高速列车气动噪声特性分析与降噪研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着列车运行速度的提高,气动噪声成为高速列车噪声中越来越重要的组成部分。研究高速列车气动噪声的预测方法及控制方法具有重要的意义。针对高速列车气动噪声问题,本文建立高速列车车外及车内气动噪声的计算方法,研究主要气动噪声源部位的远场辐射气动噪声特性。建立高速列车流线型头型的多目标优化设计模型,对高速列车流线型头型进行减阻降噪优化设计。建立低压环境下真空管道高速列车空气动力学计算模型,研究真空管道高速列车的气动阻力和气动噪声源特性。
     根据高速列车近地面运行的实际情况,分别由FW-H方程和Kirchhoff方法出发,利用半自由空间的Green函数,推导考虑地面效应的高速列车远场声学积分公式,并研究地面声阻抗对高速列车远场气动噪声的影响。由于地面效应的存在,原来的自由声场相当于真实列车声场和镜像列车声场的叠加,且作用于镜像列车上的法向运动速度和力源与真实列车上的相同。考虑到空气介质往往是运动的,由广义Lighthill方程出发,推导考虑介质运动和地面效应的高速列车远场声学积分公式。
     建立高速列车远场气动噪声计算的气动声学模型方法和混合计算方法,对高速列车车头及受电弓远场气动噪声进行计算分析。气动声学模型方法和混合计算方法得到的远场测点的声压频谱基本相同。高速列车车头远场气动噪声具有宽频特性,主要能量集中在1800Hz~2800Hz。高速列车受电弓远场气动噪声频带较窄,主要能量集中在100~700Hz。高速列车车头和受电弓的远场测点的等效连续A计权声压级近似与列车速度的对数成线性关系。高速列车的头部控制线形状对高速列车远场气动噪声具有较明显的影响,平直纵向剖面线和方形水平剖面线组合下的头型所产生的气动噪声最小,鼓形纵向剖面线和锥形水平剖面线组合下的头型所产生的气动噪声最大。
     基于计算流体动力学和统计能量分析法建立高速列车车内气动噪声的计算方法。根据统计能量分析法的基本原理,建立高速列车车内气动噪声计算模型,并计算模型中各个子系统的基本参数,即模态密度、内损耗因子和耦合损耗因子。利用大涡模拟方法获得各个车身子系统上的平均脉动压力谱,进而对高速列车车内气动噪声进行计算分析。从线性计权声压级来看,司机室声腔和乘客室声腔的声压具有低频特性。从A计权声压级来看,司机室声腔和乘客室声腔的声压的显著频带范围较宽,司机室声腔的噪声能量主要集中在100Hz~2000Hz,乘客室声腔的噪声能量主要集中在50Hz~2000Hz。司机室声腔和乘客室声腔的线性计权声压级和A计权声压级均与列车速度的对数近似成线性关系。
     建立高速列车流线型头型的多目标优化设计方法,以气动阻力和偶极子噪声源为优化目标,对高速列车流线型头型进行多目标自动优化设计。利用CATIA软件建立高速列车三维参数化模型,提取出5个优化设计变量,利用自编MATLAB程序和CATScript脚本文件实现高速列车流线型头型的自动变形。采用脚本文件和批处理命令实现高速列车空气动力学计算网格的自动划分及高速列车绕流流场的自动计算,利用多目标遗传算法NSGA-Ⅱ对优化设计变量进行自动更新,实现高速列车流线型头型的多目标自动寻优设计。通过研究优化目标与优化变量之间的相关性,得到影响优化目标的关键优化设计变量,进而得到关键优化设计变量和优化目标之间的非线性关系。通过与原始流线型头型气动性能的对比发现,优化后的流线型头型最大可使高速列车的气动阻力降低4.54%,使高速列车的偶极子噪声源减少4.95dB。为减少多目标优化计算时间,利用径向基神经网络建立高速列车空气动力学计算的近似计算模型,为提高近似计算模型在整个优化设计空间内的近似效果,采用最优拉丁方设计方法获得径向基神经网络的输入和输出。近似计算模型得到的气动阻力的预测值与实际值的误差小于1%,而偶极子噪声源的预测值与实际值的误差小于3dB,近似计算模型具有较好的近似效果,且采用近似计算模型优化计算获得的Parto前沿与采用真实模型优化计算获得的Pareto前沿相差不大。
     建立低压(0.01atm~0.1atm)环境下真空管道高速列车空气动力学计算的流体模型、数学模型和数值模型,研究管道压力、阻塞比和列车速度对高速列车阻力系数、气动阻力、偶极子噪声源和四极子噪声源的影响,并以明线上运行速度为400km/h的高速列车气动阻力为限值,确定出真空管道高速交通系统的最佳管道压力、阻塞比和列车速度关系。在低压环境下,真空管道中的空气流动可以采用连续介质模型描述。高速列车的气动阻力系数基本上与管道压力和列车速度无关,主要依赖于阻塞比。高速列车的气动阻力与管道压力成线性关系,与列车速度成平方关系,且随着阻塞比的增加而增大。高速列车偶极子噪声源和四极子噪声源均与列车速度的对数近似成线性关系,当列车速度为600km/h时,四极子噪声源较小,偶极子噪声源占据主导地位,随着列车速度的提高,四极子噪声源变得明显,并占据主导地位。为模拟更稀薄环境下的真空管道空气流动特性,建立适用于滑移区和过渡区稀薄气体流动的格子Boltzmann模型,并对二阶速度滑移边界条件进行检验。研究发现,Guo模型、Hisa模型、Zhang模型表现较好。采用Guo模型对滑移区和过渡区的稀薄气体流动进行数值模拟,发现当稀薄参数取1.64时,计算得到的无量纲速度剖面与Karniadakis给出的无量纲速度剖面吻合很好,从而验证了计算模型及计算程序的正确性。
With the increasing of the train speed, aeroacoustics of the high-speed train has become an increasingly important part of the high-speed train noise. Study on the computation and control of aeroacoustics of the high-speed train has important significance. For the aeroacoustics issue of the high-speed train, the computational methods of exterior and interior aeroacoustics of the high-speed train were established. The characteristics of far-field radiation aeroacoustics of the main aeroacoustics source parts were analyzed. The multi-objective optimization design model of the streamlined head of the high-speed train was eatablished, and the streamlined head was optimized to reduce the drag force and noise. The aerodynamic computational model of the high-speed train in the vacuum tube in the low-pressure environment was established, the characteristics of aerodynamic drag force and aeroacoustics source of the high-speed train in the vacuum tube were studied.
     Based on the actual situation of the high-speed train running near the ground, starting by the FW-H equation and Kirchhoff equation respectively, the far-field acoustical integral formula of the high-speed train considering the ground effect was derived respectively using the semi-free-space Green's function. The effect of ground acoustical impendance on the far-field aeroacoustics of the high-speed train was studied. The former free sound field is equivalent to superposition of sound field of realistic train and sound field of mirror train because of the ground effect. The normal velocities and force sources on the mirror train are the same as that of on the realistic train. Considering that the air medium tends to have movement, the far-field acoustics integral formula of the high-speed train considering the medium movement and the ground effect was derived from the generalized Lighthill equation.
     The aeroacoustic model method and mixed computational method for the computational of the far-field aeroacoustics of the high-speed train were established. The far-field aeroacoustics of the head and pantograph of the high-speed train was computed and analyzed. The sound pressure spectrum of the far-fied measure point computed by the aeroacoustic model method and mixed computational method is basically the same. The far-field aeroacoustics of the high-spped train head has broadband characteristics and the energy is mainly distributed between1800-2800Hz. The far-field aeroacoustics of the high-spped train pantograph has narrowband characteristics and the energy is mainly distributed between100-700Hz. The equivalent continuous A-weighted sound pressure level of the far-field measure point of the head and pantograph of the high-speed train has a linear relationship with the logarithm of the train speed. The shape of control lines of the train head has obvious effect on the far-field aeroacoustics of the high-speed train. The aerodynamic noise corresponding to the head with the combination of straight longitudinal profile line and the square horizontal section line is the smallest. The aerodynamic noise corresponding to the head with the combination of drum-shaped longitudinal profile line and the cone horizontal section line is the largest.
     The computational method of interior aeroacoustics of the high-speed train was established based on the computational fliud dynamics and statistical energy analysis. The computational model of interior aeroacoustics of the high-speed train was established based on the theory of statistical energy analysis. The fundamental parameters, i.e., modal density, internal loss factor and coupled loss factor, were determined. The average fluctuating pressure spectrums on the carbody subsystems were obtained using the large eddy simulation, and the interior aeroacoustics of the high-speed train was computed and analyzed. For the liner-weighted sound pressure level, the sound pressure level of the drive's cab cavity and passenger compartment cavity has low frequency characteristics. For the A-weighted sound pressure level, the sound pressure level of the drive's cab cavity and passenger compartment cavity has broadband characteristics. The sound energy of the drive's cab cavity is mainly distributed between100-2000Hz, the sound energy of the passenger compartment cavity is mainly distributed between50-2000Hz.The linear-weighted and A-weighted sound pressure level of the drive's cab cavity and passenger compartment cavity has a linear relationship with the logarithm of the train speed.
     The multi-objective optimization design method of the streamlined head of the high-speed train was established. The aerodynamic drag force and dipole noise source were set as optimization objectives, and the multi-objective automatic optimization design of the streamlined head of the high-speed train was carried out. The three-dimensional parametric model of the high-speed train was established using the CATIA software, and five optimization design variables were extracted. The automatically deformation of the streamlined head of the high-speed train was achieved using MATLAB program and CATScript script file. The automatic division of the aerodynamic computational grid of the high-speed train and automatic computation of flow field of the high-speed train were achieved using the script files and batch commands. The automatic update of optimization design variables were achieved using the multi-objective genetic algorithm NSGA-Ⅱ, then the automatic optimization design of the streamlined head of the high-speed train was achieved. From the research on the correlation between optimization objectives and optimization variables, the key optimization design variables which have effects on the optimization objectives could be obtained. Then the non-linear relationship of the key optimization design variables and optimization objectives was obtained. By contrasting with aerodynamic performances of the original streamlined head, the maximum reduction of the aerodynamic drag force of the optimized streamlined head is4.54%, and the maximum reduction of the dipole source of the optimized streamlined head is4.95dB. In order to reduce the computational time of the multi-objective optimization, the approximate computational model of aerodynamic of the high-speed train was established using the radial basic function neural network. In order to get a good approximate in the whole optimization design space, the inputs and outputs of the radial basic function neural network were obtained using the optimal Latin hypercube design. The error between the predicted values computed by the approximate computational model and actual values of the aerodynamic drag foece is less than1%. The error between the predicted values computed by the approximate computational model and actual values of the dipole noise source is less than3dB. The approximate computational model has a good approximate. The Pareto frontier computed by the approximate computational model is basically the same as that of computed by the actual model.
     The fluid model, mathematical model and numerical model of aerodynamic computation of the high-speed train in the vacuum tube in the low-pressure (0.01atm-0.1atm) environment were established. The effects of tube pressure, blockage ratio and train speed on the drag coefficient, aerodynamic drag force, dipole noise source and quadrupole noise source were studied. Setting the aerodynamic drag foece of a400km/h train in the open field under the standard pressure condition as a limit value, the best relationship between tube pressures, blockage ratios and train speeds for the vacuum tube high-speed transportation system was determined. In the low-pressure environment, the air flow in the evacuated tube can be described using a continuous model. The aerodynamic drag coefficient basically has nothing to do with the tube pressure or the train speed, which mainly depends on the blockage ratio. The aerodynamic drag force of the high-speed train is linear with the tube pressure, and square with the train speed, and also increases with the increase of blockage ratio. The dipole noise source and the quadrupole noise source of the high-speed train are almost linear with the logarithm of the train speed. When the train speed is600km/h, the quadrupole noise source is small and the dipole noise source has a dominate status. With the increase of train speed, the quadrupole noise source becomes apparent and has a dominate status. In order to simulate the air flow characteristics in the vacuum tube in the more rarefied environment, the lattice Boltzmann model for rarefied gas flow in the slip and transitional regime was established, and the second order velocity slip boundary conditions was studied. Guo model, Hisa model and Zhang model have a good perform. The rarefied gas flows in the slip and transitional regime were simulated using Guo model. When the rarefaction parameter is equal to1.64, the computed dimensionless velocity profile is good agreement with the dimensionless velocity profile given by Karniadakis, which verify the correctness of the computational model and computational program.
引文
1. 张卫华.机车车辆动态模拟.北京:中国铁道出版社,2006.
    2. 沈之介.加快我国高速铁路的发展.中国铁路.1993,(7):1-4.
    3. 郎茂祥.世界高速铁路的发展趋势.世界铁路报道.1997,(2):35-41.
    4. 百度百科.高速铁路http://baike.baidu.com/view/3743.htm.
    5. 谢贤良.时速574.8公里一法国高速列车再创世界纪录.铁道知识.2007,(5):32-37.
    6. Schetz J A. Aerodynamics of high-speed trains. Annual Review Fluid Mechanics,2001,33:371-414.
    7. 李田.高速列车流固耦合计算方法及动力学性能研究.西南交通大学博士学位论文,2012.
    8. 沈志云.高速列车的动态环境及其技术的根本特点.铁道学报,2006,28(4):1-5.
    9. 马大炜.高速列车及其速度目标值的探讨.中国铁道科学,2003,24(5):1-8.
    10. Talotte C, Gautier P E, Thompson D J, et al. Identification, modeling and reduction potential of railway noise sources:a critical survey. Journal of Sound and Vibration,2003,267(2):447-468.
    11.张曙光.350kmm.k-1高速列车噪声机理、声源识别及控制.中国铁道科学,2009,30(1):86-90.
    12.何宾.高速列车车外噪声分布特征及车轮阻尼控制措施初步探讨.西南交通大学硕士学位论文,2011.
    13. Thompson D J. A review of the modelling of wheel/rail noise generation. Journal of Sound and Vibration,2000,231(3):519-536.
    14. Talotte C. Aerodynamic noise:A critical survey. Journal of Sound and Vibration,2000,231(3): 549-562.
    15. Lighthill M J. On sound generated aerodynamically. Ⅰ. general theory. Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences,1952,211(1107):564-587.
    16. Lighthill M J. On sound generated aerodynamically. Ⅱ. turbulence as a source of sound. Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences,1952,222(1148): 1-32.
    17. Curle N. The Influence of Solid Boundaries upon Aerodynamic Sound. Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences,1955,231(1187):506-514.
    18. Ffowcs Williams J E, Hawkings D L. Sound Generation by Turbulence and Surfaces in Arbitrary Motion. Philosophical Transactions for the Royal Society of London, Series A, Mathematical and Physical Sciences,1969,264(1151):321-342.
    19. Goldstein M V. Unified Approach to Aerodynamic Sound Generation in the Presence of Boundaries. The Journal of Acoustical Society America,1974,56(2):497-509.
    20. Hawkings D L. Noise generation by transonic open rotors. In:Mechanics of sound generation in flows; Proceedings of the Joint Symposium, Goettingen, West Germany, August 28-31,1979. (A80-23890 08-71) Berlin, Springer-Verlag,1979:294-300.
    21. Farassat F, Myers M. Extension of Kirchhoff s formula to radiation from moving surface. Journal of Sound and Vibration,1988,123(3):451-460
    22. di Francescantonio P. A new boundary intergral formulation for the prediction of sound radiation. Journal of Sound and Vibration.1997,202(4):191-509
    23. Powell A. Theory of vortex sound. Journal of the Acoustical Society of America.1964,36(1): 117-195.
    24. Howe M S. Acoustics of fluid-structure interaction. Cambridge University Press,1998.
    25. Howe M S. Theory of Vortex Sound. Cambridge University Press,2002.
    26. Howe M S. Mechanism of sound generation by low Mach number flow over a wall cavity. Journal of Sound and Vibration,2004,273(1-2):103-123.
    27. Farassat F. Discontinuties in aerodynamics and aeroacoustics:the concept and application of generalized derivatives. Journal of Sound and Vibration,1977,55(2):165-193.
    28. King W F. On the role of aerodynamically generated sound in determining wayside noise levels from high speed trains. Journal of Sound and Vibration.1977,54(3):361-378
    29. King W F. A Precis of Development in the Aeroacoustics of Fast Trains. Journal of Sound and Vibration,1996,193(1):349-358.
    30.刘红光,陆森林.高速车辆气流噪声计算方法.交通运输工程学报,2002,2(2):41-44.
    31. King W F, Bechert D. On the sources of wayside noise generated by high-speed trains. Journal of Sound and Vibration.1979.66(3):311-332.
    32. Barsikow B. Experiences with various configurations of microphone arrays used to locate sound sources on railway trains operated by the DB AG. Journal of Sound and Vibration,1996,193(1): 283-293.
    33. Noger C, Patrat J C, Peube J, et al. Aeroacoustical study of the TGV pantograph recess. Journal of Sound and Vibration,2000,231(3):563-575.
    34. Fredmion N, Vincen N. Aerodynamic Noise Radiated by the Intercoach Spacing and the Bogie of a High-speed Train. Journal of Sound and Vibration,2000,231(3):577-593.
    35. Zhang X, Jonasson H G. Directivity of railway noise sources. Journal of Sound and Vibration,2006, 293(3-5):995-1006.
    36. Mellet C, Letourneaux F, Poisson F. et al. High speed train noise emission:latest investigation of the aerodynamic/rolling noise contribution. Journal of Sound and Vibration,2006,293(3-5):535-546.
    37. Moritoh Y, Zenda Y, Nagakura K. Noise control of high speed shinkansen. Journal of Sound and Vibration,1996,193(1):319-334.
    38. Kitagawa T, Nagakurak K. Aerodynamic Noise Generated by Shinkansen Cars. Journal of Sound and vibration,2000,231(3):913-924.
    39. Nagakura K. Localization of aerodynamic noise sources of Shinkansen trains. Journal of Sound and Vibration,2006,293(3-5):547-556.
    40. Ito M. Improvement to the aerodynamic characteristics of Shinkanen rolling stock. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit,2002,214(3): 135-141.
    41. Iwamoto K, Higashi A. Some consideration toward reducing aerodynamic noise pantograph. Japanese Railway Engineering,1993,122(2):1-4.
    42. Ikeda M, Morikawa T, Manade K. Development of low aerodynamic noise pantograph for high speed train, Proceedings of International Congress Noise Control Engineering,1994,1:169-178.
    43. Ikeda M, Suzuki M, Yoshida K. Study on optimization of panhead shape possessing low noise and stable aerodynamic characteristics. Quarterly Report of Railway Technical Research Institute.2006, 47(2):72-77.
    44. Gautier P E. A review of railway noise research and results since the 5th IWRN in Voss (Norway). Journal of Sound and Vibration.2000,231(3):477-489
    45. Raghunathan R S, Kim H D, Setoguchi T. Aerodynamics of high-speed railway train. Progress in Aerospace Science,2002,38(6-7):469-514.
    46. Takaishi T, Ikeda M. Method of evaluating dipole sound source in a finite computational domain. Railway Technical Research Institute,2004,116(3):1427-1435.
    47. Takaishi T, Sagawa A, Nagakura, et al. Numerical analysis of dipole sound source around high speed trains. Railway Technical Research Institute,2002,111(6):2601-2608.
    48. Sassa T, Sato T, Yatsui S. Numerical analysis of aerodynamic noise radiation from a high-speed train surface. Journal of Sound and Vibration,2001,247(3):407-416.
    49. Yoshiki K, Yusuke W, Fumio M, et al. Numerical simulation of aerodynamic noise from high-speed pantographs using Lattice Boltzmann Method. The International Symposium on Speed-up, Safety and Service Technology for Railway and Maglev Systems, Seoul, Korea,2012.
    50.于梦阁,张继业,张卫华.平地上高速列车的风致安全特性.西南交通大学学报,2011,46(6):989-995.
    51.于梦阁,张继业,张卫华.侧风下高速列车车体与轮对的运行姿态.交通运输工程学报,2011,11(4):48-55.
    52.于梦阁,张继业,张卫华.桥梁上高速列车的强横风运行安全性.机械工程学报,2012,48(18):104-111.
    53.于梦阁,张继业,张卫华.随机风作用下高速列车的非定常气动载荷.机械工程学报,2012,48(20):113-120.
    54.于梦阁,张继业,张卫华.随机风作用下高速列车非定常气动载荷的计算方法.计算力学学报,2013,30(3):356-361.
    55.于梦阁,张继业,张卫华.350km/h高速列车风致安全研究.机械设计与制造,2011,(5):174-176.
    56.于梦阁.高速列车风致安全研究.西南交通大学硕士学位论文.2010.
    57.李田,张继业,张卫华.横风下高速列车流固耦合动力学联合仿真.振动工程学报,2012,25(2):138-145.
    58.李田,张继业,张卫华.基于Fluent和Simpack的高速列车流固耦合联合仿真.计算力学学报,2012,29(5):675-680.
    59.李田,张继业,张卫华.高速列车流固耦合的平衡状态法.机械工程学报,2013,49(2):95-101.
    60.杨帆,牛文达.高速列车集电部的气动噪声研究.机电产品开发与创新,2012,25(4):13-15.
    61.杨帆,郑百林,贺鹏飞.高速列车集电部气动噪声数值模拟.计算机辅助工程,2010,19(1):44-47
    62.郑拯宇,李人宪.高速列车表面气动噪声偶极子声源分布数值分析.西南交通大学学报,2011,46(6):996-1002.
    63.郑拯宇,李人宪.采用计算气动声学研究高速列车表面偶极子声源外辐射的指向性.现代制造工程,2012,(6):42-47.
    64.肖友刚,康志成.高速列车车头曲面气动噪声的数值预测.中南大学学报(自然科学版),2008,39(6):1267-1272.
    65.张军,黄艳艺,兆文忠.高速列车气动噪声数值仿真.大连交通大学学报,2012,33(4):1=4.
    66.黄莎.高速列车车外气动噪声数值模拟研究.中南大学硕士学位论文,2009.
    67.杨晓宇,高阳,程亚军,高速列车气动噪声Lighthill声类比的有限元分析.噪声与振动控制,2011,(4):80-84.
    68.孙振旭,王一伟,安亦然.高速列车气动噪声的计算研究.水动力学研究与进展A辑,2010,25(5):660-668.
    69.孙振旭,宋婧婧,安亦然.CRH3型高速列车气动噪声数值模拟研究.北京大学学报(自然科学版),2012,48(5):701-711.
    70.朱剑月,景建辉.高速列车气动噪声的研究与控制.国外铁道车辆,2011,48(5):1-8
    71.孙艳军,夏娟,梅元贵.高速列车气动噪声及减噪措施介绍.铁道机车车辆,2009,29(3):25-28.
    72.孙艳军,梅元贵.国外动车组受电弓的气动噪声介绍.铁道机车车辆,2008,28(5):32-35.
    73.夏恒,宫镇,陆森林,等.关于高速车辆内部气流噪声计算方法的研究.汽车工程,2003,25(1):78-81
    74.夏恒,宫镇,陆森林.用边界元法计算高速车辆内部气流噪声.江苏大学学报(自然科学版),2003,24(1):47-50
    75.宫镇,夏恒,曾发林,等.高速车辆内部气流噪声的统计能量分析.农业机械学报,2003,34(2):7-10.
    76.吕志华,陆森林,刘红光,等.高速车辆驾驶室内气流噪声的声=固耦合分析.振动与噪声控制,2010,(1):56-60.
    77.肖友刚,田红旗,张洪.高速列车司机室内气动噪声预测.交通运输工程学报.2008,8(3):10-14.
    78. Kinoshita M, Kajiyama H, Tanemoto K. Aerodynamic drag of Shinkansen electric cars (series 0, series 200, series 100). RTRI JNR,1987,30(1):48-56.
    79. Ido A, Iida M. Wind tunnel tests for nose and tail of train. RTRI JNR,1993.
    80. Matsumura T, Nakatani K, Fukuda T, et al. Effective nose shape for reducing tunnel sonic boom. RTRI JNR,1997,38(4):206-211.
    81. Kikuchi K, Tanaka Y, Iida M. Countermeasures for reducing pressure variation due to train passage in open sections. RTRI JNR,2001,42(2):77-82.
    82. Hemida H, Krajnovic S. LES study of the influence of the nose shape and yaw angles on flow structures around trains. Journal of Wind Engineering and Industrial Aerodynamics,2010,98(1): 34-46.
    83.田红旗.列车空气动力学.北京:中国铁道出版社,2007.
    84.冯志鹏.高速列车气动性能与外形设计.西南交通大学硕士学位论文.2011.
    85.张健.国外高速列车最佳头尾部形状的研究.机车电传动,2000,(2):16-18.
    86. Kwon H B, Jang K H, Kim Y S, et al. Nose shape optimization of high-speed train for minimization of tunnel sonic boom. JSME,2011,44(3):890-899.
    87. Lee J, Kim J. Approximate optimization of high-speed train nose shape for reducing micropressure wave. Struct Multidiscip O.2008,35(1):79-87.
    88. Sun Z X, Song J J, An Y R. Optimization of the head shape of the CRH3 high speed train. Sci China Ser E-Tech Sci,2010,53(12):3356-3364.
    89.沈志云.高速磁浮列车对轨道的动力作用及其与轮轨高速铁路的比较.交通运输工程学报,2001,1(1):1-6.
    90. Michele M, Pierre R. Swissmeetro:a revolution in the high-speed passenger transport systems. Swiss Tranport Research Conference, Proceedings of the 1st Transport Research Conference, Ascona, mars, 2001:1-16.
    91. Mossi M, Sybilla S. Swissmetro:aerodynamic drag and waveeffects in tunnels under partial vacuum. The 17th International Conference on Magnetically-Levitated Systems, Lausanne, Switzerland,2002: 156-163.
    92.周晓,张耀平,姚应峰.真空管道中高速列车空气阻力数值仿真.科学技术与工程.2008,8(6):1626=1628.
    93.周晓,张殿业,张耀平.真空管道中阻塞比对列车空气阻力影响的数值研究.真空科学与技术学报.2008,28(6):535-538.
    94. Kim TK, Kim KH, Kwon HB. Aerodynamic characteristic of a tube train. Journal of Wind Engineering and Industrial Aerodynamic,2011,99:1187-1196.
    95.林建忠,阮晓东,陈邦国等.流体力学.北京:清华大学出版社,2005
    96.庄礼贤,尹协远,马晖扬.流体力学(第2版).合肥:中国科学技术大学出版社,2009.
    97. Versteeg H K, Malalasekera W. An introduction to computational fluid dynamics:The finite volumn method. (2nd edition). Prentice Hall,2007.
    98.杨吉忠.考虑空气动力效应时高速列车运行安全平稳性研究.西南交通大学博士学位论文,2009.
    99.张兆顺,崔桂香,许春晓.湍流理论与模拟.北京:清华大学出版社,2005
    100.杨本洛.湍流及理论流体力学的理性重构.上海:上海交通大学出版社,2003.
    101. Ferziger J.H, Peric M. Computational methods for fluid dynamics (3rd edition), New York, Springer, 2000.
    102. Orszag S.A. Numerical simulation of turbulent flows. In:Frost W, Moulden T.H., eds. Handbook of turbulence. New York:Plenum Press,1997:281-313.
    103. Orszag S A. Numerical simulation of incomprehensible flow winthin simple boundaries. Journal of Fluid Mechanics,1971,49:75-112.
    104. Orszag S A. Comparison of pseudo-spectral and spectral approximation. Journal of Comptutational. Physics,1971,49:75-112.
    105. Reynolds W C. Computation of turbulent flow. Annual Review Fluid Mechanics,1976,8:183-206.
    106. Tennekes H, Lumley J L. A first course in turbulence. London:Massachusetts Institute of Technology, 1972.
    107. Kim J, Moin P, Moser R. Turbulence statistics in fully developed channel flow at low Reynolds number. Journal of Fluid Mechanics,1987,177:133-166.
    108. Spalart P R. Direct simulation of a turbulent boundary layer up to Re=1410. Journal of Fluid Mechanics,1988,18:61-98.
    109.章梓雄,董曾南.粘性流体力学.北京:清华大学出版社,1998
    110.蔡树棠,刘宇陆.湍流理论.上海:上海交通大学出版社,1993
    111.张兆顺.湍流.北京:国防工业出版社,2002
    112. Favre A. The mechanics of turbulence. Gordon and Breach,1964.
    113. Bradshaw P, Cebeci J, Whitelaw J H, Enginnering calculation methods for turbulent flow. Academic Press, London,1981.
    114.陶文铨.数值传热学(第2版).西安:西安交通大学出版社,2001.
    115. Launder B E., Spalding D B. Lectures in mathematical models for turbulence. London:Academic Press,1972:78-115.
    116.吴子牛.计算流体力学基本原理.北京:科学技术出版社,2001.
    117. Launder B E., Spalding D B. The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering,1974,3(2):269-289.
    118. Ramadhyani S. Two-equation and second-moment turbulence models for convective heat transfer. In:Minkowycz W.J., Sparrow E.M. eds.Advances in numerical heat transfer. Washington DC. Taylor & Francis.1997,1:171-199.
    119.张兆顺,崔桂香,许春晓.湍流大涡数值模拟的理论和应用.北京:清华大学出版社,2008.
    120.陈艾荣,艾辉林.计算桥梁空气动力学-大涡模拟.北京:人民交通出版社,2010.
    121. Deardorff J W. A numerical study of three-dimension turbulent channel flow at large Reynolds numbers. Journal of Fluid Mechanics,1970,41:453-480.
    122. Schumann U. Subgrid-scale model for finite difference simulation of turbulent flows in plane channels and annuli. Journal of Comptutational. Physics,1975,18:376-404.
    123. Feiereisen W J, Reynolds W C, Ferziger J H. Numerical simulation of compressible, homogeneous, turbulent shear flow. Standford:Rep TF-13, Department of Mechanics and Engineering, Standford University,1981.
    124. Smagorinsky J S. General circulation experiments with the primitive equations:part 1, the basic experiment. Monthly Weather Review,1963,91(3):99-164
    125. Lilly D K. On the application of the eddy viscosity concept in the inertial subrange of turbulence. NCAR Manuscr,123,1966.
    126. Proudman I. The Generation of Noise by Isotropic Turbulence. Proc. Roy. Soc., A214:119,1952.
    127. Lilley G M. The radiated noise from isotropic turbulence revisited. NASA Contract Report 93-75, NASA Langley Research Center, Hampton, VA,1993.
    128. Sarkar S, Hussaini M Y. Computation of the sound generated by isotropic turbulence. NASA Contract Report 93-74, NASA Langley Research Center, Hampton, VA,1993.
    129.马大猷.现代声学理论.北京:科学出版社,2004.
    130.乔渭阳.航空发动机气动声学.北京:北京航空航天大学出版社,2010.
    131.胡国庆.可压缩流气动声场的数值模拟.中国科学院力学学研究所博士学位论文,2000.
    132. Lele S K, Compact finite difference scheme with spectral-like resolution. Journal of Comptutational. Physics,1992,103(1):16-42.
    133. Tam C K, Webb J C. Dispersion-relation-preserving finite schemes for computational acoustics. Journal of Comptutational. Physics,1993,107:262-281.
    134. Ma Y W, Fu D X. Super compact finite difference method (SCFDM) with arbitrarily high accuracy. Journal of Computational Fluid Dynamics,1996,5(2):259-276.
    135.孙晓峰,周盛.气动声学.北京:国防工业出版社,1992.
    136. Ozyoruk Y, Long L N. A new efficient algorithm for computational aeroacoustics on parallel processors. Journal of Computational Physics,1996,125(1):135-149.
    137.刘加利,张继业,张卫华.高速列车车头的气动噪声数值分析.铁道学报,2011,33(9):19-26.
    138.西南交通大学轨道交通实验室.京津城际高速铁路科学研究实验报告,车外噪声实验[R],2008.
    139.高宵鹏.舰艇水动力噪声的数值分析与拖拽模拟测试技术研究.上海交通大学博士学位论文,2007.
    140. Morgans R P. The Kirchhoff formula extended to a moving surface. Philosphical Magazine,1930, 9(55):141-161.
    141. EN ISO 3095. Railway application-Acoustics-Measurement of noise emitted by railbound vehicle. 2005.
    142.GB13669-92.铁道机车辐射噪声限值.
    143.何琳,朱海潮,邱小军.声学理论与工程应用.北京:科学出版社.2006.
    144.李增刚SYSNOISE Rev5.6详解.北京:国防工业出版社,2005.
    145.李增刚,詹福良Virtual. Lab Acoustics声学仿真计算高级应用实例.北京:国防工业出版社,2010.
    146. Lyon R H. Statistical energy analysis of dynamical systems:theory and application. Massachusetts: Massachusetts Institute of Technology,1975.
    147.姚德源,王其政.统计能量分析原理及其应用.北京:北京理工大学出版社,1995.
    148. Lyon R H, Maidanik G. Power flow between linearly coupled oscillators. Journal of the Acoustics Society of Amercia,1962,34(5):623-639.
    149. Luzzato E, Ortola E. The characterization of energy flow paths in the study of dynamic systems using SEA theory. Journal of Sound and Vibration,1988,123(1):189-197.
    150. Radcliffe C J, Huang X L. Putting statistics into the statistical energy analysis of automotive vehicle. Journal of Vibration and Acoustics,1997,119(4):51-59.
    151. Groker M J, Price A J. Sound transmission using statistical energy analysis. Journal of Sound and Vibration,1969,9(3):469-486.
    152.夏恒.高速车辆车内气流噪声的理论计算方法研究.江苏大学博士学位论文.2002
    153. Brenner P G, Ming Z. Recent Progress using SEA and CFD to predict interior wind noise. Society of Automotive Engineers,2003,112(6):2212-2220.
    154. Deb K. Multi-objective genetic algorithms:problem difficulties and construction of test problems. Evolutionary Computation,1999,7(3):205-230.
    155. Aguilar Madeira J F, Rodrigues H, Pina H. Multi-objective optimization of structures topology by genetic algorithms. Advance in Engineering Software,2005,36(1):21-28.
    156. Zitzler E, Deb K, Thiele L. Comparison of multiobjective evolutionary algorithms:Empirical results. Evolutionary Computation,2000,8(2):173-195.
    157. Deb K, Agrawal S, Pratap A, Meyarivan T. A fast and elitist multi-objective genetic algorithm: NSGA-Ⅱ. IEEE Transactions Evolutionary Computation,2002,6(2):182-197.
    158. Mckay M D, Beckman R J, Conover W J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics,1979,21(2):239-245.
    159. Montgomery D C. Design and analysis of experiment. NewYork:John Wiley&Sons,1997.
    160. Jin R, Chen W, Sudjianto A. An efficient algorithm for constructing optimal design of computer experiments. Journal of Statistical Planning and Inference,2005,134(1):268-287.
    161. Broomhead D S, Lowe D. Multivariable functional interpolation and adaptive networks. Complex System,1988,2,269-303.
    162.张德丰Matlab神经网络应用设计.北京:机械工业出版社.2009
    163.刘希玉,刘弘.人工神经网络与微粒群优化.北京:北京邮电大学出版社,2008.
    164. Tsien HS. Superaerodynamics, mechanics of rarefield gases. Journal of Aerodynamic Science.1964, 13(12):653-664.
    165. Chapman S, Cowling TG. The mathematical theory of non-uniform gases(Third edition). Cambridge University Press. Cambridge,1970.
    166. Karniadakis GE, Beskok A. Micro flows:fundamental and simulation. New York:Spring-Verlag, 2002.
    167. Minoru S, Katsuji T, Tatsuo M. Aerodynamic characteristics of train/vehicles under cross winds. Journal of Wind Engineering and Industrial Aerodynamics 2003,91:209-218.
    168. Hassan H, Sinis a K. LES study of the influence of the nose shape and yaw angles on flow structures around trains. Journal of Wind Engineering and Industrial Aerodynamics.2010,98(1):34-36
    169.沈青.稀薄气体动力学.北京:国防工业出版社,2003.
    170. Ohwada T, Sone T, Aoki K. Numerical analysis of the Poiseuille and thermal transpiration flows and a rarefied gas between two parallel plates. Phys. Fluids A,1989,1:2042-2049.
    171. Abdou M A. Chapman-Enskog-maximum Entropy Method on Time-dependent Neutron Transport Equation. Journal of Quantitative Spectroscopy and Radiative Transfer,2006,101(2):210-225.
    172. Xu K. Numerical Hydrodynamics from Gas Kinetic Theory. Columbia University.1993.
    173.Aakilic E B, Schmidt M A, Breuer K S. Gaseous slip flow in long microchannels. Journal of Microelectromechanical Systems,1997,62(2):167-178.
    174. Beskok A. Simulation and Models for Gas Flows in Microg eometries. New Jersey:Princeton University,1996.
    175. Bird G A. Recent advances and current challenges for DSMC. Computers and Mathematics with Applications,1998,35:1-14.
    176. Fan J, Shen C. Statistical simulation of low-speed rarefied gas flows. Journal of Computational Physics,2001,167(2):393-412.
    177. Cai C P, Boyd I D, Fan J, et al. Direct simulation methods for low-speed micro-channel flows[J]. Journal of Thermophysics and Heat Transfer,2000,14(3):368-378.
    178. Nie X, Doolen G D, Chen S. Lattice-Boltzmann simulations of fluid flows in MEMS. Journal of Statistical Physics,2002,107(1/2):279-289.
    179. Lim C Y, Shu C, Niu X D, et al. Application of lattice Boltzmann method to simulate microchannel flows. Physics of Fluids,2002,14(7):2299-2308.
    180. Shen C, Tian D B, Xie C, et al. Examination of the LBM in simulation of micro-channel flow in transitional regime. Microscale Thermophysical Engineering,2004,8:423-432.
    181. Zhang Y, Qin R, Emerson D R. Lattice Boltzmann simulation of rarefied gas flows in microchannels. Physical Review E,2005,71(4):047702.
    182. Lee T, Lin C L. Rarefaction and compressibility effects of the lattice Boltzmann equation method in a gas microchannel. Physical Review E,2005,71(4):046706.
    183. Guo Z L, Zhao T S, Shi Y. Physical symmetry,spatial accuracy,and relaxation timeof the lattice Boltzmann equation for microgas flows. Journal of Applied Physics,2006,99(7):074903.
    184. Zhang Y H, Gu X J, Barber R W, et al. Capturing Knudsen layer phenomena usinga lattice Boltzmann model. Physical Review E,2006,74(4):046704.
    185. Zhang Y H, Gu X J, Barber R W, et al. Modelling thermal flow in the transitionregime using a lattice Boltzmann approach. Europhysics Letters,2007,77(3):30003.
    186. Guo Z L, Zhang C G, Shi B C. Lattice Boltzmann equation with multiple effective relaxation times for gaseous microscale flows. Phys. Rev. E.2008,77(3):036707.
    187. Qian Y H, d'Humieres D, Lallemand P. Lattice BGK models for Navier-Stokes equation. Europhysis Letters,1992,17(6):479-484.
    188. Guo Z L, Zheng C G, Shi B C. Discrete lattice effects on the forcing term in the lattice Boltzmann method. Phys. Rev. E.2002,65(4):046308.
    189.郭照立,郑楚光.格子Boltzmann方法的原理及应用.北京:科学出版社,2009.
    190. Beskok A, Karniadakis G E. A model for flows in channels, pipes, and ducts at micro and nano scales. Microscale Thermophys Engineering,1999,3:43-77.
    191. Vasilis K, Michalis A N, Kalarakis E D, et al. Rarefaction effects on gas viscosity in the Knudsen transition regime. Microfluid Nanofluid.2010,9:847-853.
    192. Succi S. Mesoscopic modeling of slip motion at fluid-solid interfaces with heterogeneouscatalysis. Physieal Review Letters,2002,89(6):064502.
    193. Guo Z L, Shi B C, Zhao T S, et al. Discrete effects on boundary conditions for the lattice Boltzmann equation in simulating mircoscale gas flows. Phys. Rev. E.2007,76(5):056704.
    194. Cercignani C. Plane Poiseuille flow and Knudsen minimum effect. Proceeding of the Third International Symposium on Rarefied Gas Dynamics. Academic Press, New York,1963:92-101.
    195. Deissler R. An analysis of second-order slip flow and temperature jump boundary condition for rarefied gases. International Journal of Heat and Mass Transfer.1964,7(6):681-694.
    196. Hadjiconstantinou N G. Comment on Cercignani's second-order slip coefficient. Physics Fluids,2003, 15(8):2352-2354.
    197. Hisa Y T, Domoto G A. An experimental investigation of molecular rarefaction effects in gas lubricated bearings at ultra-low clearances. Journal of Lubrication Technology,1983,105(1): 120-130.
    198. Schamberg R. The fundamental differential equations and the boundary conditions for high speed slip-flow, and their application to several specific problems.California Institute of Technology, 1947.
    199. Karniadakis G E, Beskok A. Micro flows:fundamental and simulation. New York:Springer-Verlag. 2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700