两类大长细比桥梁构件的风振特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究了桥梁结构中常见的两类大长细比构件的风振特性。一类为大跨拱桥、桁架桥中常见的H型和矩形截面杆件,文中以直立的拱桥吊杆为对象,研究了这两种截面构件在大攻角下的风振特性;另一类为悬索桥、斜拉桥中常见的圆截面索缆结构,文中以无吊杆的两串列主缆为对象,研究了上下游主缆间的气动干扰机理。本文主要进行了以下研究:
     1、依据风洞试验和理论分析提出了直立H型杆件的大攻角扭转颤振理论,证明了某大跨度拱桥发生的吊杆风振为扭转颤振,而不是涡激共振。腹板开孔不能提高H型杆件的颤振临界风速,但适度开孔可改善驰振和涡激共振特性。通过16组正交试验研究了高宽比、腹板及翼板开孔率三种截面参数变化下H型截面吊杆的风振特性,应用方差分析理论综合评价了三参数对H型杆件颤振、驰振及涡振特性的影响。合理的改变截面形式,可有效提高颤振、驰振、涡振的起振风速,减小涡振锁定区间和涡振幅值。
     2、风洞试验研究表明矩形吊杆具有较大的抗扭转颤振的能力,但存在驰振临界风速较低、涡振振幅较大及涡振锁定区间较宽的问题。为此,提出了矩形杆件内表面敷设阻尼层减振的措施。通过模型试验验证了该减振措施的可行性,并对矩形吊杆敷设阻尼层后的结构阻尼特性进行了数值模拟。
     3、应用三自由度强迫振动装置,解决了大攻角下弹性悬挂自由振动时存在的竖向运动失真问题,准确识别了大攻角下的H型和矩形断面杆件气动导数。对比研究表明竖向运动失真导致的气动导数识别误差随攻角增大而增大,从而肯定了强迫振动法用于大攻角气动导数识别的优越性。应用强迫振动装置上的天平测量节段模型的气动力时程曲线,实现了随攻角连续变化三分力系数的测量,并由升力时程曲线推算了多组H型和矩形断面的Strouhal数。这些工作进一步扩大了强迫振动法的应用范围。
     4、推导了常见H型和矩形细长杆件的抗风设计公式,以限制杆件的适用长度为原则,提出了抗风设计的建议。
     5、结合气弹模型试验和CFD数值模拟技术研究了串列主缆间的气动干扰。试验表明下游缆会发生面外振动强于面内振动的尾流驰振,且间距、风偏角、风攻角及固有频率对尾流驰振的起振风速影响显著。CFD模拟表明雷诺数并不影响下游缆横风向力的变化趋势,实桥与模型对应雷诺数下尾流驰振起振风速的数值计算结果均稍高于模型试验的结果。
The wind-induced vibration characteristics of two classes of structural elements with large slenderness ratio that are frequently used in the bridge are studied in this paper. The first of them is H-shaped and rectangular section members that are often applied in the long span arch bridge and truss bridge. The suspenders of arch bridge with these two sections subject to large wind attack angle are chosen to study the wind-induced vibration characteristics. The other kind is cable with circular section that is commonly used in the suspension bridge and cable stayed bridge. The aerodynamic interference mechanism between the upstream and downstream main cables without suspenders is investigated. Some main contributions in this paper are as follows:
     1. The torsional flutter theory of vertical H-shaped member for the large wind attack angle is developed based on the theoretical research and wind tunnel tests. It is proved that the observed wind-induced vibration of suspenders in one long span arch bridge is torsional flutter rather than vortex-excited resonance. The slots of web can’t increase the flutter critical wind speed, but it is helpful to improve the characteristics of galloping and vortex-induced vibration by modest slot ratio. The wind-induced vibration characteristics of suspender with different height-width ratios, web and flange plate slot ratios are evaluated by 16 groups of orthogonal tests. The variance analysis theory is used to illustrate the effects of the three parameters in the flutter, galloping and vortex-induced vibration of suspender. Reasonable change of section can effectively enhance the onset wind velocity of flutter, galloping and vortex-induced vibration, and decrease the lock-in wind speed range of vortex-induced vibration as well as the amplitude of vortex-induced vibration.
     2. Wind tunnel tests has shown that suspenders with rectangular section have excellent stability of torsional flutter; but facing some other problems such as lower critical wind speed of galloping, rather larger amplitude and lock-in wind speed range of vortex-induced vibration. Therefore, covering the inner-surface of suspender with extra damping layer is presented to control wind-induced vibration. The model test is used to verify the feasibility of this control strategy. Furthermore, the damping characteristics of suspender with damping layer are evaluated by numerical simulation.
     3. The forced vibration equipment with three degrees of freedom is applied to solve the distortion problem of vertical motion in free elastic suspension method, and the flutter derivatives of H-shaped and rectangular sections under large attack angle are accurately identified from the forced vibration testing data. The comparative study shows that the distortion of vertical motion will lead to the identification error of flutter derivatives, and the error increases with the angle of attack. Therefore, the forced vibration method of identifying flutter derivatives with large attack angle is confirmed to have excellent performance. The aerodynamic forces of section model are measured by the force balance of forced vibration equipment, which is further used to estimate the Strouhal number of H-shaped and rectangular sections, and the measurements of steady aerodynamic force coefficient continuously varying with attack angles are realized. All these work have extended the application field of force vibration method.
     4. The wind resistant design formulas of commonly used H-shaped and rectangular structural elements with large slenderness ratio are derived to define the upper limit of the practical length of these elements. Meanwhile, some suggestions of wind resistant design are given.
     5. The aerodynamic interference between two parallel main cables is studied by combining aeroelastic model tests with computational fluid dynamics (CFD) technology. Wind tunnel tests have shown that wake galloping with stronger out-plane than in-plane vibration can be seen in the downstream main cable, and the distance between the upstream and downstream main cables, wind yaw angle, wind attack angle as well as natural frequency of cable have a great influence on the critical wind velocity of wake galloping. CFD simulations have indicated that Reynolds number doesn’t have effect on the trend of changes in across-wind force, and moreover, the critical wind speed of wake galloping of prototype and model with corresponding Reynolds number is a little bit higher than that in the model tests.
引文
[1] Simiu E, Scanlan R H. Wind effects on structures—fundamentals and applications to design. Third Edition. New York: Wiley-lnterscience publication, 1996, 1-323
    [2] Ulstrup C C. Aerodynamic lessons learned from individual bridge members. Annals New York Academy of sciences, 1980, 352(1): 265-281
    [3]余岭.九江长江大桥三大拱吊杆风致振动试验研究.长江科学院院报, 1995, 12(3): 53-60
    [4]余岭,顾金军,汪政兴等.大型桥梁吊杆涡振试验研究.机械强度, 1996, 18(4): 16-20
    [5]邵克华,赵煜澄,顾金军.九江桥三大拱吊杆抑制涡振的新型TMD.桥梁建设, 1993, 4: 2-9
    [6]顾金军,赵煜澄,邵克华.九江长江大桥应用新型TMD抑制吊杆涡振.土木工程学报, 1994, 27(3): 3-13
    [7]陈政清.桥梁风工程.北京:人民交通出版社, 2005, 1-133
    [8]李永君.大跨度桥梁涡振二维计算模型及其实验研究: [同济大学硕士学位论文].上海:同济大学, 2004, 1-78
    [9] Hartlen R T, Currie I G. Lift-Oscillator Model of Vortex-Induced Vibration. Journal of Engineering Mechanics, ASCE, 1970, 96: 577-591
    [10] Yoshimuraa T, Mizutaa Y, Yamadab F, et al. Prediction of vortex-induced oscillations of a bridge girder with span-wise varying geometry. Journal of Wind Engineering and Industrial Aerodynamics, 2001, 89(14-15): 1717-1728
    [11] Novak M. Aeroelastic galloping of prismatic bodies. Journal of Engineering Mechanics, ASCE, 1969, 95: 115-142
    [12] Novak M. Galloping oscillations of prismatic structures. Journal of Engineering Mechanics, ASCE, 1972, 98: 26-46
    [13] Novak M, Tanska H. Effects of turbulence on galloping instability. Journal of Engineering Mechanics, ASCE, 1974, 100: 27-47
    [14]李国豪.桥梁结构稳定与振动.北京:中国铁道出版社, 2002, 1-480
    [15]中交公路规划设计院.公路桥梁抗风设计规范.北京:人民交通出版社, 2004, 19-20
    [16] Scanlan R H, Romko J J. Airfoil and bridge deck flutter derivatives. Journal of Engineering Mechanics, ASCE, 1971, 97: 1717-1737
    [17] Ibrahim S R, Mikucik E C. A test domain modal vibration test technique. The Shock and Vibration Bulletin, 1973, 43(4): 21-37
    [18] Ibrahim S R, Mikucik E C. The experimental determination of vibration parameters from time responses. The Shock and Vibration Bulletin, 1976, 46(5), 187-196
    [19] Ibrahim S R, Mikucik E C. A method for the direct identification of vibration parameters from the free response. The Shock and Vibration Bulletin, 1977, 47(4): 183-198
    [20]谢霁明.识别非定常气动力模型的初脉冲耦合振动法.空气动力学学报, 1986, 3: 258-267
    [21] Sarkar P P, Jones N P, Scanlan R H. System dentification for estimation of flutter derivatives. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 42: 1243-1254
    [22]张若雪.桥梁结构气动参数识别的理论和试验研究: [同济大学博士学位论文].上海:同济大学, 1998, 1-60
    [23]丁泉顺.大跨度桥梁耦合颤抖振响应的精细化分析: [同济大学博士学位论文].上海:同济大学, 2001, 1-80
    [24]陈政清,于向东.大跨桥梁颤振自激力的强迫振动法研究.土木工程学报, 2002, 35(5): 34-41
    [25]陈政清,胡建华.桥梁颤振导数识别的时域法与频域法对比研究.工程力学, 2005, 22(6): 127-133
    [26]郭震山.桥梁断面气动导数识别的三自由度强迫振动法: [同济大学博士学位论文].上海:同济大学, 2006, 1-100
    [27]牛华伟.气动导数识别的三自由度强迫振动法及颤振机理研究: [湖南大学博士学位论文].长沙:湖南大学, 2007, 1-180
    [28] Davenport A G. The application of statistical concepts to the wind loading of structures. In: Proc of Institute of Cibil Engineerer, 1961, 19, 449-472
    [29] Davenport A G. The dependence of wind load upon meteorological parameters. In: Proceeding of the Tnternational Research Seminar on Wind Effects on Buildings and Structures. University of Toronto Press, Toronto, 1968, 19-82
    [30] Scanlan R H. Indicial aerodynamic functions for bridges decks. Journal of the Engineering Mechanics, ASCE, 1974, 100: 657-672
    [31] Scanlan R H. Motion of suspended bridges spans under gusty wind. Journal of the Structural, ASCE, 1977, 103(9): 1867-1883
    [32] Scanlan R H. The action of flexible bridges under wind II: buffeting theory.Journal of Sound and Vibration, 1978, 60(2): 201-211
    [33] Scanlan R H. Role of indicial functions in buffering analysis of bridges. Journal of Structure Engineering, ASCE, 1984, 110(7): 1433-1446
    [34] Scanlan R H. Amplitude and turbulence effects on bridge flutter derivatives. Journal of Structure Engineering, 1997, 123(2): 232-236
    [35] Irwin H P A H, Cooper K R, Wardlaw R L. Application of vibration absorbers to control Wind-induced vibration of I-bream truss members on the Commodore Barry Bridge. In: LTR-LA-194, National Research Council of Canada, Ottawa, 1976, 98-106
    [36] Wardkaw R L, Cooper K R, Irwin H P A H. Vibration absorbers for Bridge truss members. In: United States National Conference on Wind Engineering Research. Gainesville, 1978, 206-212
    [37] Maher F J, Wittig L E. Aerodynamic Response of Long H-Sections. Journal of the Structural, ASCE, 1980, 106: 183-198
    [38] Tazaki T, Fukada J, Tanaka H, et al. Prevention of wind vibrations on H-sections in a Langer Bridge. Doboku Gijutsu(Civil Engineering), l25(5): 46-52
    [39] Yamaguchi T, Shiraki K, Umemura, et al. Vibration caused by Karman Vortes on bridge members and its countermeasures. In: Proceedings of the third International Conference on Wind Effects on Buildings and Structures. Tokyo, 1971, 68-72
    [40] Kubo Y, Sakurai K, Azuma S. Aerodynamic characteristics of H-shaped section cylinder in laminar and turbulent flows. Memoirs of the Kyushu Institute of Technology, Engineering, 1980, 10: 1-14
    [41] Ruscheweyh H. Practical Experiences with wind-induced vibrations. Journal of Wind Engineering and Industrial Aerodynamics, 1990, 33(1-2): 211-218
    [42] Ruscheweyh H, Hortmanns M, Schnakenberg C. Vortex-excited vibrations and galloping of slender elements. Journal of Wind Engineering and Industrial Aerodynamics, 1996, 65: 347-352
    [43] European Committee for Standardisation, CEN. European prestandard ENV 1991–1, Eurocode1. Actions on structure, part 4: Wind actons. CEN, Brussels, 2004, 1-145
    [44] Cigada A, Diana G, Falco M, et al. Vortex shedding and wake-induced vibrations in single and bundle cables. Journal of Wind Engineering and Industrial Aerodynamics, 1997, 72(1-3): 253-263
    [45]马存明,廖海黎,郑史雄等. H型截面吊杆气动性能的风洞试验.中国铁道科学, 2005, 36(4): 42-46
    [46] Dielen B, Ruscheweyh H. Mechanism of interference galloping of two identical circular cylinders in cross flow. Journal of Wind Engineering and Industrial Aerodynamics, 1995, 54/55: 289-300.
    [47] Sockel H, Watzinger J. Vibrations of two circular cylinders due to wind-excited interference effects. Journal of Wind Engineering and Industrial Aerodynamics, 1998, 74-76: 1029-1036.
    [48] Sumner D, Richards M D, Akosile O O. Two staggered circular cylinders of equal diameter in cross-flow. Journal of Fluids and Structures, 2005, 20: 255-276
    [49] Ting D S K, Wang D J, Price S J, et al. An experimental study on the fluidelastic forces for two staggered circular cylinders in cross-flow. Journal of Fluids and Structures, 1998, 12: 259-294
    [50] Tokoro S, Komatsu H, Nakasu M, et al. A study on wake-galloping employing full aeroelastic twin cable model. Journal of Wind Engineering and Industrial Aerodynamics, 2000, 88: 247-261
    [51] Ahmadi G. Aeroelastic wind energy converter. Energy Conversion, 1978, 18: 115–120
    [52] Ahmadi G. Performance of an angular flange aeroelastic wind energy converter. Journal of Energy, 1983, 7: 285–288
    [53] Komatsu S, Kobayashi H. Vortex-induced oscillations of bluff cylinders. Journal Wind Energy and Industrial Aerodynamics, 1980, 6: 335–362
    [54] Huston D R, Amem A S C E. Flutter deribatives from 14 generic deck sections. In: Proceedings of the sessions at Structure Congress’87 related to Bridges and Transmisson Line Structures. Orlando, Florida, 1987, 281-291
    [55] Matsumoto M, Shiraishi N, Shirato H. Bluff body aerodynamics in pulsating flow. Journal of Wind Engineering and Industrial Aerodynamics, 1988, 28: 261-270
    [56] Shiraishi N, Matsumotoi M, Shirato H. On aerodynamic stability effects for bluff rectangular cylinders by their corner-cut. Journal of Wind Engineering and Industrial Aerodynamics, 1988, 28: 371-380
    [57] Matsumoto M, Shirato H, Hirai S. Torsinoal flutter mechanism of 2-D H-Shaped cylinders and effect of flow turbulence. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 41-44: 687-698
    [58] Matsumoto M, Kobayashi Y, Shirato H. The influence of aerodynamic derivatives on flutter. Journal of Wind Engineering and Industrial Aerodynamics, 1996, 60: 227-239
    [59] Matsumot M, Daito Y, Yoshizumi F, et al. Torsional flutter of bluff bodies. Journal of Wind Engineering and Industrial Aerodynamics, 1997, 69-71: 871-882
    [60] Matsumoto M, Ishizaki H, Matsuoka C, et al. Aerodynamic effects of the angle of attack on a rectangular prism. Journal of Wind Engineering and Industrial Aerodynamics, 1998, 77&78: 531-542
    [61] Matsumoto M, Shiratoa H, Mizuno K, et al. Flutter characteristics of H-shaped cylinders with various side-ratios and comparisons with characteristics of rectangular cylinders. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(6-7): 963-970
    [62] Matsumoto M. Vortex shedding of bluff bodies: a review. Journal of Fluids and Structures, 1999, 13: 791-811
    [63] Matsumoto M, Mizunoc K, Okubo K, et al. Torsional flutter and branch characteristics for 2-D rectangular cylinders. Journal of Fluids and Structures, 2005, 21: 597-608
    [64] Matsumoto M, Yagia T, Tamaki H, et al. Vortex-induced vibration and its effect on torsional flutter instability in the case of B/D=4 rectangular cylinder. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(6-7): 971-983
    [65] Matsumoto M, YoshizumF, Yabutani T. Flutter stabilization and heaving-branch futter. Journal of Wind Engineering and Industrial Aerodynamics, 1999, 83: 289-299
    [66] Schewe G. Nonlineat flow-induced resonances of an H-shaped section. Journal of Fluids and Structures, 1989, 3: 327-348
    [67] Kubo Y, Hirata K. Aerodynamic responses and pressure function of shallow H-section cylinder. Journal of Wind Engineering and Industrial Aerodynamics, 1990, 33: 123-130
    [68] Kubo Y, Hirata K, Mikawa K. Mechanism of aerodynamic vibrations of shallow bridge girder sections. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 41-44: 1297-1308
    [69] Kubo Y, Modi V J, Yasuda H, Kato K. On the suppression of aerodynamic instabilities through the moving surface boundary-layer control. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 41-44: 205-216
    [70] Nakagawa T. Vortex shedding from an H-section prism. Journal of Wind Engineering and Industrial Aerodynamics,1990, 34: 97-106
    [71] Nakagawa T, Nakagawa R. Vortex shedding mechanism from prisms having H and I sections. Journal of Wind Engineering and Industrial Aerodynamics, 1993,49: 197-206
    [72] Nakamura Y, Yoshimura T. Flutter and vortex excitation of rectangular prisms in pure torsion in smooth and turbulent flows. Journal of Sound and Vibration, 1982, 84(3): 305-317
    [73] Nakamura Y, Nakashima M. Vortex excitation of prisms with elongated rectangular, H and├cross-sections. Journal of Fluid Mechanics, 1986, 163: 149-169
    [74] Nakamura Y. Recent research into buff-body flutter. Journal of Wind Engineering and Industrial Aerodynamics, 1990, 33: 1-10
    [75] Nakamura Y. Bluff-Body Aerodynamics and Turbulence. Journal of Wind Engineering and Industrial Aerodynamics, 1993, 49: 65-78
    [76] Nakamura Y. Vortex shedding from bluff bosies and a universal strouhal number. Journal of Fluids and Structures, 1996, 10: 159-171
    [77] Nakamura Y. Vortes shedding from bluff bodies with splitter plates. Journal of Fluids and Structures, 1996, 10: 147-158
    [78] Nakamuraa Y, Ohya Y, Ozono S, et al. Experimental and numerical analysis of vortex shedding from elongated rectangular cylinders at low Reynolds numbers 200-l03. Journal of Wind Engineering and Industrial Aerodynamics, 1996, 65: 301-308
    [79]莫乃榕. H形截面柱体涡旋脱落特性的实验研究.见:第十一届全国结构风工程学术会议论文集.三亚, 2003, 246-248
    [80] Li Q S, Fang J Q, Jeary A P. Evaluation of 2D coupled galloping oscillations of slender structures. Computers and Structures, 1998, 66(5): 513-523
    [81] Li Q S, Melbourne W H. An experimental investigation of the effects of free-stream turbulence on streamwise surface pressures in separated and reattaching flows. Journal of Wind Engineering and Industrial Aerodynamics, 1995, 54-55: 313-323
    [82] Li Q S, Calderone I, Melbourne W H. Probabilistic characteristics of pressure fluctuations in separated and reattaching flows for various free-stream turbulence. Journal of Wind Engineering and Industrial Aerodynamics, 1999, 82(1-3): 125-145
    [83] Li Q S, Melbourne W H. The effect of large-scale turbulence on pressure fluctuations in separated and reattaching flows. Journal of Wind Engineering and Industrial Aerodynamics, 1999, 83(1-3): 159-169
    [84] Li Q S, Melbourne W H. Turbulence effects on surface pressures of rectangularcylinders. Wind and Structures, An International Journal, 1999, 2(4): 253-266.
    [85]顾明,项海帆.几种矩形二维柱体节段模型上脉动力的测量.空气动力学学报, 1994, 12(1): 115-119
    [86] Hemona P, Santia F, Schnoerringerb B, et al. Influence of free-stream turbulence on the movement-induced vibrations of an elongated rectangular cylinder in cross-flow. Journal of Wind Engineering and Industrial Aerodynamics, 2001, 89: 1383-1395
    [87] Schmita R F, Glauser M N, Ahmadi G. Flow and turbulence conditions in the wake of a H-section in cross flow. Journal of Fluids and Structures, 2004, 19: 193-207
    [88] Bartolia G, Righia M. Flutter mechanism for rectangular prisms in smooth and turbulent flow. Journal of Wind Engineering and Industrial Aerodynamics, 2006, 94: 275-291
    [89] Tamura T, Kuwahara K. Numerical study of aerodynamic behavior of a square cylinder. Journal of Wind Engineering and Industrial Aerodynamics, 1990, 33(1-2): 161-170
    [90] Tamura T, Kuwahara K. Numerical study on aerodynamic instability of oscillating rectangular cylinders. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 41(1-3): 253-254
    [91] Tamura T, Itoh Y, Wada A, et al. Numerical Investigation on the Aeroelastic Instability of Bluff Cylinders. Journal of Wind Engineering and Industrial Aerodynamics, 1993, 46-47: 557-566
    [92] Tamura T, Itoh Y, Kuwaharac K. Computational separated-reattaching flows around a rectangular cylinder. Journal of Wind Engineering and Industrial Aerodynamics, 1993, 50: 9-18
    [93] Tamura T, Itoh Y, Wada A, et al. Numerical study of pressure fluctuations on a rectangular cylinder in aerodynamic oscillation. Journal of Wind Engineering and Industrial Aerodynamics, 1995, 54-55: 239-250
    [94] Tamura T, Itoh Y. Three-dimensional vortical flows around a bluff cylinder in unstable oscillations. Journal of Wind Engineering and Industrial Aerodynamics, 1997, 67-68: 141-154
    [95] Tamura T, Ono Y. LES analysis on aeroelastic instability of prisms in turbulent flow. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91: 1827-1846
    [96] Nomuta T. Finite element analysis of vortex-induced vibrations of bluff cylinders.Journal of Wind Engineering, 1992, 52: 553-558
    [97] Nomuta T. Finite element analysis of vortex-induced vibrations of bluff cylinders. Journal of Wind Engineering and Industrial Aerodynamics, 1993, 46-47: 587-594
    [98] Nomuta T. A numerical study on vortex-excited oscillations of bluff cylinders. Journal of Wind Engineering and Industrial Aerodynamics, 1993, 50: 75-84
    [99] Shirato H, Matsumoto M, Shiraishi N. Unsteady aerodynamic force characteristics on 2-Doscillating bluff body. Journal of Wind Engineering and Industrial Aerodynamics, 1993, 46-47: 629-637
    [100] Shirato H, Matsumoto M. Unsteady pressure evaluation on oscillating bluff body by vortex method. Journal of Wind Engineering and Industrial Aerodynamics, 1997, 67&68: 349-359
    [101] Steggel N, Rockliff N. Simulation of the effects of body shape on lock-in characteristics in pulsating flow by the discrete vortex method. Journal of Wind Engineering and Industrial Aerodynamics, 1997, 69-71: 317-329
    [102] Walther J H, Larsen A. Two dimensional discrete vortex method for application to bluff body aerodynamics. Journal of Wind Engineering and Industrial Aerodynamics, 1997, 67-68: 183-193
    [103] Larsen A, Walther J H. Aeroelastic analysis of bridge girder sections based on discrete vortex simulations. Journal of Wind Engineering and Industrial Aerodynamics, 1997, 67-68: 253-265
    [104] Larsen A. Advances in aeroelastic analyses of suspension and cable-stayed bridges. Journal of Wind Engineering and Industrial Aerodynamics, 1998, 74-76: 73-90
    [105] Larsen A. Aerodynamics of the Tacoma Narrows Bridge-60 Years Later. Structural Engineering International, 2000, 10(4): 243-248
    [106] Murakami S, Mochida A. On turbulent vortex shedding flow past 2D square cylinder predicted by CFD. Journal of Wind Engineering and Industrial Aerodynamics, 1995, 54-55: 191-211
    [107]曹丰产,项海帆.低雷诺数下方柱和圆柱涡致振动的数值分析.同济大学学报, 1998, 26(4): 382-386
    [108] Taylor I, Vezza M. Prediction of unsteady flow around square and rectangular section cylinders using a discrete vortex method. Journal of Wind Engineering and Industrial Aerodynamics, 1999, 82: 247-269
    [109] Taylor I, Vezza M. Calculation of the flow field around a square section cylinder undergoing forced transverse oscillations using a discrete vortex method. Journalof Wind Engineering and Industrial Aerodynamics, 1999, 82: 271-291
    [110]邓见,任安禄,邹建锋.方柱绕流横向驰振及涡致振动数值模拟.浙江大学学报(工学版), 2005, 39(4): 595-599
    [111]徐枫,欧进萍.方柱非定常绕流与涡激振动的数值模拟.东南大学学报(自然科学版), 2005, 35: 35-39
    [112] Yu D, Kareem A. Two-dimensional simulation of flow around rectangular prisms. Journal of Wind Engineering and Industrial Aerodynamics, 1996, 62: 131-161
    [113] Yu D H, Kareem A. Numerical simulation of flow around rectangular prism. Journal of Wind Engineering and Industrial Aerodynamics, 1997, 67-68: 195-208
    [114] Yu D H, Kareem A. Parametric study of flow around rectangular prisms using LES. Journal of Wind Engineering and Industrial Aerodynamics, 1998, 77-78: 653-662
    [115] Noda H, Nakayama A. Reproducibility of flow past two-dimensional rectangular cylinders in a homogeneous turbulent flow by LES. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91: 265–278
    [116]童兵,祝兵,周本宽.方柱绕流的数值模拟.力学季刊, 2002, 23(1): 77-81
    [117] Kuroda M, Tamura T, Suzuki M. Applicability of LES to the turbulent wake of a rectangular cylinder—Comparison with PIV data. Journal of Wind Engineering and Industrial Aerodynamics, 2007, 95: 1242-1258
    [118] Sun D K, Owen J S, Wright N G. Fluid–structure interaction of prismatic line-like structures, using LES and block-iterative coupling. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(6-7): 840-858
    [119] Nagao F, Utsunomiya H, Murata S. Improvement of pitching moment estimation of an oscillating body by discrete vortex method. Journal of Wind Engineering and Industrial Aerodynamics, 1997, 67-68: 337-347
    [120] JB/T 7510-1994.工艺参数优化方法正交试验法.北京:机械科学研究院, 1994, 1-25
    [121]王福军.计算流体动力学分析—CFD软件原理与应用.北京:清华大学出版社, 2005, 1-159
    [122]项海帆,葛耀君,朱乐东等.现代桥梁抗风理论与实践.北京:人民交通出版社, 2005, 1-339
    [123]杨伟.基于RANS的结构风荷载和响应的数值模拟研究: [同济大学博士学位论文].上海:同济大学, 2004, 1-180
    [124]申智春,梁鲁,郑钢铁等.某型卫星有效载荷支架振动抑制.宇航学报, 2006, 27(3): 503-506
    [125]梁鲁,刘明辉,张静等.附加约束阻尼层对星箭系统动特性的影响分析.应用力学学报, 2007, 24(4): 669-673
    [126]林松,高庆,李映辉等.复合阻尼结构减振参量的有限元仿真计算及优化分析.导弹与航天运载技术, 2007, 291(5): 42-45
    [127]桂洪斌,赵德有,郑云龙.粘弹性阻尼层结构动力问题有限元分析综述.振动与冲击, 2001, 20(1): 44-47
    [128] Johnson C D, Kienholz D A. Finite element prediction of damping in structure with constrained viscoelastic layers. AIAA JOURNAL, 1982, 20(9): 1284-1290
    [129] Kristensen R F, Nielsen K L, Mikkelsen L P. Numerical studies of shear damped composite beams using a constrained damping layer. Composite Structures, 2008, 83: 304–311
    [130]王慧彩.约束阻尼夹层板动态特性研究: [大连理工大学硕士学位论文].大连:大连理工大学, 2003, 1-50
    [131]申智春,郑钢铁.附加约束阻尼层的复合材料梁单元建模分析.振动工程学报, 2006, 19(4): 481-487
    [132]任志刚,楼梦麟,田志敏.复合夹层梁动力响应的谱有限元解.同济大学学报, 2004, 32(10): 1382-1385
    [133]梁天锡,廖文东,陈强洪等.基于ANSYS二次开发进行黏弹性结构动力学分析.力学与实践, 2006, 28(4): 41-45
    [134] Huston D. R. The effects of upstream gusting on the aeroelastic behavior of long suspended-span bridges: [HhD dissertation]. Princeton: Princeton University, 1986, 1-130
    [135]曹丰产,项海帆,陈艾荣.桥梁断面气动导数和颤振临界风速的数值计算.空气动力学学报, 2000, 18(1): 26-33
    [136]曹丰产.桥梁气动弹性问题的数值计算: [同济大学博士学位论文].上海:同济大学, 1999, 1-100
    [137]周志勇,陈艾荣,项海帆.涡方法用于桥梁断面气动导数和颤振临界风速的数值计算.振动工程学报, 2002, 15(3): 327-331
    [138]祝志文,陈政清.数值模拟桥梁断面气动导数和颤振临界风速.中国公路学报, 2004, 17(3): 41-45
    [139]罗延忠,陈政清.桥梁颤振导数自由振动识别的分段扩阶最小二乘迭代算法.振动与冲击, 2006, 25(3): 48-57
    [140] Poulsen N K, Damsgaard A, Reinhold T A. Determination of Flutter Derivatices for the Great Belt Bridge. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 41-44: 153-164
    [141] Diana G, Resta F, Zasso A, etal. Forced motion and free motion aeroelastic tests on a new concept dynamometric section model of the Messina suspension bridge. Journal of Wind Engineering and Industrial Aerodynamics, 2004, 92: 441-462
    [142] Cigada A, Diana G, Zappa E. Messina Bridge Complex Aerodynamic Admittance Function Measurement. In: Proceedings of the 11th Conference on Wind Engineering. Lobbock, Texas, 2003, 123-130
    [143] Gu Z F. On interference between two circular cylinders at supercritical Reynolds number. Journal of Wind Engineering and Industrial Aerodynamics, 1996, 62: 175-190
    [144]李加武.桥梁断面雷诺数效应及其控制研究: [同济大学博士学位论文].上海:同济大学, 2003, 1-120

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700