带尾缘吹气的叶轮机械内部流动和气动噪声问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
动静干扰和尾迹是叶轮机械主要的非稳定流场形式,采用尾缘吹气能够降低动静干涉噪声、降低下游叶片的疲劳损失和降低机组总的气动噪声等,研究和掌握其流动特性和流动控制方式,对提高机组的整体性能意义重大。
     实验测量和数值模拟是研究叶轮机械内部流场的两种基本方法,随着科学技术的发展,各类先进的测量技术的不断发展,如热线风速仪和粒子图像测速仪,为实验研究提供了新的测量方式;同时计算机性能的飞速提高和计算流体力学技术的日趋完善,基于求解三维粘性Navier-Stokes方程的数值模拟方法为叶轮机械内部流场的研究提供了强大的手段。本文正是通过实验测量和数值模拟相结合的方法来研究尾缘吹气对低速风机气动噪声的影响。
     本文主要研究内容和研究成果如下:
     1、根据研究的要求,设计加工了实验用静子模型,并设计了静子尾缘吹气的装置,保证了静子尾缘吹气的连续性和均匀性,使静子尾缘在不同吹气条件下,能达到所需要的尾迹特征,即纯尾迹、弱尾迹、无动量亏损尾迹、喷射四种尾迹特征。
     2、根据国家通风机空气动力学性能测试标准,搭建了性能测试试验台,得到了在静子尾缘不同吹气条件下模型风机系统的空气动力学性能曲线,性能结果表明,静子尾缘吹气在吹气流量为模型风机设计流量的1.8%时达到无动量亏损尾迹时,动叶的气动性能变化不大,说明静子尾缘吹气对动叶的气动性能基本没有影响。
     3、使用热线风速仪和PIV测量了静子尾迹区的详细流动特征,得到了纯尾迹、弱尾迹、无动量亏损尾迹、喷射四种尾迹的流动特征。通过轴向速度分布、湍流长度尺度分布、尾迹特征长度等重要的尾迹参数描述了静子不同尾迹的流动特征。结果表明通过静子尾缘吹气,可以填平速度亏损区,获得无动量亏损尾迹。无动量亏损尾迹可以消除静子尾缘的涡脱落频率以及其谐波值,吹气改变了静子的涡脱落特性,吹气后可以减小静子的尾迹宽度。同时,使用了数值模拟对尾迹区的流动进行了进一步的研究,通过不同湍流模型计算结果的对比,发现SST湍流模型适合模拟尾迹区的流动。通过和实验结果对比,CFD模拟结果和实验结果吻合较好,并从数值计算中提取了速度、压力和湍动能等参数继续描述尾迹流动。
     4、使用热线风速仪和PIV测量了静子尾迹与动叶相互干涉的流场,得到了静子尾迹在下游动叶排中的传播规律。热线测量结果表明,静子尾缘吹气不但消除了静子尾缘的脱落涡,而且还减弱了下游动叶的周期性影响。通过静子与动叶的全流场数值模拟,详细给出了静子风机系统内的压力分布、涡量和湍动能等参数,对比了纯尾迹和无动量亏损尾迹状态时不同的分布规律。数值计算和PIV测量结果都揭示了静子尾迹在动叶流道内的传播规律,通过静子尾缘吹气,使动叶的入口流场均匀,速度波动较小。
     5、利用声级计和频谱分析仪测量了静子尾迹与动叶相互干涉的总声压级、噪声频谱,得到了模型风机系统噪声辐射的特性。对模型风机系统噪声预测方法采用CFD+FW-H混合方法,使用尾缘涡脱落噪声模型和Lowson关于离散频率噪声的点力模型预测了纯尾迹和无动量亏损尾迹与动叶相互作用的宽频噪声和离散噪声,实验测量和噪声预测结果均表明静子尾缘吹气能够降低系统的噪声,尤其离散频率噪声降低较为明显,最大降低幅度为3.65dB,而对宽频噪声的影响较小。
     6、提出和尝试了尾缘脉动吹气,使用数值模拟进行了初步的研究。并使用噪声预测模型预测了脉动吹气时脉动尾迹与动叶相互作用的噪声。结果表明,脉动吹气可以降低高阶处离散频率噪声值,从而降低离散频率噪声。
Stator-rotor interaction and wake are the main unsteady flows of turbo machinery. The interaction noise between stator and rotor and high circle fatigue of rotor blade downstream will be reduced, and the total noise performance of the whole machine set will be improved using trailing edge blowing (TEB). It is very important to study and master the flow characteristic and control method of trailing edge blowing to improve the overall performance of the turbo machine set.
     Experimental measurement and numerical simulation are the two basic methods to study the internal flow of turbo machinery. With the development of technology, various advanced measurement techniques come forth to serve for the investigation, such as Hotwire Anemometer (HWA), and Particle Image Velocimetry (PIV), which supply experimental study for the new method and device of measurement. Meanwhile, with the rapid development of computer performance and gradual perfection of computational fluid dynamics (CFD), numerical simulation method based on solving 3D viscous Navier-Stokes equation supply a powerful tool for the investigation of internal flow of turbo machinery. Experimental measurement and numerical simulation are combined to study the effect of trailing edge blowing towards a low speed axial fan in this paper.
     Main contents and conclusions of the investigation are described in the following:
     1. According to the demand of study, an experimental stator is designed and manufactured. And the system of trailing edge blowing of the stator is designed to supply continuous and stable air flow for the stator. Under different flow rate of trailing edge blowing, four wake statuses can be obtained, that is pure wake (no blowing), weak wake (some blowing), momentumless wake (blowing adjusted to provide a thrust which exactly cancels the blade’s drag), and jet (more blowing than necessary to cancel the drag).
     2. The performance test facility is designed in according with the Chinese National Standard GB1236-2000. The aerodynamic performance curves of stator-rotor system under different trailing edge blowing rate are obtained. The results show that the mass flow rate is too small to affect the aerodynamic performance of stator-rotor system. When trailing edge blowing reaches momentumless wake status, the mass flow rate is about 1.8% of the designed flow rate of the rotor.
     3. HWA and PIV are used to measure the detailed flow of stator wake, the flow characteristics of four wake status are obtained through axial velocity profiles, wake characteristic length scale, turbulence length scale, etc. The results showed that through trailing edge blowing up to momentumless wake, the velocity deficit of the stator wake can be filled. The shedding vortex of stator was reduced through momentumless wake. The vortex shedding frequency and its harmonics are eliminated by trailing edge blowing up to momentumless wake. The turbulence length scale of pure wake is larger than that of momentumless wake, and it become larger with the increasing of axial position, and for momentumless wake case it become smaller contrarily. The wake characteristic length scales of pure wake and momentumless wake become larger with the increasing of axial positions, but at the same axial position, characteristic length scale of momentumless wake is smaller than that of pure wake. That is to say, trailing edge blowing can reduce the wake width of stator. Through the experimental result, the wake flow of pure wake and momentumless wake takes on similarity characteristic. At last, CFD simulation was carry out to simulation the wake flow of stator to gain more information about wake. SST turbulence model is found to suit for the wake flow simulation. And the results from this turbulence model agree well with the experiments. Through the CFD simulation, some information, such as velocity, pressure and turbulence kinetic energy, and so on, is abstracted to describe the wake flow of stator.
     4. HWA and PIV are used to measure the interaction flow between stator wake and rotor, the spreading rules of stator wake across the rotor row are obtained. The results of HWA measurement shows trailing edge blowing can eliminate shedding vortex of stator and weaken the periodicity effect of the rotor downstream. The results of PIV tests present the wake flow across the rotor row. Through trailing edge blowing, the inlet of the rotor is more uniform, and the fluctuation of velocity is small compared with non-blowing from the trailing edge of stator. A whole simulation including all stator and rotor blades is carried out to calculate the flow field of stator-rotor system with trailing edge blowing. And the results agree well with the experiments. Through the distribution of vorticity, pressure, turbulence kinetic energy, etc, the two wake flows are compared with each other. The results of PIV experiments and CFD simulation results reveal the flow characteristic of stator wake flowing across the rotor row. Through trailing edge blowing, the inlet of rotor can be more uniform, and the fluctuating of velocity is smaller.
     5. The sound pressure level and noise spectrum are measured using sound level meter and a dual channel real-time frequency analyzer in a semi anechoic chamber. A hybrid prediction method is adopted to predict the noise radiated from the stator-rotor system, i.e. CFD plus FW-H. For the trailing edge noise, the shedding vortex noise model developed by Fukano is adopted. And for the interaction noise between stator wake and rotor, the point force model for discrete frequency noise developed by Lowson is adopted. The prediction results agree well with the experiment. The noise test and noise prediction results show that trailing edge blowing can reduce the noise level, especially the discrete noise level; the effect to the broadband noise level is small.
     6. Pulsing blowing is brought forward in this paper. And CFD simulation is used for preliminary study. Meanwhile, the noise prediction is made using above noise prediction models based on CFD results. The noise prediction results show that pulsing blowing can reduce high order discrete noise, and then reduce the total discrete noise level.
引文
[1]刘贵卿. GAF矿井轴流风机在煤矿中的应用,山西煤炭,2002,22(1):46-47.
    [2]郭欣茹,张亚峰.电子设备机箱的强风冷技术,无线电通信技术,2004,30(2):49-50.
    [3]管鸿浩.武汉长江隧道通风设计,隧道建设,2005, 25(5):23-27.
    [4]蔡娜,陈静涛,魏芳.电厂中节能扩稳轴流风机的计算分析与试验,汽轮机技术,1998, 40(4):231-234.
    [5]肖云华,黄光远,朱茂华.电力机车空调系统的设计选型.电力机车与城轨车辆, 2006,29(2) :24-27.
    [6]顾巍.轴流风机在辅助粮仓机械通风中的作用,粮食储藏,2008 37(02 ):43-47.
    [7]张邦,翟国庆.环境噪声学,浙江,浙江大学出版社,2001.
    [8]胡骏,汤国才,于再.动叶尾迹对静子非定常气动性能影响的研究,航空动力学报,1999,14(4):387-392.
    [9]王英锋,胡骏,罗标能,李传鹏.上游叶片尾迹对转子叶片非定常表面压力频谱特性影响的研究,航空动力学报,2006,21(4):693-698.
    [10] Mailach, R., and Vogeler, K., Aerodynamic blade row interactions in an axial compressor– Part II: Unsteady profile pressure distribution and blade forces. ASME Journal of Turbomachinery, 2004,126:34-51.
    [11]弓志强,陆亚钧,李志平,李茂义.轴流压气机内导叶/转子干涉对转子流场的影响,北京航空航天大学学报,2007,30(1):32-37.
    [12] Manwarning, S. R., and Fleeter, S., Rotor blade unsteady aerodynamic gust response to inlet guide vane wakes. Journal of Turbomachinery, 1993,115:197–206.
    [13] Smith, L.H., Wake dispersion in turbomachines. Journal of Basic Engineering, ASME Transactions, 1966, 88(3):689-690.
    [14] Adamczyk, J.J., Wake mixing in axial flow compressors. ASME Paper, 96-GT-29, 1996.
    [15] Deregel, P., and Tan, C.S., Impact of rotor wakes on steady state axial compressor performance. ASME Paper, 96-GT-253, 1996.
    [16] Roberts, Q.D., and Denton, J.D., Loss production in the wake of a simulated subsonic turbine blade. ASME Paper, 96-GT-421, 1996.
    [17] Hodson, H.P., Blade Row Interference Effects in Axial Turbomachinery Stages, VKI Lecture Series vol. 1998-2, Von Karman Institute for Fluid Dynamics, 1998.
    [18] Hodson, H.P., Measurements of wake-generated unsteadiness in the rotor passages of axial flow turbines, ASME J. Engrg. Gas Turbines and Power, 1985,107:467-476.
    [19]童秉纲,崔尔杰.非定常流研究现状及其发展,现代流体力学进展,北京:科学出版社,1991。
    [20]王晋军,冯立好,徐超军.合成射流控制圆柱分离及绕流结构的实验研究,中国科学,2007,37(7):944-951.
    [21]程永卓,李宇红,霍福鹏,陈佐一.振荡射流控制翼型流动分离的数值模拟,清华大学学报(自然科学版),2002,42(12):1644-1646.
    [22]王掩刚,刘波,姜健,陈云永.涡轮叶片尾缘开缝喷气的数值模拟和试验研究,航空动力学报,2006,21(3):474-479.
    [23] Borgoltz A., Craig M. E.and Devenport W.J.. Trailing Edge Blowing of Fan Blades, AIAA 2005-3031.
    [24]方昌德.流动控制技术在航空涡轮推进系统上的应用,燃气涡轮试验与研究,2003,16(2): 1-6.
    [25]童秉纲,张炳暄,崔尔杰.非定常流与涡运动,北京:国防工业出版社,1993.
    [26]唐狄毅.叶轮机非定常流,北京,国防工业出版社,1992.
    [27] Naudascher, E., Flow in the wake of self-propelled bodies and related sources of turbulence, Journal of Fluid Mechanics, 1965,22(4):625-656.
    [28] Schetz, J.A., Turbulent mixing of a jet in a coflowing stream, AIAA Journal, 1968, 6:2008-2010.
    [29] Schetz, J.A., and Favin S., Analysis of free turbulent mixing flows without a net momentumless defect, AIAA Journal, 1972, 10:1524-1526.
    [30] Schetz, J.A., and Jakubowski, A.K., Experimental studies on the turbulent wake behind self-propelled slender bodies, AIAA Journal, 1975, 13:1568-1575.
    [31] Schetz, J.A., Injection and mixing in turbulent flow, Vol 68, Progress in Astronautics and Aeronautics, American Institute of Aeronautics and Astronautics, 1980.
    [32] Schetz, J.A., and Jakubowski, A.K., Experimental study of the turbulent wake behind self-propelled slender bodies. AIAA Journal, 1975, 13:1568-1575.
    [33] Hassid, S., Similarity and decay laws of momentumless wakes, Physics of Fluid, 1980, 23(2):404-405.
    [34] Finson, M.L., Similarity behavior of momentumless turbulent wakes, Journal of Fluid Mechanics, 1975, 71(3):465-479.
    [35] Gumilevskii, A.G., Similarity and decay laws with zero momentum and angularmomentum, Fluid Dynamics, 1993, 28(5):619-623.
    [36] Faure, T., Reynolds stress transport equations in a momentumless wake: experiments and models, AIAA Journal, 1997, 35(2):281-287.
    [37] Faure, T., and Robert, G., Spectral analysis of the turbulent structure in the momentumless wake of a propeller-driven body, European Journal of Mechanics, B/Fluids, 1997, 16(2): 211-226.
    [38] Cimbala, J.M., and Park, W.J., An experimental investigation of the turbulent structure in a 2-D momentumless wake, Journal of Fluid Mechanics, 1990, 213: 479-509.
    [39] Park, W.J., and Cimbala, J.M., The Effect of Jet Injection Geometry on 2-D Momentumless Wakes, Journal of Fluid Mechanics, 1991, 224: 29-47.
    [40] Naumann, R.G., Control of Wake from a Simulated Blade by Trailing Edge Blowing, Master’s Thesis, Lehigh University, Bethlehem, PA, 1992.
    [41] Corcoran, T.E., Control of Wake from a Simulated Blade by Trailing Edge Blowing, Master’s Thesis, Lehigh University, Bethlehem, PA, 1992.
    [42] Takami, H., and Maekawa, H., Experimental Investigation of Turbulent Structures in a Two-Dimensional Momentumless Wake, JSME International Journal, Vol B. 1997, 63 (608):1145-1153.
    [43] Chevepanov, P.Y., and Babenko, V.A., Experimental and Numerical Study of Flat Momentumless Wake, International Journal of Heat and Fluid Flow, 1998, 19: 608-622.
    [44] Sirviente, A. I., and Patel, V. C., Wake of a self-propelled body, Part I: momentumless wake[J]. AIAA Journal, 2000, 38:613-619.
    [45] Harsha, P.T, Prediction of free turbulent mixing using a turbulent kinetic energy method , NASA SP-321, 1971.
    [46] Ahn, J.W., and Sung, H.J., Prediction of two-dimensional momentumless wake by k ?ε?γmodel, AIAA Journal, 1995, 33(4):611-617.
    [47] Cho, J. R., and Chung, M.K., A proposal of k ?ε?γequation turbulence model, Journal of Fluid Mechanics, 1992, 237: 301-322.
    [48] Chevepanov, P.Y., and Babenko, V.A., 1998, Experimental and Numerical Study of Flat Momentumless Wake, International Journal of Heat and Fluid Flow, Vol. 19, pp. 608-622.
    [49] Lu, M.-H., and Sirviente, A. I., Numerical study of the momentumless wake of an axisymmetric body, AIAA 2005-1109.
    [50]林胜洋.尾部喷气对尾迹区流动影响的实验和数值研究,硕士学位论文,上海交通大学,2007.
    [51]高丽敏,刘波等.不同尾缘喷射对涡轮叶栅气动性能的影响,推进技术,2000, 21(2):33-36.
    [52]王掩刚,刘波等.涡轮叶片尾缘开缝喷气的数值模拟和试验研究,航空动力学报,2006,21(3):474-479.
    [53]姜正礼.带后缘喷气的跨音速涡轮导叶叶栅的试验研究,燃气涡轮试验与研究,1998,11(4):1-5.
    [54]曾军,程信华.涡轮叶栅尾缘冷气喷射的数值模拟燃气涡轮试验与研究,2000,13(1):40-44.
    [55]周超,常海萍,崔德平等.斜劈缝涡轮导向叶片尾缘出流气体流动特性数值分析,航空动力学报,2006,21(2):268-274.
    [56] Tyler, M., and Sofrin, T. G., Axial flow compressor noise studies, Trans. Soc. Auto. Eng, 1962, 70:309-332.
    [57] Waitz, I.A., Brookfield, J.M., Sell, J., and Hayden, B.J., Preliminary Assessment of Wake Management Strategies for Reduction of Turbomachinery Fan Noise, Journal of Propulsion and Power, 1996, 12(5): 958-66.
    [58] Sell, J., Cascade Testing to Assess the Effectiveness of Mass Addition/Removal Wake Management Strategies for Reduction of Rotor-Stator Interaction Noise, PHD thesis, MIT, 1996.
    [59] Brookfield, J. M., Turbofan Rotor/Stator Interaction Noise Reduction Through Trailing Edge Blowing, PhD Thesis, MIT, 1998.
    [60] Brookfield, J. M., and Waitz, I. A., Trailing-edge blowing for reduction of turbomachinery fan noise, Journal of Propulsion and Power, 2000, 16(1): 57-64.
    [61] Leitch, T. A., Saunders, C. A., and Ng, W. F., Reduction of unsteady stator rotor interaction using trailing edge blowing, Journal of Sound and vibration, 2000, 235(2): 235-245.
    [62] Saunders, C.A., Noise reduction in an axisymmetric supersonic inlet using trailing edge blowing, M.S. Thesis, Virginia Polytechnic and State University, Blacksburg, VA 1998.
    [63] Rao, N. M., Reduction of unsteady stator–rotor interaction by trailing edge blowing using MEMS based microvalves, M.S. Thesis,Virginia Polytechnic and State University, Blacksburg, VA 1999.
    [64] Feng, J.-W., Active control for reduction of unsteady stator-rotor interaction in a turbofan simulator, PHD Thesis, Virginia Polytechnic and State University, Blacksburg,VA 2000.
    [65] Bailie, S.T., Effect of inlet guide vane flow control on forced response of a transonic fan, M.S. Thesis, Virginia Polytechnic and State University, Blacksburg, VA 2003.
    [66] Craig, M. E., Trailing edge blowing of model fan blades for wake management, M.S. Thesis,Virginia Polytechnic and State University, Blacksburg, VA 2005.
    [67] Tweedie, S., Experimental investigation of flow control techniques to reduce hydroacoustic rotor-stator interaction noise, M.S. Thesis, Virginia Polytechnic and State University, Blacksburg, VA 2006.
    [68] Halasz, C.W., Advanced trailing edge blowing concepts for fan noise control experimental validation, M.S. Thesis, Virginia Polytechnic and State University, Blacksburg, VA 2005.
    [69] Sutliff, D.L., Tweedt D.L., Fite, E.B., and Envia, E., Low-speed fan noise reduction with trailing edge blowing, Aeroacoustics ,2002, 1 (3): 275-305.
    [70] Fite, E. B., Woodward, R. P., and Podboy, G. G., Effect of trailing edge flow injection on fan noise and aerodynamic performance, AIAA 2006-2844.
    [71] Sutliff, D., Broadband noise reduction of a low-speed fan with trailing edge blowing, AIAA-2005-3028.
    [72] Vandeputte, T.W., Effects of Flow Control on the Aerodynamics of a Tandem Inlet Guide Vane M.S. Thesis, Virginia Polytechnic and State University, Blacksburg, VA 2000.
    [73] Carter, C. J., Aerodynamic performance of a flow controlled compressor stator using an imbedded ejector pump. M.S. Thesis, Virginia Polytechnic and State University, Blacksburg, VA 2005.
    [74] Wo, A. M., Lo, A. C., and Chang, W.C., Flow control via rotor trailing edge blowing in rotor/stator axial compressor. Journal of Propulsion and Power, 2002, 18(1): 93-99.
    [75] Kozak J. D. Investigation of inlet guide vane wakes in a F109 turbofan engine with and without flow control, M.S. Thesis, Virginia Polytechnic and State University, Blacksburg, VA 2000.
    [76] Morris, R.J., Benedict, B.K., Cowles, B.A., Stange, W.A., and Scheuren, W.J., Active structural control for gas turbine engines”, ASME Paper 98-GT-514, IGTI, June 1998.
    [77] Sieverding, C. H., The Influence of trailing edge ejection on the base pressure in transonic turbine cascade, ASME 82-GT-50.
    [78] Kost, F. H., and Holmes, A. T., Aerodynamic effect of coolant ejection in the rear part of transonic rotor blades, AGARD-CP-390, Heat Transfer and Cooling in Gas Turbines, 65thPEP Symposium, Bergen.
    [79] Sieverding, C. H., et al., Investigation of the flow filed downstream of a turbine trailing edge coolant nozzle guide vane, ASME 94-GT-209.
    [80] Kapteijn, C., Amecke, J., and Michelassi, V., Aerodynamic performance of a transonic turbine guide vane with trailing edge coolant ejection Part I: Experiment Approach, ASME 94-GT-288.
    [81] Feng, J.-W., Burdisso, R., Ng, W., and Rappaport, T., Turbine engine control using MEMS for reduction of high cycle fatigue, Research Report, A522883. Mar, 2001.
    [82] Howe, M.S., Theory of Vortex Sound, 1th ed. New York: Cambridge university Press, 2002.
    [83] Amiet, R. K., Acoustic radiation from an airfoil in a turbulent stream. J. Sound Vib, 1975 41,407-420.
    [84] Amiet, R. K., Noise produced by turbulent flow into a propeller or helicopter rotor. AIAA J. 1977, 15, 307-308.
    [85] Amiet, R. K., Simonich, J. C. and Schlinker, R. H., Rotor noise due to atmospheric turbulence ingestion. Part II: aeroacoustics results. J. Aircraft 1990,27, 15-22.
    [86] Lighthill, M. J., On sound generated aerodynamically. Part 1. General theory. Proceedings of the Royal Society (A),1952,211:564–587
    [87] Curle, N., The Influence of Solid Boundaries on Aerodynamic Sound. Proc Roy. London Soc. 231A, 1187, 1955, p 505-514.
    [88] Ffowcs Williams, J.E., and Hawkings, L.H., Aerodynamic Sound Generation by Turbulent Flow in the Vicinity of a Scattering Half Plane. J. Fluid Mech. 1970,40,:657-670.
    [89] Sharland, I.J., Sources of noise in axial flow fans. JSV, 1964, 1(3): 302-322.
    [90] Lowson, M.V., The Sound Field for Singulanties in Motion. Proc. Roy. London Soc. 286A, 1965:559-572
    [91] Lowson, M. V., Theoretical Analysis of Compressor Noise. JASA, 1970, 47(1): 371-386.
    [92] FUKANO, T., KODAMA, Y., and SENDOO, Y., Noise generated by low pressure axial flow fans, I: Modelling of the turbulent noise. Journal of Sound and Vibration, 1977, 50(1), 63-74.
    [93] FUKANO, T., KODAMA, Y., and SENDOO,Y., Noise generated by low pressure axial flow fans, II: Effects of number of blades, chord length and camber of blade. Journal ofSound and Vibration, 1977, 50(1) :75-88.
    [94]钟芳源.叶片机械风机和压气机气动声学译文集。北京:机械工业出版社,1987年:133-145.
    [95] Farassat, F., A new aerodynamic integral equation based on an acoustic formulation in time domain. AIAA J, 1984, 22: 1337-1340.
    [96] Farassat, F., Theory of noise generation from moving bodies with an application to helicopter rotors. NASA TR R-451, 1975.
    [97] Farassat, F., Discontinuities in Aerodynamics and Aeroacoustics: The concept and application of generlized derivatives, Journal of Sound and Vibration, 1977, 55: 165-193.
    [98] Farassat, F., and Succi, G P., A review of propeller discrete frequency noise prediction technology with emphasis on two current method for time domain calculations, Journal of Sound and Vibration, 1980, 71: 399-419.
    [99] Lee, C., and Chung, M.K. and Kim, Y.H., A prediction model for the vortex shedding noise from the wake of an airfoil or axial flow fan blades. JSV, 1993, 164(2): 327-336.
    [100] Shen, W.Z., and Sorensen, J.N., Aeroacoustic modeling of turbulent airfoil flows, AIAA Journal, 2001, 39(6):1057-1064.
    [101] Shen, W.Z., and Sorensen, J.N., Comment on the aeroacoustic formulation of hardin and pope, AIAA Journal, 1999, 37(1):141-143.
    [102] Shen, W.Z., and Sorensen, J.N., Aeroacoustic modeling of low speed flows, Theoretal and Computational Fluid Dynamics, 1999, 13:271-289.
    [103] Tam, C.K., and Webb, J.C., Dispersion relation preserving schemes for computational aeroacoustics, Journal of Computational Physics, 1993,107:262-281.
    [104] Tam, C.K., Computational aeroacoustics: issues and methods, AIAA Journal, 1995, 33(10):1788-1796.
    [105]马亮.应用于计算气动声学的低色散有限体积格式,三峡大学学报(自然科学版),2001,23(1):82-85.
    [106] GB1236-2000,工业通风机用标准化风道进行性能试验,中华人民共和国国家标准,2000.
    [107] Streamline/Streamware installation and User’s guide. Denmark. Dantec Measurement Tech. A/S. 2000.
    [108]盛森芝.流速测量技术,北京,北京大学出版社,1989.
    [109]李德贵.自由旋转射流湍流流场的实验研究和数值模拟,[学位论文],上海交通大学图书馆,1999.
    [110] Jorgensen, F. E., How to Measure Turbulence with hot-wire Anemometers,Denmark. Dantec publish, 2002
    [111] Muller, R., On the accuracy of turbulence measurement with inclined hot wires,Journal of Fluid Mechanics,1982, 119: 155-172.
    [112] Lynch, D.A., III and Blake, W.K., Turbulence correlation length scale relationships for the prediction of aeroacoustic response, AIAA Journal, 2005, 43(6):1187-1195.
    [113]盛森芝,徐月亭,袁辉靖,近十年来流动测量技术的新发展,力学与实践,2002,24(5):1-14.
    [114] Flowmap installation and User’s guide. Denmark. Dantec Measurement Tech. A/S. 2000.
    [115]肖亚克,贾元胜,张孝棣等. PIV技术中的示踪粒子发生和布撤,气动研究与实验,2005,22(4):8-15.
    [116]陈克安,曾向阳,李海英.声学测量,北京,科技出版社,2005.
    [117] GB/T 2888-91,风机与罗茨鼓风机噪声测量方法,中华人民共和国国家标准,1991.
    [118] ANSYS CFX User guide, Version 11.0, ANSYS Ltd, 2007.
    [119] Spalding, D. B. and Launder, D. B., 1971, Mathematical Models and Turbulence, Mechanical Engineering Department, Imperial College, London.
    [120] Yakhot, V., and Orszag, S. A., Renormalization group analysis of turbulence I Basic theory, J. Sci. Comput. 1986,1: 3-51.
    [121] Wilcox, D.C., Reassessment of the scale determining equation for advanced turbulence models, AIAA Journal, 1988, 26:1299-1310.
    [122] Menter, F. R., Zonal two equation k?w turbulence model predictions. AIAA Paper No. 93-2906. 1993.
    [123] ANSYS ICEM CFD User guide, Version 11.0, ANSYS Ltd, 2007.
    [124] ANSYS Turbogrid User guide, Version 11.0, ANSYS Ltd, 2007.
    [125] Ventres, C.S., Theobald, M.A., and Mark, W.D., Turbofan noise generation Vol1: Analysis, NASA CR-167951, July, 1982.
    [126] Powell, A., Aerodynamic Noise and the Plane Boundary. J. Acount Soc. Am. 32, 1960. p 982-990
    [127] Powell, A., Theory of vortex sound. J. Acoust. Soc. Am. 1964, 36: 177-195
    [128] Doak, P.E., Analysis of internally generated sound in continuous materials: 2. A critical review of the conceptual adequacy and physical scope of existing theories of aerodynamic noise, with special reference to supersonic jet noise. Journal of sound and vibration, 1972,25: 266-285.
    [129] Muench, J.D., Periodic acoustic radiation from a low aspect ratio propeller, Ph.D Thesis, University of Rhode Island, 2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700