能及耐潮湿,且同时具备良好的工艺性能,便于制备较大尺寸的结构件等优势而成为本领域的研究热点。本文中采用电子束物理气相沉积技术成功制备出大尺寸、高强度、高韧性和具有良好焊接性能的镍基高温合金薄板。采用X射线衍射(XRD)、扫描电镜(SEM)、原子力显微镜(AFM)和透射电子显微镜(TEM)以及万能拉伸实验机和高温蠕变实验机等实验设备和测试手段深入地研究了制备态和热处理态镍基合金薄板的组织结构和力学性能;研究了基板温度、转速对沉积材料组织性能和致密性的影响以及锭料蒸发速率比和靶基距对沉积薄板厚度分布和质量蒸发效率的影响,并建立了厚度分布数学模型;制备态和热处理态镍基合金薄板的高温氧化行为。
     研究发现基板温度700℃时(Ts/Tm=0.6),沉积薄板组织为细小的等轴晶组织,具有很好韧性;基板温度450℃时(Ts/Tm=0.45),沉积薄板组织为柱状晶组织,材料表现为明显的脆性。在基板温度700℃时,基板转速选择为5rpm、12rpm和30rpm,实验结果表明随基板转速增加,沉积材料的致密性有所的降低,但下降程度很小。
     薄板厚度分布的均匀性是决定沉积合金薄板性能的一个重要指标,均匀性的好坏将直接影响到薄板使用性能。根据真空蒸镀中小平面蒸发源理论和EB-PVD工艺特点,建立了在基板旋转时靶基距和锭料蒸发速率比与厚度分布关系的数学预测模型,厚度分布符合cosnθ规律,其中n=5.3,模型与实际厚度分布符合很好。预测模型显示,随靶基距的降低,薄板的厚度分布不均匀性增大;通过调整两个蒸发源的蒸发速率比,可以改变薄板沿半径方向厚度分布的均匀性,根据实际需要从而获得最佳的厚度分布。当靶基距一定时,随着4号坩埚锭料蒸发量占两个坩埚总蒸发量百分比的增加,质量蒸发效率线性增加;当两个坩埚蒸发量占总蒸发量的比值一定时,随着靶基距的降低,质量蒸发效率单调增加。
     优化沉积工艺参数后获得的制备态合金薄板为等轴晶组织,晶粒尺寸从几百纳米到1~2微米不等,晶粒生长没有明显的择优取向,XRD衍射分析表明合金为单一的镍基固溶体。为了获得好的高温力学性能,研究了合金薄板的后续热处理工艺,确定处理工艺为1020℃固溶0.5h,水冷;760℃时效48h,空冷。时效热处理后,合金薄板晶粒发生长大,晶粒尺寸在4~5μm左右,同时在晶界处有尺寸为纳米级(20~50nm)细小的碳化物析出,其成分为(Cr,Fe)23C6,晶体结构为面心立方(FCC)。时效热处理后合金薄板试样的高温拉伸力学性能有了显著的提高,制备态合金薄板800℃时的抗拉强度为64MPa,而时效热处理合金薄板试样800℃时的抗拉强度达到了275MPa。
     制备态镍基合金薄板800℃恒温氧化结果表明,在氧化初期合金薄板表面首先生成Cr2O3氧化物,随着氧化时间的增加,内氧化物Al2O3逐渐在基体和Cr2O3界面处生成,并在横向方向上不断长大而形成准连续的内氧化层。900℃恒温氧化制备态合金薄板表面首先生成的为Cr2O3氧化物层,氧化96h后,基体和Cr2O3层内侧有内氧化现象发生,内氧化物颗粒成分为Al2O3,但在界面处没有形成连续的内氧化层。1000℃恒温氧化初期制备态合金薄板表面首先生成的氧化物为Cr2O3和TiO_2颗粒。随着氧化时间的增长,处于外表面层的TiO_2颗粒快速长大,氧化100h后,外层TiO_2颗粒逐渐相连,近似形成连续的TiO_2外氧化层。内层为Cr2O3氧化物层,同时在Cr2O3层内侧基体内,有内氧化现象发生,内氧化物为Al2O3。
     制备态镍基合金薄板800℃恒温氧化动力学曲线遵循立方规律。由于在氧化过程中其氧化物晶粒尺寸长大缓慢,晶界体积分数很高,因此氧化膜生长的主要方式是金属离子通过晶界扩散(短路扩散),理论推导出其三次方规律,理论与实验结果相符合。制备态镍基合金薄板900℃和1000℃恒温氧化动力学曲线遵循抛物线规律。
     时效热处理试样800℃恒温氧化初期首先生成Cr2O3氧化物,随着氧化时间的增长,在氧化层内部与基体之间,发生内氧化现象,在Cr2O3氧化层与基体界面处有Al2O3氧化物生成,但界面处Al2O3氧化物没有形成连续的内氧化物层。基体内部也有少量内氧化现象发生。其恒温氧化动力学遵循抛物线规律。
Metallic thermal protection system (MTPS) is one of the key techniques for developing reusable launch vehicle (RLV). As a new generation key thermal protection component, MTPS has high strength and toughness, high reliability, excellent thermal shock resistance and moisture resistance compared with ceramic tile. At the same time it also has advantages of good processing propoties and producing large size component easily. Therefore, MPTS has become a research focus in this area. In this paper, large-scale Ni-based alloy sheets are fabircatied by electron team physical vapor deposition (EB-PVD), with high strength and toughness, good jointing propoties. Their microstructure and mechanical properties are systematically investigated by means of X-ray diffactometry (XRD), sanning electron microscopy (SEM), atom force microscopy (AFM) and transmission electron microscopy (TEM) as well as mechanical test method. Effection on temperature and rotational speed of the substrate on microstructure and density is studed. Effection of ingots evaporation speed ratio and source-to-substrate distance on sheet thickness distribution and mass evaporation efficiency is studied and the mathematic model of thickness distribution is presented. In addition, high temperature oxidation behaviors of as-deposited and annealed Ni-based alloys are studied.
     In this paper, the Ni-based alloys were deposited at the substrate temperature 700℃and 450℃. The results showed that the as-deposited sheet with good toughness consisted of equiaxed grains at 700℃and with brittleness cnsisted of columnar microstucture at 450℃. The sheets were fabricated at 700℃with substrate rotational speed 5rpm, 12rpm and 30rpm. The results showed that density of the sheets decredsed with rotational speed increase, but a small decline in the extent.
     The thickness distribution uniformity is an important target which determines the service performance of Ni-based alloy sheet. According to EB-PVD process feature, a mathematical model of thickness distribution of the sheet deposited on rotary substrate surface is presented by taking the effection of ingots evaporation speed ratio and source-to-substrate distance on sheet thickness distribution uniformity into consideration. The theory of small plate evaporation source under the condition of vacuum evaporation is used in the predicted mathematical model. The predicted model follows cosnθlaw and agrees well with the measured data when n = 5.3. The model shows that the thickness distribution uniformity is worse with decreasing source-to-substrate distance. Thickness distribution can be adjusted through changing ingots evaporation speed ratio according to factual requirement. When source-to-substrate distance is not changed, mass evaporation efficiency increases linearly with increasing evaporaiton speed ratio of the ingot in No.4 crucible. When ingots evaporaiton speed ration is invariable, however, mass evaporation efficiency decreases linearly with decreasing source-to-substrate distance.
     The study results indicated that as-deposited Ni-based alloys consisted of equiaxis grains. The grain size varies from several nanometers to 1~2μm. As-deposited Ni-based alloys sheet consisted of single Ni-based solution and exhibited no texture. The heat treatment experiments were planned to confirm standard heat treatment regime of solution heat treatment at 1020℃for 0.5h, water quenching and aging treatment at 760℃for 48h, air-colled. After standard heat treatment, the grains of alloy sheet grew up to 4~5μm and fine carbide particles with 20~50nm in size separated out on grain boundary. The carbide composition was (Cr,Fe)23C6, whose crystal structure was face-centered cubic (FCC). High temperature tensile strength of the heat treatment samples was improved obviously, such as from 64MPa for as-deposited samples to 275MPa for heat treatment samples at 800℃.
     The oxidation results show that oxide Cr2O3 is formed on the surface of as-deposited Ni-base alloy sheet firstly at 800℃. Secondly, inside oxide Al2O3 paticals are formed on the interface between matrix and Cr2O3 sacle. Lastly, oxide Al2O3 paticals grow up in landscape orientation and form Quasi continuous inside oxide Al2O3 scale. The oxide Cr2O3 scale is formed when as-deposited Ni-base alloy sheet is oxidezed at 900℃for 96h. There are inside oxide Al2O3 paticals formed on the interface and in matrix, but no Quasi continuous inside oxide Al2O3 scale is formed. TiO_2 and Cr2O3 are formed on the surface of the alloy sheet at 1000℃firstly. The oxide TiO_2 particles grow up shaply with oxidation time increasing. After 100h, the outer oxide TiO_2 forms Quasi continuous oxide scale. The oxide below TiO_2 is Cr2O3 scale. There are inside oxide formed in matrix, whose composition is Al2O3.
     The oxidation kinetics of as-deposited Ni-based alloy sheet at 800℃follows cubic law. The oxide grains grow up slowly at 800℃, so volume fraction of grain boundary is high. Therefore, the diffusion of elements through grain boundaries plays an important role in the oxidation scale growth on the Ni-based alloy sheet surface. A cubic law is derived and agrees well with the experiment data. The oxidation kinetics of as-deposited Ni-based alloy sheet at 900℃and 1000℃follows a parabolic power law.
     The oxide Cr2O3 is formed on the surface of aging heat treatment sample at the beginning of oxidation for 800℃. There are inside oxide formed on the interface between Cr2O3 scale and matrix and in matrix. After 100h, Quasi continuous inside oxide Al2O3 scale is not formed. The oxidation kinetics of heat treatment samples at 800℃follows a parabolic power law.
引文
1邱惠中.美国空天飞机用先进材料最新进展.宇航材料工艺.1994 ;24(6) :5-9
    2从敏.美国高超音速飞行器研制动态.飞航导弹.1998,7:41-44
    3 W.Grier, O.peter. From the Battle labs. Air Force Magazine.1998,3:48-50
    4 Q.Freeman, C.Delma, A.Talay. Reusable Launch Vehicle Technology Program. Acta Astronautica.1997,41(11):777-790
    5韩鸿硕等编译.空天飞机的结构和材料.航空航天部科技情报所. 1993: 99~110
    6范绪箕编.气动加热与热防护系统.科学技术出版社. 2004: 147~148
    7美国航天飞机的结构及国外飞机制造技术的近况.航天企业技术改造学术研讨会. 1989
    8夏德顺.重复运载器金属热防护系统的述评.导弹与航天运载技术. 2002,32(2):21~26
    9国外高超声速巡航导弹研制的进展. http://www.defence.org.cn/article-14-56147.html
    10韩杰才,陈贵清,孟松鹤,李晓海.新型ARMOR热防护系统.宇航学报. 2004,25(3):350~354
    11 W.D. Morris, N.H. White, C.E. Ebeling. Analysis of Shuttle Orbiter Reliability and Maintainability Data for Conceptual Studies. AIAA Space Programs and Technology Conference. Huntville,AL,Sept. 1996:43~62
    12曾昭焕.可重复使用热防护系统防热结构.宇航材料工艺. 1991, 21(4): 16~19
    13韩鸿硕.国外航天器放热系统和材料的应用研究现状.宇航材料工艺. 1994,24(6):1~4
    14 Z.E. Vincent, A.T. Richard, E.W. Kathtyn. Aeroheating Design Issues for Reusable Launch Vehicle——a Perspective. AIAA-2004-2535
    15 J.A. Dec, R.D. Braun. An Approximate Alative Thermal Protection System Ssizing Tool for Entry System Design. AIAA-2006-780
    16 M.L. Blosser, R.R. Chen, I.H. Schmidt. Advanced Metallic Thermal Protection Systems Development. AIAA-2002-0504
    17王思青.重复使用运载器陶瓷热防护系统.导弹与航天运载技术. 2004, (3) : 37~41
    18曹义.美国金属热防护系统研究进展.宇航材料工艺. 2003, 33 (3) : 9~12
    19邹青,侯帅.再入太空船的全陶瓷体襟翼.飞航导弹. 2004, (10):61~63
    20 NASA, Reusable Launch Vehicle (RLV), Advanced Technology Demonstrator, X-33. Cooperative Agreement Notice CAN 8-1, 1995.
    21赵桂勤,宋林西.先进柔性防热材料的研究.航天飞机防热系统材料探索试验研究论文集. 1990:61~66
    22 Aiichiro Tsukahara, Hiroyuki Yamao. Advanced Thermal Protection Systems for Reusable Launch Vehicles. AIAA-2001-1909
    23 Lu, I.Tina. TABI-the Light Weight Durable Thermal Protection System for Future Reusable Launch Vehicles. AIAA paper 1996~1462
    24 Burkhard Behrens, Mark Müller. Technologies for Thermal Protection Systems Applied on Re-usable Launcher. Acta Astronautica. 2004,55:529-536
    25孙欣荣.航天飞机的“铠甲”.太空探索. 2003; 5: 20~21
    26 Hinkle, Karrie A., Staszak, Paul R., Watts, E. T. Advanced Ceramic Materials Development and Testing. AIAA Paper 96-1426, 37th Structures, Structure Dynamics and Materials Conference. 1996:957~961
    27 Jay Miller. The X-planes X-1 to X-29. Specialty Press, Marine on St Croix, MN. 1983, (4): 10-13
    28 Bohon H L, Shideler J L. Radioactive Metallic Thermal Protection Systems: a Status Report. Journal of Spacecraft and Rockets. 1977,12(10):626-631
    29 Shideler J L, Kelly H N, Avery D E. Multiwall TPS-an Emerging Concept. Journal of Space Craft and Rockets. 1982,19(4):7-8
    30 Blair W, Meaney J E, Rosenthal H A. Fabrication of Prepackaged Super Alloy Honeycomb Thermal Protection System Panels. NASA-TP-3257,1993, (3):5-7
    31 Gorton M P, Shideler J L, Web G L. Static and Aero Thermal Tests of a Super Alloy Honeycomb Prepackaged Thermal Protection System. NASA-TP-3257, 1993, (3):2-3
    32 K. T. Betz. Passive Thermal Protection System. Proceedings-Annual SAFE Symposium (Survival and Flight Equipment Association). 1987: 220~223
    33 S. Maruyama, R. Viskanta and T. Aihara. Active Thermal Protection System Against Intense Irradiation. Journal of Thermophysics and Heat Transfer. 1989, 3(4): 389~394
    34 R. A. Mitcheltree, S. Kellas and J. T. Dorsey et al. A Passive Earth-Entry Capsule for Mars Sample Return. The 7th AIAA/ASME Joint Thermodynamics and Heat Transfer Conference. Albuquerque, New Mexico. 1998: 15~18
    35 J. T. Dorsey, C. C. Poteet and R. R. Chen et al. Metallic Thermal Protection System Technology Development: Concepts, Requirements and Assessment Overview. The 40th Areospace Sciences Meeting & Exhibit. Reno, Nevada. 2002:1~22
    36 Buckley J D, Ediel D D. Carbon-Carbon Materials and Composites. New York: Noyes Publica-tions, 1993
    37 Savage G. Carbon/Carbon Composites. London: Chapman & Hall,1993,198-209
    38 Walker Jr P L. Carbon em Dash an old but New Material.Carbon,1972,10(4):369-38
    39崔红,苏君明,李瑞珍等.添加难熔金属碳化物提高碳/碳复合材料抗烧蚀性能的研究.西北工业大学学报. 2000,4(18):669-673
    40闫桂沈,王俊,苏君明等.难熔金属碳化物改性基体对碳/碳复合材料抗氧化性能的影响.炭素. 2003,114(2):3-6
    41朱小旗,杨峥.基体改性碳/碳复合材料抗氧化影响规律探析.复合材料学报. 1994,11(2):107-111
    42 Park Soo jin, soe Min kang. The Effects of Mosi2on the Oxidation Behavior of Carbon/Carbon Composites.Carbon. 2001,39(8):1229-1235
    43 Jashi A, Lee J S. Coating with Particulate Dispersions for High Temperature Oxidation Protection of Carbon and C-C Composites. Composites A. 1997,28(2):181-189
    44成来飞,张立同,韩金探.液相法制备碳-碳Si-Mo防氧化涂层.高技术通信. 1996,6(4):17-20
    45曾燮榕,李贺军,张建国等.碳/碳复合材料防护涂层的抗氧化行为研究.复合材料学报. 2000,17(2):42-45
    46 Huang Jian-feng, Zeng Xie-rong, Li He-jun,et al.ZrO2-SiO2 Gradient Multi-layer Oxidation Protec-tive Coating for SiC Coated Carbon/Carbon Composites. Surface & Coating Technology. 2005,190(2/3):255-259
    47 C.A.A. Cairo, M.L.A. Graca, C.R.M. Silva,et al. Functionally Gradient Ceramic Coating for Carbon/Car-bon Anti-oxidation Protection. Journal of European Ceramic Society. 2001, 21(3):325-329
    48 F.J. Buchanan, J.A. Little. Particulate Containing Glass Sealants for Carbon-Carbon Composites. Car-bon, 1996,31(4):649-654
    49 J.R. Strife. Ceramic Coating for Carbon-Carbon Composites. Ceramic Bulletin. 1988, 67(2):369-374
    50 WU Tsung-ming, WU Yung-rong. Methodology in Exploring the Oxidation Behavior of Coated-Carbon/Carbon Composites. Journal of Materials Science. 1994,29(5):1260-1264
    51 M.E. Westwood, J.D. Webster, R.J. Day, et al.Oxidation Protection for Carbon Fiber Composites. Journal of Materials Science. 1996,31(6):1389-1397
    52 C.B. Bargeron, R.C. Benson. X-ray Microanalysis of a Hafnium Carbide Film Oxidized at High Temperature. Surface &Coatings Technology. 1998, 36 (1) : 111-115
    53 G.R. Holcomb, G.R. Pierre. Application of a Counter-Current Gaseous Diffusion Model to the Oxidation of Hafnium Carbide at 1200 to 1530℃. Oxidation of Metals. 1993, 40 (1,2) : 109-118
    54 G.R. Holcomb. Countercurrent Gaseous Diffusion Model of Oxidation Through a Porous Coating. Corrosion (Houston). 1996, 52 (7) : 531-539
    55 E.L. Courtright, J.T. Prater. Oxidation of Hafnium Carbide and Hafnium Carbide with Additions of Tantalum and Praseodymium. Oxidation of Metals. 1991, 36 (5, 6) : 423-437
    56 T.B. Peter, Shaffer. An Oxidation Resistant Boride Composition. American Ceramic Society Bulletin.1962,41(2):96-99
    57 H Pastor, R Meyer. Study of the Effect of Additions of Silicides of some Group IV-VI Transition Metalson Sintering and High-temperature Oxidation Resistance of Titanium and Zirconium Borides. Revue Internationale des Hautes Temperatures et des Refractaires, 1974, 11(1): 41-45
    58 V.A. Lavrenko, A.D. Panasyuk, et al. High-temperature Reactions of Materials of the ZrB//2-ZrSi//2 System with Oxygen. Soviet Powder Metallurgy and Metal. 1982, 21(6): 471-473
    59 L.A. Mcclaine. Thermodynamic Kinetic Studies for a Refractory Materials Program. Report ASD/TDR/62/204, Part II,USA: April,1963.
    60 A.K. Kuriakose, J.L. Margrave.The Oxidation Kinetics of Zirconium Diboride and Zirconium Carbide at High Temperatures. J Electrochem Soc,1964,111(7):827-831
    61 L.A. Mcclaine. Thermodynamic and Kinetic Studies for a Refractory Materials Program. Report ASD/TDR/62/204, Part III,USA: Jan,1964.
    62 J.R. Fenter. Refractory Diborides as Engineering Materials. SAMPE Quart. 1971,2(3):1-1
    63 C. Capdevila, U. Miller. Strain Heterogeneity and the Production of Coarse Grains in Mechanically Alloyed Iron-based PM2000 Alloy. Materials Science and Engineering, A. 316 (2001): 161-165
    64黄进峰,付小容.耐1300℃新型Ni-Fe-Cr-Al基高温合金抗氧化性能研究.功能27材料. 1998 ,29 (2):152-155
    65 D.J. Monaghan, Henderson M B. Maters. Sci. Engng. 1993 A173: 251-254
    66陈明安,卓利.中国有色金属学报.1997,(7)1:267-270
    67 R.K. Dube. Metal Strip via Roll Compaction and Related Powder Metallurgy Routes. International Materials Reviews.1990,35(5):253-291
    68吴成义,张丽英.粉体成形力学原理.北京:冶金工业出版社,2003:227-228
    69张宇峰,张溪文.离子束辅助薄膜沉积.材料导报. 2003,17(11):40-43
    70 MA Li, SUN Yue, HE Xiao-dong. The Preparation and Performance of Large-sized Ti/Ti-Al Microlaminated Composite. Rare Metal Materials and Engineering. 2008, 37(2):325-329
    71 X.H. Li, G.Q. Chen, J.C. Han, S.H. Meng. Evaluation of a New Ni-Based Superalloy Prepared by EB-PVD. Transactions of Nonferrous Metals Society of China. Transactions of Nonferrous Metals Society of China. 2005, 15(S3):66~70
    72 H.R.Smith, K.Kennedy, F.S.Boericke. Metallurgical Characteristics of Titamium-alloy Foil Prepared by Electron-Beam Evaporation. The Journal of Vacuum Science and Technology. 1970,7(6):48-51
    73 S.M. Meier, D.K. Gupta, et al. Ceramic Thermal Barrier Coatings for Commercial Gas Turbine Engines. J Mater. 1985, (3):2
    74 K Durst, M Goken. Micromechanical Characterization of The Influence of Rhenium on the Mechanical Properties in Nickel-base Superalloys. Mater Sci Eng,.2004,(19):312
    75 B.D. Bileka. Improvement of Thermal Protection Systems for Rotors of Industrial Gas-turbine Plants. Heat Transfer Research. 1999,(3):311
    76 B A Movchen. EB - PVD Technology in the Gas Turbine Industry, Present and Future. JOM . 1996(11):40-45
    77 A Stenve. High-tech Coating for Turbine Blades. Mechanical Engineering. 1995 (10) : 66-69
    78 M Movchen, Rudoy Yu. Composition, Structure and Properties of Gradient Thermal Barrier Coatings Produced by EB– PVD. Materials and Design. 1998 (19) : 253-258
    79 Yao Li, Jiupeng Zhao, Gang Zeng, Chunlong Guana, Xiaodong He Ni/Ni3Al Microlaminate Composite Produced by EB-PVD and the Mechanical Properties. Materials Letters. 58 (2004): 1629– 1633
    80 M.H. Li , X.F. Sun Phase Transformation and Bond Coat Oxidation Behavior of EB-PVD Thermal Barrier Coating. Surface and Coatings Technology .176 (2004): 209–214
    81 B.A. Movchen, G.S. Marinski. Gradient Protective Coatings of Different Application Produced by EB-PVD. Surface & Coatings Technology. 1998, 100/101(1/3): 309~315
    82 Hongbo Guo, Xiaofang Bi, Shengkai Gong and Huibin Xu. Microstructure Investigation on Gradient Porous Thermal Barrier Coating Prepared by EB-PVD. Scripta Materialia. 2001, 44(4): 683~687
    83 V.K.Tolpygo, D.R.Clarke, K.S.Murphy. Oxidation-induced Failure of EB-PVD Thermal Barrier Coatings. Surf. Coat. Tech. 2001,146/147:124~131
    84 Hongbo Guo, Shengkai Gong and Huibin Xu. Evaluation of Hot-fatigue Behaviors of EB-PVD Gradient Thermal Barrier Coatings. Mater. Sci. Eng.A. 2002,A325(1/2):261~269
    85 R.F.Bunshah, R.Nimmagadda, H.J.Doerr, Structure and Property Relationships in Microlaminate Ni-Cu and Fe-Cu Condensates. Thin Solid Film. 1980, 72(1/2): 261~275
    86田民波,刘德令.薄膜科学技术手册(上册).机械工业出版社.1991:31-53
    87 J.Singh, D.E.Wolfe. Review Nano and Macro-structured Component Fabrication by Electron Beam-physical Vapor Deposition(EB-PVD). Journal of Materials Science. 2005,40:1-26
    88 B.A.Movchen, A.V.Demchishin. Study of Structureand Properties of Thick Vacuum Condensates of Nickel, Titanium, Tungsten, Aluminum Oxide and Xirconium Fioxide, Fiz. Metal. Metalloved. 1969, 28: 83~90
    89 R.F.Bunshah. Structure/property Relationships in Evaporated Thick Films and Bulk Coatings. J. Vac. Sci. Tech. A. 1974, 11: 633~638
    90 J.A.Thornton, Influence of Substrate Temperature and Deposition Rate in Structure of Thick Sputtered Cu Coatinmgs. J. Vac. Sci. Tech. A. 1975, 12: 830~835
    91 Seth Lichter, Jyhmin Chen. Model for Columnar Microstructure of Thin Solid Films. Physical Review Letters. 1986,56(13):1396-1399
    92 R.N.Tait, T.Smy. Modelling and Characterization of Columnar Growth in Evaporated Films. Thin Solid Films. 1993,226(2): 196-201
    93 X.W.Zhou, R.A.Johnson. A Molecular Dynamics Study of Nickel Vapor Deposition: Temperature, Incident Angle, and Adatom Energy Effects. Acta material. 1997, 45(4):1513-1524
    94 B.K.Jang, H.Matsubara. Influence of Rotation Speed on Microstructure and Thermal Conductivity of Nano-porous Zirconia Layers Fabricated by EP-PVD. Scripta Materialia. 2005, 52:553-558
    95 K. Kuwahara, T.Sumomogi. Internal Stress in Aluminum Oxide, Titanium Carbide and Copper Films Obtained by Planar Magnetron Sputtering. Thin Solid Films. 78(1981):41
    96 Deng H, Chen J, Inturi R B, et al. Structure, Mechanical and Tribological Properties of d.c. Magnetron Sputtered TiB2 and TiB2(N). Thin Films Surf. Coat. Techn. 76/77(1995):265
    97 I.C. Noyan, T.C.Huang, Crit.Rev. Residual Stress/Strain Analysis in Thin Films by X-ray Diffraction. Solid State Mater. Sci. 1995,20(2):125
    98 C. Quaeyhaegens, G. Knuyt, Thin Solid Films. 258(1995):1710
    99 J.W.Gerlach, U.Preckwinkel, Biaxial Alignment of TiN Films Prepared by Ion Beam Assisted Deposition. Appl. Phys. Lett. 1996,68(17):2360
    100 H.Jiang, K.Tao. Structure of TiNx (0 < x < 1.1) Films Prepared by Ion Beam-assisted Deposition .Thin Solid Films. 258(1995):51.
    101 T.Roth, K.H.Kllos, Structure, Internal Stresses, Adhesion and Wear Resistance of Sputtered Alumina Coatings. Thin Solid Films. 153(1987) :123
    102 J E Schilbe. Substrate Alloy Element Diffusion in Thermal Barrier Coatings. Surface and Coatings Technology. 2000,133-134:35-39
    103 L Lelait, S Alperin. Alumina Scale Growth at Zirconia-MCrAlY Interface: a Microstructural Study. Journal of Materials Science. 1992,27:5-12
    104徐惠彬,宫声凯.航空发动机热障涂层材料体系的研究.航空学报. 2001,21:7-12
    105 Guo H, Bi X, Gong S, et al. Microstructure Investigation on Gradient Porous Thermal Barrier Coating Prepared by EB-PVD. Scripta Materialia. 2001,44: 683-687
    106 Douglas E. Wolfe, Jogender Singh. Titanium Carbide Coatings Deposited by Reactive Ion Beam-assisted Electron Beam-physical Vapor Deposition. Surface and Coatings Technology. 2000,124:142-153
    107 G.G.. Fuentes, R. Rodriguez. Recent Advances in the Chromium Nitride PVD Process for Forming and Machining Surface Protection. Journal of Materials Processing Technology. 2005,167:415-421
    108 F.S.De Vicente, A.C.De Castro. Luminescence and Structure of Er3+ Doped Zirconia Films Deposited by Electron Beam Evaporation. Thin Solid Films. 2002, 418: 222-227
    109 F. Ebrahimi, A.J. Liscano. Microstructure/mechanical Properties Relationship in Electrodeposited Ni/Cu Nanolaminates. Mater. Sci. Eng.A. 2001, A301(1/2): 23~34
    110金雪松,徐惠彬,宫声凯. Fe/Cu纳米多层材料的电导行为.中国科学(E辑). 2000, 30(5): 383~390
    111 A.C.Lewis, D.Van Heerden, D.Josell, and T.P.Weihs. Creep Deformation in Multilayered and Microlaminate Materials. JOM. 2003,55(1):34~37
    112 B. A. Movchen. EB-PVD Technology in the Gas Turbine Industry: Present and Future. JOM. 1996,11(1): 40~45
    113金雪松,毕晓昉,欧盛荃等. K18/Mo纳米多层材料的力学性能及高温稳定性.金属学报. 36(1) 2000: 99~103
    114 H.R.Smith, K.Kennedy. Metallurgical Characteristics of Titanium-alloy Foil Prepared by Electron-Beam Evaporation. The Journal of Vacuum Science and Technology. 1971,7(6) :48~51
    115 Yue Sun, Xiu Lin, Xiaodong He et al. Effects of Substrate Rotation on the Microstructure of Metal Sheet Fabricated by Electron Beam Physical Vapor Deposition. Applied Surface Science. 255(2009):5831~5836
    116 X.D.He, Y. Xin, M.W.Li, Y.Sun. Microstructure and Mechanical Properties of ODS Ni-based Superalloy Foil Produced by EB-PVD. Jouranl of Alloys and Compounds. 467(2009):347~350
    117杨世铭,陶文铨.传热学.高等教育出版社.1998
    118刘瑞堂,刘文博,刘锦云.工程材料力学性能.哈尔滨工业大学出版社. 2002
    119单英春,赫晓东,李明伟,李垚. EB - PVD工艺中基板温度对材料形成过程的影响.宇航工艺. (1)2006: 41~44
    120 G. Shao, P. Tsakiroplous, Phil. On the Structural Evolution of Fe-Al Laminates Obtained by Pphysical Vapour Deposition. Mag. A 2000,80(3): 693~710.
    121 B. Cantor, R.W. Cahn. Metastable Alloy Phases by Co-sputtering.Acta Met. 1976,24 (9): 845~852.
    122堵永国,白书欣,张家春,易旸. Ag/SnO2线材单轴拉伸变形特性研究.电工合金.1(1995): 21~24
    123 Mineaki Matsumoto, Kunihiko Wada, Norio Yamaguchi, Takeharu Kato, Hideaki Matsubara. Effects of Substrate Roation Speed During Deposition on the Thermal Cycle Life of Thermal Barrier Coatings Fabricated by Electron Beam Physical Vapor Deposition. Surface & Coating Technology. 2008, 202(15): 3507-3512.
    124 B.K. Jnag, H. Matsubara. Influence of Rotation Speed on Microstructure and Thermal Conductivity of Nano-porous Zirconia Layers Fabricated by EB-PVD. Scripta Materialia. 52(2005): 553-558
    125顾培夫.薄膜技术.浙江大学出版社. 1990
    126李学丹,万英超等.真空沉积技术.浙江大学出版社. 1994
    127 C A N ampbell, S S Tsao, D Turnbull. The Effect of Au and Ag Additions on the Power-law Creep Behavior of Pb. Acta Matall. 1987,35(10):2453~2464
    128徐祖耀.金属学原理.上海科学技术出版社. 1964
    129 U. Krupp. Brittle Intergranular Fracture of a Ni-based Superalloy at High Temperatures by Dynamic Embrittlement. Materials Science and Engineering A. 387-389(2004):409
    130 U. Krupp. The Effect of Grain-boundary-engineering-type Processing on Oxygen-induced Cracking of IN718. Materials Science and Engineering A. 349(2003): 213
    131 Gang Zeng, Mingwei Li, Jiecai Han, Xiaodong He, Wenzheng Li. Oxidation Kinetics of Microcrystalline Ni-11.5Cr-4.5Co-0.5Al Superalloy Sheet Fabricated by Electron Beam Physical Vapor Deposition at 800℃. Materials Letters. 2008,62(2) :289-192
    132 Minoru Maeda. Oxidation Resistance Evaluation of SiC Ceramic with Various Additives. J.Am. Ceram. Soc. 1989,72(3):512~516
    133章燕豪.物理化学.上海交通大学出版社. 1988
    134 Lou, H. Wang, F. Zhu, S. et al. Oxide Formation of K38G Superalloy and its Sputtered Micrograined Coating. Surf. Coat. Tech. 1994, 63:105~109
    135 Guofeng Chen, Hanyi Lou. Oxidation Kinetics of Sputtered Ni-5Cr-5Al Nanocrystalline Coating at 900℃and 1000℃. Nanostruct. Mater. 1999,11 (5): 637-641.
    136 L. D. Zhang and J. M. Mou, Nano-materials. Liaoning Science and Technology Press, Shenyang, 1994
    137 Hillert M. Acta Metall. 13(1965):227
    138 H.V. Atkinson. Theories of Normal Grain Growth in Pure Single Phase Systems.Acta Metall. 1988,36(3):469-491
    139 P. Kofstad, Hightemperature Corrosion. Elsevier Applied Science publishers Ltd., London and New York , 1988.
    140 X Song, G. A Liu. Simple and Efficient Three Dimensional Monte Carlo Simulation of Grain Growth. Scripta Mater. 1998,38(11):1691-1699
    141 Q Yu, KE Sven. Three Dimensional Grain Growth Modeling with a Monte Carlo algorithm. Mater Lett. 57(2003):4622-6
    142 Hu H, Rath BB. Metall. Trans. 1(1970):3181.
    143 Kurtz SK, Carpay FM. J. Appl. Phys. 51(1980):5725
    144 T.R. Malow, C.C. Koch. Grain Growth in Nanocrystalline Iron Prepared by Mechanical Attrition.Acta Mater. 1997,45 (5): 2177-2186.
    145 L.M.J. Rupp, A. Infortuna, J.G. Ludwig Acta Mater. 54 (2006): 1721.
    146 B Kathleen. Alexander, F Paul. Becher, B Shirley. Waters, Alan Bleier. Grain Growth Kinetics in Alumina-Zirconia (CeZTA) Composites. Am. Ceram. Soc. 1994,77 (4): 939-946.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700